لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 9
«توصیف آشکار سازهای نیمه هادی سه بعدی نوترونهای حرارتی»
آشکار سازی های نیمه هادی نوترون برای رادیوبیولوژی نوترون و شمارش آن دارای اهمیت بسیار زیادی هستند. آشکار سازی های ساده سیلیکونی نوترون ترکیبی از یک دیود صفحه ای با لایه ای از یک مبدل مناسب نوترون مثل 6LiFمی باشند. چنین وسایلی دارای بهره آشکار سازی محدودی می باشندکه معمولاً بیشتر از 5% نیست. بهره آشکار سازی را می توان با ساخت یک ساختار میکرونی3D به صورت فرو رفتگی، حفره یا سوراخ و پر کردن آن با ماده مبدل نوترون افزایش داد. اولین نتایج ساخت چنین وسیله ای در این مقاله ارائه شده است.
آشکار سازهای سیلیکونیN با حفره های هرمی شکل در سطح پوشیده شده با 6LiF ساخته شده و سپس تحت تابش نوترونهای حرارتی قرار گرفتند. طیف ارتفاع پالس انرژی تابش شده به حجم حساس با شبیه سازی مورد مقایسه قرار گرفت. بهره آشکار سازی این وسیله در حدود 6.3% بود. نمونه هایی با سایز ستونهای مختلف ساخته شد تا خواص الکتریکی ساختارهای سه بعدی مورد مطالعه قرار گیرد.ضرایب جمع آوری بار در ستونهای سیلیکون از 10تا800 nm عرض و 80تا nm 200ارتفاع با ذرات آلفا اندازه گیری شد. بهره آشکار سازی یک ساختار 3D کامل نیز شبیه سازی شد. نتایج نشان از تقویت بهره آشکار سازی با فاکتور 6در مقایسه با آشکار سازهای صفحه ای استاندارد نوترون دارد.
1. مقدمه و اهداف: آشکار سازهای نوترونی نمی توانند مستقیماً برای آشکار سازی نوترونهای حرارتی به کار روند و باید از ماده ای استفاده کرد که نوترونها را به صورت تشعشع قابل آشکار سازی در آورد. مواد مختلفی برای این منظور وجود دارند که در بین آنها6Li از همه مناسب تر به نظر می رسد. واکنش گیر افتادن نوترون در6Li دارای سطح مقطع942 b در انرژی نوترونی0.0253eV است.
6Li+n→∝(2.05MeV) +3H(2.73MeV
مواد مبدل با پایه6Li دارای سطح مقطع گیر انداختن نورونهای بالایی بوده و انرژی محصولات تولید شده آن نیز برای آشکار شدن به قدر کافی بالا می باشد. هدف نهایی آشکار سازR&D که در اینجا شرح داده می شوند ایجاد یک سنسور تصویر برداری نوترون با حساسیت بالا و قدرت تفکیک فضایی مناسب است. ما قبلاً با موفقیت چیپMedipix-2 با چیپ سنسور صفحه ای پوشیده با مبدل نوترون6Li را آزمایش کرده ایم. قدرت تفکیک فضایی چنین وسیله ای در حدود 65nm(نشانه ای از FWHMتابع پخش خطی) به خوبی با ابزارهای تصویر برداری نوترون قابل رقابت است. نسبت سیگنال به نویز(SNR) آشکارسازی سیلیکون نیز بالاتر از آشکار سازهای نوترونی فعلی است. با این وجود بهره آشکار سازی چنین آشکارسازهای نیمه هادی صفحه ای(نسبت تعداد آشکار شده به تعداد نوترون برخوردی) در حدود5% محدود می باشد. بهره آشکارسازی را می توان با ایجاد حفره یا سوراخ هایی (ساختار 3D ) در بدنه آشکار ساز سیلیکون افزایش داد.
2. آشکار سازی آشکارسازهای نوترونی صفحه ای:
برای پیش بینی بهره آشکارسازی ساختار صفحه ای از یک بسته نرم افزار شبیه سازی مونت کارلو استفاده شد. این بسته ترکیبی بود ازMCNP-4C (شبیه سازی انتقال نوترونی) با SRIM/TRIM (قدرت توقف) و کد مونت کارلو C++ متعلق به خودمان(شبیه سازی انتقال انرژی، طیف ارتفاع پالس، بهره آشکار سازی و....)
شکل 1بهره آشکار سازی را در مقابل ضخامت ماده مبدل6LIF (6LI غنی شده تا 89%)، اول برای تشعشع قدامی که منحنی مقدار بیشینه 4.48% را در ضخامت 7mg/cm2 نشان می دهد. بهره آشکار سازی در ضخامتهای بیشتر از این حد کاهش می یابد چون ذرات آلفا و تریتیوم تولید شده در سطوح دورتر LiFاز مرز Si-LiF قادر به رسیدن به حجم حساس نیستند. به علاوه تعداد بیشتر نوترونها در نزدیکی سطح خارجی مبدل جذب می شوند(شکل 2a را ببینید). منحنی دوم در شکل1 مخصوص آشکار سازی است که از پشت تحت تابش قرار گرفته است.
در ضخامتهای بالا تراز7mg/cm2، بهره آشکار سازی در حدود 4.90%ثابت باقی می ماند. نوترونها به صورت قابل ترجیحی در نزدیکی مرز مبدل نیمه هادی جذب می شوند )شکل(b.2 و بهره آشکارسازی اشباع شده و مستقل از ضخامت آشکار ساز می باشد.
طیف انرژی تابشی در آشکار ساز صفحه ای ساده اندازه گیری شد(شکل 3). نمونه مورد استفاده یک آشکارساز سیلیکونی 5×5mm2و 300µm ضخامت بود. مقاومت حجم n-type در حدود 5kΩcm بود. بخشی از نمونه با لایه ای از6LiF با 89% لیتیوم پوشانده شده بود(به این دلیل فقط بخشی از آن پوشانده شده بود تا بخشی به صورت فضای باز برای کالیبراسیون انرژی با ذرات آلفای منبع کالیبراسیون در اختیار داشته باشیم). طیف حاصل را با نتایج شبیه سازی مونت کارلو مقایسه کردیم. شبیه سازی به خوبی با نتایج اندازه گیری شده مطابقت داشت. نمونه از پشت با دسته پرتو نوترون حرارتی مورد تابش قرار گرفت. اندازه گیریها در کانال افقی (هدایت نوترون) راکتور تحقیقاتی هسته ای LVR-15 در موسسه فیزیک هسته ای دانشگاه چک در Rez در نزدیکی پراگ انجام پذیرفتند. فلوی نوترون در حدود106cm-2s-1در قدرت راکتور8MW بودند.
آلفا و تریتون تولید شده از واکنش گیر انداختن نوترون حرارتی اغلب در جهتهای متضاد به حرکت در می آیند (شکل4) آشکارساز صفحه ای ساده یکی از دو ذره الفا یا تریتون را آشکار می کند نه هر دو را. بنابر این طیف انرژی تابشی هرگز دارای انرژی بالاتر مربوط به تریتون نخواهد بود.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 7
اساس کار سیستم های آشکار سازحرکت
PIR (PASSIVE INFRA RED)
مقدمه:
این سیستم ها در برابر تشعشعات مادون قرمز که از یک منبع طبیعی تولید شده اند مثل تشعشع ناشی از حرارت بدن انسان ، واکنش نشان می دهند.
این آشکار سازها در اغلب سیستم های امنیتی مدرن به کار برده می شوند.
اغلب سیستم های حفاظتی مبتنی بر PIR به گونه ای طرح می شوند که وقتی یک انسان یا یک حیوان خون گرم بزرگ در حوزه ی عملکرد آشکار ساز PIR حرکت نماید یک زنگ خطر یا نورافکن روشن شود و یا یک درب باز شده و یا سایر انواع سیستم های الکترو مکانیکی فعال شود.
سیستم آشکار ساز حرکت در بازار با نام چشمی شناخته می شوند به عنوان دزدگیر استفاده می شود.
همانگونه که در شکل 1 نشان داده شده است در این سیستم ها از آشکار ساز پیرو الکتریک به عنوان حسگر مادون قرمز استفاده می شود.
در ابتدا درباره آشکارسازهای مادون قرمز پیرو الکتریک توضیحاتی داده می شود.
آشکار سازهای مادون قرمز پیروالکتریک (PIR):
برخی از کریستال ها و سرامیک های خاص با قرار گرفتن در معرض تغییرات حرارتی ، بار الکتریکی تولید می کنند که به این پدیده اثر "پیرو الکتریک" گفته می شود.
همان گونه که در شکل 1 (الف) نشان داده شده است آشکار سازهای مادون قرمز پیرو الکتریک متشکل از یک یا دو کریستال پیرو الکتریک, یک فیلتر نوری و یک ترانزیستور FET هستند.
آشکار سازهای مدرن پیرو الکتریک مادون قرمز مثل انواع متداول PIS201S و E600STO از اتصال سری دو سرامیک کوچک پیرو الکتریک با پلاریته های معکوس تشکیل شده اند و خروجی این مجموعه توسط یک JFET که با آرایش سورس فالوور بسته شده است بافر شده.
عملکرد این آشکار ساز بدین گونه است که اگر بدن شخصی که در میان دید کریستال پیرو الکتریک قرار دارد حرکت نماید، قسمتی از انرژی مادون قرمز تشعشع کرده از بدن آن فرد روی سطح کریستال پیرو الکتریک تابیده شده که موجب تغییرات جزیی حرارت سطح کریستال می شود در نتیجه ولتاژ خروجی تغییر می کند. اگر این آشکار ساز را مشابه شکل 1(ب) در مدار قرار داد آنگاه تغییرات ولتاژ خروجی آشکار ساز که ناشی از جابه جایی منبع گرمایی می باشد توسط JFET تقویت شده و از طریق c1 در اختیار سایر بخش های مدار قرار می گیرد که پس از تقویت و فیلتر شدن می تواند یک آلارم یا زنگ خطر را فعال کند.
شکل1: ساختار اساسی و نحوه استفاده آشکارساز مادون قرمزپیروالکتریک
در مدار فوق به دلیل کوچک بودن عدسی آشکار ساز حد اکثر برد موثر آشکار سازی آن یک متر می باشد ولی این محدوده را با استفاده از عدسی های متمرکز کننده ی بزرگتر که در سیستم های مدرن آشکار سازی مادون قرمز PIR مورد استفاده قرار می گیرند تا میزان 10 متر افزایش داد.
این عدسی ها, عدسی هایی پلاستیکی چند وجهی با سطح زیاد (حدود 2000 میلی متر مربع)
می باشد ، این عدسی ها کل میدان دید را به تعدادی نوار موازی تقسیم کرده و روی هر دو سطح حس کننده های PIR متمرکز می کنند.
عملکرد آشکار ساز حرکت (PIR):
عملکرد آشکار ساز PIR نشان داده شده در شکل 2 بدین گونه است که وقتی بدن شخصی در میدان دید عناصر پیرو الکتریک قرار گیرد قسمتی از انرژی تشعشع مادون قرمز که از بدن منتشر شده است و روی سطح عناصر حساس تابیده است, به تغییرات حرارتی بسیار جزیی ولی قابل آشکار سازی تبدیل می شود و این تغییرات نیز به نوبه خود موجب بروز تغییراتی در ولتاژ خروجی می شود.
شکل2: مدار کاربرد آشکارساز PIR
در وضعیتی که شخص یا هر منبع تشعشعات مادون قرمز به صورت ساکن در برابر عدسی آشکار ساز قرار گیرد ولتاژ تولید شده توسط هر یک از دو سرامیک پیرو الکتریک متشابه بوده و ولتاژ تفاضلی این مجموعه صفر خواهد شد ولی اگر این منبع حرارتی در مقابل عدسی آشکار ساز شروع به حرکت کند آنگاه هر یک از دو عناصر پیرو الکتریک ولتاژهای متفاوتی ایجاد خواهند کرد و در نتیجه در خروجی ولتاژ متغیری ایجاد خواهد شد.
بنابراین هرگاه یک واحد PIR مطابق شکل 2 در مدار قرار گیرد آنگاه حرکت منبع حرارت در جلوی این آشکارساز تغییر ولتاژی را القا می کند که این ولتاژ توسط یک JFET بافر شده و جریان آن تقویت می شود و ولتاژ DC آن توسط خازن C1 حذف می شود و
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 7
اساس کار سیستم های آشکار سازحرکت
PIR (PASSIVE INFRA RED)
مقدمه:
این سیستم ها در برابر تشعشعات مادون قرمز که از یک منبع طبیعی تولید شده اند مثل تشعشع ناشی از حرارت بدن انسان ، واکنش نشان می دهند.
این آشکار سازها در اغلب سیستم های امنیتی مدرن به کار برده می شوند.
اغلب سیستم های حفاظتی مبتنی بر PIR به گونه ای طرح می شوند که وقتی یک انسان یا یک حیوان خون گرم بزرگ در حوزه ی عملکرد آشکار ساز PIR حرکت نماید یک زنگ خطر یا نورافکن روشن شود و یا یک درب باز شده و یا سایر انواع سیستم های الکترو مکانیکی فعال شود.
سیستم آشکار ساز حرکت در بازار با نام چشمی شناخته می شوند به عنوان دزدگیر استفاده می شود.
همانگونه که در شکل 1 نشان داده شده است در این سیستم ها از آشکار ساز پیرو الکتریک به عنوان حسگر مادون قرمز استفاده می شود.
در ابتدا درباره آشکارسازهای مادون قرمز پیرو الکتریک توضیحاتی داده می شود.
آشکار سازهای مادون قرمز پیروالکتریک (PIR):
برخی از کریستال ها و سرامیک های خاص با قرار گرفتن در معرض تغییرات حرارتی ، بار الکتریکی تولید می کنند که به این پدیده اثر "پیرو الکتریک" گفته می شود.
همان گونه که در شکل 1 (الف) نشان داده شده است آشکار سازهای مادون قرمز پیرو الکتریک متشکل از یک یا دو کریستال پیرو الکتریک, یک فیلتر نوری و یک ترانزیستور FET هستند.
آشکار سازهای مدرن پیرو الکتریک مادون قرمز مثل انواع متداول PIS201S و E600STO از اتصال سری دو سرامیک کوچک پیرو الکتریک با پلاریته های معکوس تشکیل شده اند و خروجی این مجموعه توسط یک JFET که با آرایش سورس فالوور بسته شده است بافر شده.
عملکرد این آشکار ساز بدین گونه است که اگر بدن شخصی که در میان دید کریستال پیرو الکتریک قرار دارد حرکت نماید، قسمتی از انرژی مادون قرمز تشعشع کرده از بدن آن فرد روی سطح کریستال پیرو الکتریک تابیده شده که موجب تغییرات جزیی حرارت سطح کریستال می شود در نتیجه ولتاژ خروجی تغییر می کند. اگر این آشکار ساز را مشابه شکل 1(ب) در مدار قرار داد آنگاه تغییرات ولتاژ خروجی آشکار ساز که ناشی از جابه جایی منبع گرمایی می باشد توسط JFET تقویت شده و از طریق c1 در اختیار سایر بخش های مدار قرار می گیرد که پس از تقویت و فیلتر شدن می تواند یک آلارم یا زنگ خطر را فعال کند.
شکل1: ساختار اساسی و نحوه استفاده آشکارساز مادون قرمزپیروالکتریک
در مدار فوق به دلیل کوچک بودن عدسی آشکار ساز حد اکثر برد موثر آشکار سازی آن یک متر می باشد ولی این محدوده را با استفاده از عدسی های متمرکز کننده ی بزرگتر که در سیستم های مدرن آشکار سازی مادون قرمز PIR مورد استفاده قرار می گیرند تا میزان 10 متر افزایش داد.
این عدسی ها, عدسی هایی پلاستیکی چند وجهی با سطح زیاد (حدود 2000 میلی متر مربع)
می باشد ، این عدسی ها کل میدان دید را به تعدادی نوار موازی تقسیم کرده و روی هر دو سطح حس کننده های PIR متمرکز می کنند.
عملکرد آشکار ساز حرکت (PIR):
عملکرد آشکار ساز PIR نشان داده شده در شکل 2 بدین گونه است که وقتی بدن شخصی در میدان دید عناصر پیرو الکتریک قرار گیرد قسمتی از انرژی تشعشع مادون قرمز که از بدن منتشر شده است و روی سطح عناصر حساس تابیده است, به تغییرات حرارتی بسیار جزیی ولی قابل آشکار سازی تبدیل می شود و این تغییرات نیز به نوبه خود موجب بروز تغییراتی در ولتاژ خروجی می شود.
شکل2: مدار کاربرد آشکارساز PIR
در وضعیتی که شخص یا هر منبع تشعشعات مادون قرمز به صورت ساکن در برابر عدسی آشکار ساز قرار گیرد ولتاژ تولید شده توسط هر یک از دو سرامیک پیرو الکتریک متشابه بوده و ولتاژ تفاضلی این مجموعه صفر خواهد شد ولی اگر این منبع حرارتی در مقابل عدسی آشکار ساز شروع به حرکت کند آنگاه هر یک از دو عناصر پیرو الکتریک ولتاژهای متفاوتی ایجاد خواهند کرد و در نتیجه در خروجی ولتاژ متغیری ایجاد خواهد شد.
بنابراین هرگاه یک واحد PIR مطابق شکل 2 در مدار قرار گیرد آنگاه حرکت منبع حرارت در جلوی این آشکارساز تغییر ولتاژی را القا می کند که این ولتاژ توسط یک JFET بافر شده و جریان آن تقویت می شود و ولتاژ DC آن توسط خازن C1 حذف می شود و
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 8
«توصیف آشکار سازهای نیمه هادی سه بعدی نوترونهای حرارتی»
آشکار سازی های نیمه هادی نوترون برای رادیوبیولوژی نوترون و شمارش آن دارای اهمیت بسیار زیادی هستند. آشکار سازی های ساده سیلیکونی نوترون ترکیبی از یک دیود صفحه ای با لایه ای از یک مبدل مناسب نوترون مثل 6LiFمی باشند. چنین وسایلی دارای بهره آشکار سازی محدودی می باشندکه معمولاً بیشتر از 5% نیست. بهره آشکار سازی را می توان با ساخت یک ساختار میکرونی3D به صورت فرو رفتگی، حفره یا سوراخ و پر کردن آن با ماده مبدل نوترون افزایش داد. اولین نتایج ساخت چنین وسیله ای در این مقاله ارائه شده است.
آشکار سازهای سیلیکونیN با حفره های هرمی شکل در سطح پوشیده شده با 6LiF ساخته شده و سپس تحت تابش نوترونهای حرارتی قرار گرفتند. طیف ارتفاع پالس انرژی تابش شده به حجم حساس با شبیه سازی مورد مقایسه قرار گرفت. بهره آشکار سازی این وسیله در حدود 6.3% بود. نمونه هایی با سایز ستونهای مختلف ساخته شد تا خواص الکتریکی ساختارهای سه بعدی مورد مطالعه قرار گیرد.ضرایب جمع آوری بار در ستونهای سیلیکون از 10تا800 nm عرض و 80تا nm 200ارتفاع با ذرات آلفا اندازه گیری شد. بهره آشکار سازی یک ساختار 3D کامل نیز شبیه سازی شد. نتایج نشان از تقویت بهره آشکار سازی با فاکتور 6در مقایسه با آشکار سازهای صفحه ای استاندارد نوترون دارد.
1. مقدمه و اهداف: آشکار سازهای نوترونی نمی توانند مستقیماً برای آشکار سازی نوترونهای حرارتی به کار روند و باید از ماده ای استفاده کرد که نوترونها را به صورت تشعشع قابل آشکار سازی در آورد. مواد مختلفی برای این منظور وجود دارند که در بین آنها6Li از همه مناسب تر به نظر می رسد. واکنش گیر افتادن نوترون در6Li دارای سطح مقطع942 b در انرژی نوترونی0.0253eV است.
6Li+n→∝(2.05MeV) +3H(2.73MeV
مواد مبدل با پایه6Li دارای سطح مقطع گیر انداختن نورونهای بالایی بوده و انرژی محصولات تولید شده آن نیز برای آشکار شدن به قدر کافی بالا می باشد. هدف نهایی آشکار سازR&D که در اینجا شرح داده می شوند ایجاد یک سنسور تصویر برداری نوترون با حساسیت بالا و قدرت تفکیک فضایی مناسب است. ما قبلاً با موفقیت چیپMedipix-2 با چیپ سنسور صفحه ای پوشیده با مبدل نوترون6Li را آزمایش کرده ایم. قدرت تفکیک فضایی چنین وسیله ای در حدود 65nm(نشانه ای از FWHMتابع پخش خطی) به خوبی با ابزارهای تصویر برداری نوترون قابل رقابت است. نسبت سیگنال به نویز(SNR) آشکارسازی سیلیکون نیز بالاتر از آشکار سازهای نوترونی فعلی است. با این وجود بهره آشکار سازی چنین آشکارسازهای نیمه هادی صفحه ای(نسبت تعداد آشکار شده به تعداد نوترون برخوردی) در حدود5% محدود می باشد. بهره آشکارسازی را می توان با ایجاد حفره یا سوراخ هایی (ساختار 3D ) در بدنه آشکار ساز سیلیکون افزایش داد.
2. آشکار سازی آشکارسازهای نوترونی صفحه ای:
برای پیش بینی بهره آشکارسازی ساختار صفحه ای از یک بسته نرم افزار شبیه سازی مونت کارلو استفاده شد. این بسته ترکیبی بود ازMCNP-4C (شبیه سازی انتقال نوترونی) با SRIM/TRIM (قدرت توقف) و کد مونت کارلو C++ متعلق به خودمان(شبیه سازی انتقال انرژی، طیف ارتفاع پالس، بهره آشکار سازی و....)
شکل 1بهره آشکار سازی را در مقابل ضخامت ماده مبدل6LIF (6LI غنی شده تا 89%)، اول برای تشعشع قدامی که منحنی مقدار بیشینه 4.48% را در ضخامت 7mg/cm2 نشان می دهد. بهره آشکار سازی در ضخامتهای بیشتر از این حد کاهش می یابد چون ذرات آلفا و تریتیوم تولید شده در سطوح دورتر LiFاز مرز Si-LiF قادر به رسیدن به حجم حساس نیستند. به علاوه تعداد بیشتر نوترونها در نزدیکی سطح خارجی مبدل جذب می شوند(شکل 2a را ببینید). منحنی دوم در شکل1 مخصوص آشکار سازی است که از پشت تحت تابش قرار گرفته است.
در ضخامتهای بالا تراز7mg/cm2، بهره آشکار سازی در حدود 4.90%ثابت باقی می ماند. نوترونها به صورت قابل ترجیحی در نزدیکی مرز مبدل نیمه هادی جذب می شوند )شکل(b.2 و بهره آشکارسازی اشباع شده و مستقل از ضخامت آشکار ساز می باشد.
طیف انرژی تابشی در آشکار ساز صفحه ای ساده اندازه گیری شد(شکل 3). نمونه مورد استفاده یک آشکارساز سیلیکونی 5×5mm2و 300µm ضخامت بود. مقاومت حجم n-type در حدود 5kΩcm بود. بخشی از نمونه با لایه ای از6LiF با 89% لیتیوم پوشانده شده بود(به این دلیل فقط بخشی از آن پوشانده شده بود تا بخشی به صورت فضای باز برای کالیبراسیون انرژی با ذرات آلفای منبع کالیبراسیون در اختیار داشته باشیم). طیف حاصل را با نتایج شبیه سازی مونت کارلو مقایسه کردیم. شبیه سازی به خوبی با نتایج اندازه گیری شده مطابقت داشت. نمونه از پشت با دسته پرتو نوترون حرارتی مورد تابش قرار گرفت. اندازه گیریها در کانال افقی (هدایت نوترون) راکتور تحقیقاتی هسته ای LVR-15 در موسسه فیزیک هسته ای دانشگاه چک در Rez در نزدیکی پراگ انجام پذیرفتند. فلوی نوترون در حدود106cm-2s-1در قدرت راکتور8MW بودند.
آلفا و تریتون تولید شده از واکنش گیر انداختن نوترون حرارتی اغلب در جهتهای متضاد به حرکت در می آیند (شکل4) آشکارساز صفحه ای ساده یکی از دو ذره الفا یا تریتون را آشکار می کند نه هر دو را. بنابر این طیف انرژی تابشی هرگز دارای انرژی بالاتر مربوط به تریتون نخواهد بود.
3. بهره آشکارسازی آشکارسازهای دارای حفره هرمی:
نمونه آزمایشی دوم دارای آرایه ای از حفره های هرمی معکوس ایجاد شده بوسیله قلم زنی سیلیکون با KoH بودپایه هرم به ابعاد 60×60 µm2 و به عمق 28mm فاصله بین هرم ها نیز23µm بود. اندازه چیپ مجدداً 5×5mm2 با ضخامت300µm و مقاومت در حدود5kΩcm بود. حفره ها دارای دو سطح بین مبدل نوترون وآشکارساز بودند. برعکس طیف آشکار سازها صفحه ای ( شکل5) در اینجا طیف دارای وقایع با انرژی بیش از2.73MeV است چون اگر واکنش در ناحیه نزدیک به نوک هرم رخ دهد، هر دو ذره (آلفا تریتون) آشکار خواهند شد.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 7
اساس کار سیستم های آشکار سازحرکت
PIR (PASSIVE INFRA RED)
مقدمه:
این سیستم ها در برابر تشعشعات مادون قرمز که از یک منبع طبیعی تولید شده اند مثل تشعشع ناشی از حرارت بدن انسان ، واکنش نشان می دهند.
این آشکار سازها در اغلب سیستم های امنیتی مدرن به کار برده می شوند.
اغلب سیستم های حفاظتی مبتنی بر PIR به گونه ای طرح می شوند که وقتی یک انسان یا یک حیوان خون گرم بزرگ در حوزه ی عملکرد آشکار ساز PIR حرکت نماید یک زنگ خطر یا نورافکن روشن شود و یا یک درب باز شده و یا سایر انواع سیستم های الکترو مکانیکی فعال شود.
سیستم آشکار ساز حرکت در بازار با نام چشمی شناخته می شوند به عنوان دزدگیر استفاده می شود.
همانگونه که در شکل 1 نشان داده شده است در این سیستم ها از آشکار ساز پیرو الکتریک به عنوان حسگر مادون قرمز استفاده می شود.
در ابتدا درباره آشکارسازهای مادون قرمز پیرو الکتریک توضیحاتی داده می شود.
آشکار سازهای مادون قرمز پیروالکتریک (PIR):
برخی از کریستال ها و سرامیک های خاص با قرار گرفتن در معرض تغییرات حرارتی ، بار الکتریکی تولید می کنند که به این پدیده اثر "پیرو الکتریک" گفته می شود.
همان گونه که در شکل 1 (الف) نشان داده شده است آشکار سازهای مادون قرمز پیرو الکتریک متشکل از یک یا دو کریستال پیرو الکتریک, یک فیلتر نوری و یک ترانزیستور FET هستند.
آشکار سازهای مدرن پیرو الکتریک مادون قرمز مثل انواع متداول PIS201S و E600STO از اتصال سری دو سرامیک کوچک پیرو الکتریک با پلاریته های معکوس تشکیل شده اند و خروجی این مجموعه توسط یک JFET که با آرایش سورس فالوور بسته شده است بافر شده.
عملکرد این آشکار ساز بدین گونه است که اگر بدن شخصی که در میان دید کریستال پیرو الکتریک قرار دارد حرکت نماید، قسمتی از انرژی مادون قرمز تشعشع کرده از بدن آن فرد روی سطح کریستال پیرو الکتریک تابیده شده که موجب تغییرات جزیی حرارت سطح کریستال می شود در نتیجه ولتاژ خروجی تغییر می کند. اگر این آشکار ساز را مشابه شکل 1(ب) در مدار قرار داد آنگاه تغییرات ولتاژ خروجی آشکار ساز که ناشی از جابه جایی منبع گرمایی می باشد توسط JFET تقویت شده و از طریق c1 در اختیار سایر بخش های مدار قرار می گیرد که پس از تقویت و فیلتر شدن می تواند یک آلارم یا زنگ خطر را فعال کند.
شکل1: ساختار اساسی و نحوه استفاده آشکارساز مادون قرمزپیروالکتریک
در مدار فوق به دلیل کوچک بودن عدسی آشکار ساز حد اکثر برد موثر آشکار سازی آن یک متر می باشد ولی این محدوده را با استفاده از عدسی های متمرکز کننده ی بزرگتر که در سیستم های مدرن آشکار سازی مادون قرمز PIR مورد استفاده قرار می گیرند تا میزان 10 متر افزایش داد.
این عدسی ها, عدسی هایی پلاستیکی چند وجهی با سطح زیاد (حدود 2000 میلی متر مربع)
می باشد ، این عدسی ها کل میدان دید را به تعدادی نوار موازی تقسیم کرده و روی هر دو سطح حس کننده های PIR متمرکز می کنند.
عملکرد آشکار ساز حرکت (PIR):
عملکرد آشکار ساز PIR نشان داده شده در شکل 2 بدین گونه است که وقتی بدن شخصی در میدان دید عناصر پیرو الکتریک قرار گیرد قسمتی از انرژی تشعشع مادون قرمز که از بدن منتشر شده است و روی سطح عناصر حساس تابیده است, به تغییرات حرارتی بسیار جزیی ولی قابل آشکار سازی تبدیل می شود و این تغییرات نیز به نوبه خود موجب بروز تغییراتی در ولتاژ خروجی می شود.
شکل2: مدار کاربرد آشکارساز PIR
در وضعیتی که شخص یا هر منبع تشعشعات مادون قرمز به صورت ساکن در برابر عدسی آشکار ساز قرار گیرد ولتاژ تولید شده توسط هر یک از دو سرامیک پیرو الکتریک متشابه بوده و ولتاژ تفاضلی این مجموعه صفر خواهد شد ولی اگر این منبع حرارتی در مقابل عدسی آشکار ساز شروع به حرکت کند آنگاه هر یک از دو عناصر پیرو الکتریک ولتاژهای متفاوتی ایجاد خواهند کرد و در نتیجه در خروجی ولتاژ متغیری ایجاد خواهد شد.
بنابراین هرگاه یک واحد PIR مطابق شکل 2 در مدار قرار گیرد آنگاه حرکت منبع حرارت در جلوی این آشکارساز تغییر ولتاژی را القا می کند که این ولتاژ توسط یک JFET بافر شده و جریان آن تقویت می شود و ولتاژ DC آن توسط خازن C1 حذف می شود و