لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 10
جریان متناوب(AC) و جریان مستقیم (DC)
جریان(dc)تعریف جریان مستقیم (DC یا جریان پیوسته)، عبور پیوسته جریان الکتریسیته از یک هادی نظیر یک سیم از پتانسیل بالا به پتانسیل کم است. در جریان مستقیم، بار الکتریکی همواره در یک جهت عبور می کند که این امر جریان مستقیم را از جریان متناوب (AC) متمایز می کند.
در واقع جریان مستقیم ابتدا برای انتقال توان الکتریکی پس از کشف تولید الکتریسیته در اواخر قرن 19 توسط توماس ادیسون بکار رفت. امروزه استفاده از جریان مستقیم برای این منظور غالباً کنار گذاشته شده است، چرا که جریان متناوب (که توسط نیکلا تسلا کشف و توسعه داده شده ) برای انتقال در طول خطوط بلند بسیار مناسب تر است (جنگ جریان ها را مشاهده کنید). هنوز هم انتقال توان DC برای اتصال شبکه های توان AC با فرکانس های مختلف به هم، بکار می رود.
DC
عموماً در بسیاری از کاربرد های کم ولتاژ استفاده می شود، خصوصاً در جایی که انرژی از طریق باتری ها تامین می شود که تنها می توانند ولتاژ DC تولید کنند. اکثر سیستم های خودکار، از DC استفاده می کنند. اگرچه که ژنراتور یک وسیله AC است که از یک یکسو کننده برای تولید DC استفاده می کند. اغلب مدارات الکترونیکی نیاز به یک منبع تغذیه DC دارند. با وجود اینکه DC مخفف جریان مستقیم است اما کلاً به ولتاژهای با پلاریته ثابت، DC گفته می شود. برخی از انواع DC دارای تغییرات ولتاژ زیادی هستند، مانند خروجی دست نخورده یک یکسوساز. با عبور این خروجی از یک فیلتر RC پایین گذر، ولتاژ پایدار تری حاصل می شود.
معمولاً به دلیل ولتاژهای بسیار پایین بکار رفته در سیستم های جریان مستقیم، نصب آنها نیازمند پریزها، کلیدها و لوازم ثابت متفاوتی از آنچه که برای جریان متناوب به کار می رود است. در یک وسیله جریان مستقیم این نکته بسیار مهم است که پلاریته آنرا معکوس وصل نکنیم، مگر اینکه وسیله داری یک پل دیودی برای اصلاح این امر باشد. (که اکثر دستگاه های عمل کننده با باتری این امکان را ندارند.)
امروزه (سال 2000م) گرایشاتی در جهت سیستم های انتقال جریان مستقیم ولتاژ بالا (HVDC) ایجاد شده است. همچنین DC در سیستم های برق خورشیدی که توسط باتری های خورشیدی تغذیه می شوند، به کارمی رود.جریان
متناوب(AC)
تعریف یک جریان متناوب (AC ) جریان الکتریکی ای است که در آن اندازه جریان به صورت چرخه ای تغییر می کند، بر خلاف جریان مستقیم که در آن اندازه جریان مقدار ثابتی می ماند. شکل موج معمول یک مدار AC عموماً یک موج سینوسی کامل است چرا که این شکل موج منجر به انتقال انرژی به موثرترین صورت می شود. اما به هر حال در کاربردهای خاص، شکل موج های متفاوتی نظیر مثلثی یا مربعی نیز استفاده می شود.
تاریخچه توان الکتریکی با جریان متناوب، نوعی از انرژی الکتریکی است که برای تغذیه تجاری الکتریسیته به عنوان توان الکتریکی، از جریان متناوب استفاده می کند. ویلیام استنلی جی آر کسی است که یکی از اولین سیم پیچ های عملی را برای تولید جریان متناوب طراحی کرد. طراحی وی یک صورت ابتدایی ترانسفورماتور مدرن بود که یک سیم پیچ القایی نامیده می شد. از سال 1881م تا 1889م سیستمی که امروزه استفاده می شود، توسط نیکلا تسلا، جرج وستینگهاوس، لوییسین گاولارد، جان گیبس و الیور شالنجر طراحی شد.
سیستمی که توماس ادیسون برای اولین بار برای توزیع تجاری الکتریسیته بکار برد، به دلیل استفاده از جریان مستقیم محدودیت های داشت که در این سیستم برطرف شد. اولین انتقال جریان متناوب در طول فواصل بلند در سال 1891م نزدیک تلورید کلورادو اتفاق افتاد که چند ماه بعد در آلمان ادامه پیدا کرد. توماس ادیسون به علت اینکه حقوق انحصاری اختراعات متعددی را در فن آوری جریان مستقیم «DC» داشت، استفاده از جریان مستقیم را، به شدت حمایت می کرد اما در نهایت جریان متناوب به عرصه استفاده عمومی آمد (جنگ جریان ها را مشاهده کنید). چارلز پروتیوس استینمتز از جنرال الکتریک بسیاری از مشکلات مرتبط با تولید الکتریسیته و انتقال آن را با استفاده از جریان متناوب حل کرد.
توزیع برق و تغذیه خانگی بر خلاف جریان DC، جریان AC را می توان توسط یک ترانسفورماتور به سطوح مختلف ولتاژی انتقال داد. هر چه میزان ولتاژ افزایش یابد، انتقال توان هم موثرتر صورت خواهد گرفت. افزایش میزان قابلیت انتقال توان به علت قانون اهم است، تلفات انرژی الکتریکی وابسته به عبور جریان از یک هادی است. تلفات توان به علت جریان توسط رابطه P=I^2*R محاسبه می شود، بنابراین اگر جریان دو برابر شود، تلفات چهار برابر خواهد شد.
با استفاده از ترانسفورماتور، ولتاژ را می توانیم به یک ولتاژ بالا افزایش دهیم تا بتوانیم توان را در طول فواصل بلند در سطح جریان پایین انتقال داده و در نتیجه تلفات کاهش یابد. سپس می توانیم ولتاژ را دوباره به سطحی که برای تغذیه خانگی بی خطر باشد، کاهش دهیم.
تولید الکتریکی سه فاز بسیار عمومی است و استفاده ای موثرتر از ژنراتورهای تجاری را برای ما ممکن می سازد. انرژی الکتریکی توسط چرخش یک سیم پیچ داخل یک میدان مغناطیسی در ژنراتورهای بزرگ و با هزینه بالا ایجاد می شود. اما به هر حال جای دادن سه سیم پیچ جدا روی یک محور (بجای یک سیم پیچ)، هم نسبتاً آسان و هم مقرون به صرفه است. این سیم پیچ ها روی محور ژنراتورها نصب شده اند اما از نظر فیزیکی جدا اند و دارای یک اختلاف زاویه 120 درجه ای نسبت به هم هستند. سه شکل موج جریان
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 6
جریان الکتریکی
از نظر تاریخی نماد جریان I ، از کلمه آلمانی Intensit که به معنی شدت است، گرفته شده است. واحد جریان الکتریکی در دستگاه SI ، آمپر است. به همین علت بعضی اوقات جریان الکتریکی بطور غیر رسمی و به دلیل همانندی با واژه ولتاژ ، آمپراژ خوانده میشود. اما مهندسین از این گونه استفاده ناشیانه ، ناراضی هستند.
جریان الکتریکی در الکتریسته ، جریان سرعت عبور الکترونها در یک سیم مسی یا جسم رسانا است. جریان قراردادی در تاریخ علم الکتریسته ابتدا به صورت عبور بارهای مثبت تعریف شد. هر چند امروزه میدانیم که در صورت داشتن رسانای فلزی ، جریان الکتریسته ناشی از عبور بارهای منفی ، الکترون ، در جهت مخالف است. علیرغم این درک اشتباه ، کماکان تعریف قراردادی جریان تغییری نکرده است. نمادی که عموما برای نشان دادن جریان الکتریکی (میزان باری که در ثانیه از مقطع هادی عبور میکند) در مدار بکار میرود، I است.
● مقدمه
در یک هادی عایق شده مانند قطعهای سیم مسی ، الکترونهای آزاد شبیه مولکولهای گازی که در ظرفی محبوس شدهاند، حرکات کاتورهای انجام میدهند و مجموعه حرکات آنها در طول سیم هیچ گونه جهت مشخصی ندارد. تعداد الکترونهایی که به چپ حرکت میکنند با تعداد الکترونهایی که به راست حرکت میکنند، یکی است و برآیند آنها صفر میباشد. ولی اگر دو سر سیم را به باتری وصل کنیم، این برآیند دیگر صفر نیست.
● تاریخچه
تاریخ الکتریسیته به ۶۰۰ سال قبل از میلاد میرسد. در داستانهای میلتوس (Miletus) میخوانیم که یک کهربا در اثر مالش کاه را جذب میکند. مغناطیس از موقعی شناخته شد که مشاهده گردید، بعضی از سنگها مثل مگنیتیت ، آهن را میربایند. الکتریسیته و مغناطیس ، در ابتدا جداگانه توسعه پیدا کردند، تا این که در سال ۱۸۲۵ اورستد (Orested) رابطهای بین آنها مشاهده کرد. بدین ترتیب اگر جریانی از سیم بگذرد میتواند یک جسم مغناطیسی را تحت تأثیر قرار دهد. بعدها فاراده کشف کرد که الکتریسیته و مغناطیس جدا از هم نیستند و در مبحث الکترومغناطیس قرار میگیرد.
● مشخصات جریان الکتریکی
از نظر تاریخی نماد جریان I ، از کلمه آلمانی Intensit که به معنی شدت است، گرفته شده است. واحد جریان الکتریکی در دستگاه SI ، آمپر است. به همین علت بعضی اوقات جریان الکتریکی بطور غیر رسمی و به دلیل همانندی با واژه ولتاژ ، آمپراژ خوانده میشود. اما مهندسین از این گونه استفاده ناشیانه ، ناراضی هستند.
● آیا شدت جریان در نقاط مختلف هادی متفاوت است؟
شدت جریان در هر سطح مقطع از هادی مقدار ثابتی است و بستگی به مساحت مقطع ندارد. مانند این که مقدار آبی که در هر سطح مقطع از لوله عبور میکند، همواره در واحد زمان همه جا مساوی است، حتی اگر سطح مقطعها مختلف باشد. ثابت بودن جریان الکتریسیته از این امر ناشی میشود که بار الکتریکی در هادی حفظ میشود. در هیچ نقطهای بار الکتریکی نمیتواند روی هم متراکم شود و یا از هادی بیرون ریخته شود. به عبارت دیگر در هادی چشمه یا چاهی برای بار الکتریکی وجود ندارد.
● سرعت رانش
میدان الکتریکی که بر روی الکترونهای هادی اثر میکند، هیچ گونه شتاب برآیندی ایجاد نمیکند. چون الکترونها پیوسته با یونهای هادی برخورد میکنند. لذا انرژی حاصل از شتاب الکترونها به انرژی نوسانی شبکه تبدیل میشود و الکترونها سرعت جریان متوسط ثابتی (سرعت رانش) در راستای خلاف جهت میدان الکتریکی بدست میآورند.
● چگالی جریان الکتریکی
جریان I یک مشخصه برای اجسام رسانا است و مانند جرم ، حجم و ... یک کمیت کلی محسوب میشود. در حالی که کمیت ویژه دانستیه یا چگالی جریان j است که یک کمیت برداری است و همواره منسوب به یک نقطه از هادی میباشد. در صورتی که جریان الکتریسیته در سطح مقطع یک هادی بطور یکنواخت جاری باشد، چگالی جریان برای تمام نقاط این مقطع برابر j = I/A است. در این رابطه A مساحت سطح مقطع است. بردار j در هر نقطه به طرفی که بار الکتریکی مثبت در آن نقطه حرکت میکند، متوجه است و بدین ترتیب یک الکترون در آن نقطه در جهت j حرکت خواهد کرد.
● اشکال مختلف جریان الکتریکی
در هادیهای فلزی ، مانند سیمها ، جریان ناشی از عبور الکترونها است، اما این امر در مورد اکثر هادیهای غیر فلزی صادق نیست. جریان الکتریکی در الکترولیتها ، عبور اتمهای باردار شده به صورت الکتریکی (یونها) است، که در هر دو نوع مثبت و منفی وجود دارند. برای مثال، یک پیل الکتروشیمیایی ممکن است با آب نمک (یک محلول از کلرید سدیم) در یک طرف غشا و آب خالص در طرف دیگر ساخته شود. غشا به یونهای مثبت سدیم اجازه عبور میدهد، اما به یونهای منفی کلر این اجازه را نمیدهد. بنابراین یک جریان خالص ایجاد میشود.
جریان الکتریکی در پلاسما عبور الکترونها ، مانند یونهای مثبت و منفی است. در آب یخ زده و در برخی از الکترولیتهای جامد ، عبور پروتونها ، جریان الکتریکی را ایجاد میکند. نمونههایی هم وجود دارد که علیرغم اینکه در آنها ، الکترونها بارهایی هستند که از نظر فیزیکی حرکت میکنند، اما تصور جریان مانند �۰۳۹;حفرههای (نقاطی که برای خنثی شدن از نظر الکتریکی نیاز به یک الکترون دارند) مثبت متحرک ، قابل فهم تر است. این شرایطی است که در یک نیم هادی نوع p وجود دارد.
● اندازه گیری جریان الکتریکی
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 14
موتورهای جریان متناوبAC سنکرون موتورهای جریان متناوبAC 1- موتورهای سنکرون 2-- موتورهای آسنکرون موتورهای آسنکرون به علت نداشتن کلکتور و سادگی ساختمان آن بیشتر از موتور سنکرون متداول است. مزایای موتور سنکرون: 1- این موتور دارای ضریب قدرت مناسب و قابل تنظیم است. 2- بازده عالی دارد. 3-در مقابل نوسان ولتاژ حساسیت ندارد. 4- امکان بکار بردن آن به طور مستقیم با ولتاژ زیاد وجود دارد. 5- با تحریک مناسب هیچگونه قدرت راکتیو مصرف نمیکند و فقط قدرت اکتیو مناسب می گیرد. 6- از این موتور میتوان به عنوان مولد قدرت راکتیو برای بالا بردن ضریب قدرت خط استفاده کرد. معایب موتور سنکرون: 4-- یک وسیله راه اندازی اولیه که موتور کمکی و غیره می باشد احتیاج دارد. 2- علاوه بر جریان متناوب برای سیم پیچ استاتور ، جریان دائم برای قطبهای آن هم مورد احتیاج است در نتیجه قیمت ماشین را نسبت به مشابه خود بالا میبرد. 3- سرعت آن ثابت است در نتیجه قابل تنظیم است. 4- نداشتن تحمل اضافه بار ( در صورتیکه خیلی زیادتر از حد مجاز به آن بار دهند میایستد و دوباره بایستی آنرا راه اندازی کرد. کاربرد موتور سنکرون: به خاطر راه اندازی مشکل موتور سنکرون ، مورد استفاده آن محدود است. به خاطر سرعت ثابت آن، در مواردیکه دور ثابت نیاز باشد، استفاده می شود. در وسایل دقیق مانند ساعتهای الکتریکی و گرام و .... کاربرد مهم موتور سنکرون ، برای اصلاح Cosφ است. بار روی آن قرار نداده یعنی موتور بدون بار کار میکند در این حالت موتور سنکرون را خازن سنکرون گویند.
معرفی چند دستگاه برای کنترل سرعت موتورهای AC : این دستگاهها برای کنترل سرعت موتورهای AC آسنکرون قفس سنجابی و یا سیم پیچی شده ساخته شده اند. ( ساخت شرکت پرتو صنعتاین دستگاهها قابل کنترل از راه دور بوده و می توانند به کامپیوتر یا PLC متصل شوند. همچنین با اتصال چندین دستگاه به هم امکان ایجاد شبکه بر اساس پروتکل RS485 وجود دارد. این دستگاهها می توانند بصورت مستقل و یا در سیستمهای کنترل و اتوماسیون صنعتی مورد استفاده قرار گیرند. سیستم کنترل این دستگاهها میکروپروسسوری بوده و تنظیم تمامی پارامترهای سیستمی دستگاه، بصورت نرم افزاری و از طریق پانل کنترل روی دستگاه انجام می گیرد. مشخصات فنی و معرفی قابلیتهای دستگاههای PSMC-RM این دستگاهها در توانهای مختلف از 2.2 تا 11 کیلو وات موجود می باشند. دستگاههای2.2 ،3 و 4 کیلووات فاقد فن خنک کننده و دستگاههای 5.5 ، 7.5 و 11 کیلووات دارای فن خنک کننده می باشند. برای دریافت pdf یا Word Zip file درباره مشخصات تکنیکی دستگاه PSMC-RM مشخصات فنی و معرفی قابلیتهای دستگاه و نصب و راه اندازی اینجا را کلیک کنید.
درایوها چه کاری انجام میدهند؟ درایو یا کنورتور فرکانس و یا کنترل کننده دور موتور برای تنظیم دور الکتروموتورهای AC (موتورهای سه فاز ) استفاده میگردد. درایوها قادرند دور موتور را از صفر تا چندین برابر دور نامی موتور و بطور پیوسته تغییر دهند. تنظیم دور در الکتروموتورها علاوه بر منعطف نمودن پروسه های صنعتی ، در کاربردهای زیادی منجر به صرفه جوئی انرژی هم میگردد. علاوه بر آن درایوها جریان راه اندازی کشیده شده از شبکه را به میزان زیادی کاهش میدهند. بطوریکه این جریان خیلی کمتر از جریان اسمی موتور است. درایوها میتوانند موتور را بطور نرم و کاملا کنترل شده استارت و استپ نمایند. زمان استارت و استپ را میتوان بدقت تنظیم نمود. این زمانها میتوانند کسری از ثانیه و یا صدها دقیقه باشد. توانائی درایو در استارت و استپ نرم موجب کاهش قابل ملاحظه تنشهای مکانیکی در کوپلینگها و سایر ادوات دوار میگردد. کنترل کننده های دور موتور : کنترل کننده های دور موتورهای الکتریکی هر چند که ادوات پیچیده ای هستند ولی چون در ساختمان آنها از مدارات الکترونیک قدرت استاتیک استفاده می شود و فاقد قطعات متحرک می باشند، از عمر مفید بالائی برخوردار هستند . مزیت دیگر کنترل کننده های دور موتور توانائی آنها در عودت دادن انرژی مصرفی در ترمزهای مکانیکی و یا مقاومت های الکتریکی به شبکه می باشد . در چنین شرائطی با استفاده از کنترل کننده های دور مدرن می توان از اتلاف این نوع انرژی جلوگیری نمود . بطوریکه در برخی کاربردها قیمت انرژی بازیافت شده از این طریق ، در کمتر از یکسال معادل هزینه سرمایه گذاری سیستم بازیافت انرژی می شود . کنترل کننده های دور موتور انواع مختلفی دارند. آنها قادرند انواع موتورهای AC و DC را کنترل کنند. قیمت کنترلرها وابسته به نوع تکنولوژی بکار رفته در ساختمان آنها میباشد. 1- روش تثبیت نسبت ولتاژ به فرکانس(یا کنترل V/ F ثابت) : ساده ترین روش کنترل موتورهای AC روش تثبیت نسبت ولتاژ به فرکانس میباشد. اینک این روش، بطور گسترده در کاربردهای صنعتی مورد استفاده قرار میگیرد. این نوع کنترلرها از نوع اسکالر بوده و بصورت حلقه باز با پایداری خوب عمل میکنند. مزیت این روش سادگی سیستمهای کنترلی آن است. در مقابل این نوع کنترلرها برای کاربردهای با پاسخ سریع مناسب نمی باشند. 2-- روش کنترل برداری : روبوتها و ماشینهای ابزار نمونه هائی از کاربردهای با دینامیک بالا هستند. در این کاربردها روشهای کنترلی برداری استفاده میشود. در روشهای کنترلی برداری با تفکیک مولفه های جریان استاتور به دو مولفه تورک ساز و فلو ساز، و کنترل آنها با استفاده از رگولاتورهای PI ترتیبی داده میشود که موتور AC نظیر موتور DC کنترل شود. و بدین ترتیب تمام مزایای موتور DC از جمله پاسخ گشتاور سریع آنها در موتورهای AC نیز در دسترس خواهد بود. 3- روش کنترل مستقیم گشتاور (Direct Torque Control ) : پاسخ گشتاور در روشهای برداری حدود 10 – 20msو در روشهای کنترل مستقیم گشتاور (Direct Torque Control ) این زمان حدود 5ms است.
تنظیم دور موتورهای آسنکرون : در قسمت های قبل انواع راه اندازی این موتورها گفته شد در این قسمت انواع روشهای کنترل دور را می نویسم . با دانستن رابطه Nr=[60f/p](1-S) دور موتور آسنکرون را میتوان به طریقه های زیر تنظیم نمود :1-تغییر فرکانس ولتاژ شبکه 2-- تغییر قطبها 3- داخل کردن مقاومت در مدار روتور 4- تغییر ولتاژ موتور1- تغییر دور بوسیله تغییر فرکانس : با تغییر فرکانس سرعت سنکرون تغییر میکند و دور موتور تغییر میکند . میتوان برای تغییر فرکانس از یک مولد یا مبدل فرکانس استفاده نمود . و یک یا چند موتور القایی که در شرایط مشابهی کار می کنند بوسیله آنها تغذیه شوند . مانند موتور ماشینهای کارخانه فولاد سازی و موتورهای محرک ماشین نساجی 2- تغییر دور بوسیله تغییر عده جفت قطبها : این تغییر را در موتورهای آسنکرونی است که بتوان با سیم پیچهای آن تغییر قطب داد که این حالت در موتورهای دو سرعته ( دالاندر ) دیده می شود که میتوان با کلید ( دالاندر ) دور موتور را تغییر داد . 3- تغییر دور با داخل کردن مقاومت در مدار روتور : در موتورهای آسنکرون با روتور سیم پیچر شده با تغییر مقاوت مدار روتور میتوان سرعت گردش روتور را تنظیم کرد ولی چون راندمان موتور بر اثر تغییر دور تغییر میکند در نتیجه کاربرد این روش خیلی کم است.4- تغییر دور با تغییر ولتاژ : از این روش در موتورهای کوچک مانند پنکه و ... استفاده میشود
تنظیم دور موتورهای آسنکرون : در قسمت های قبل انواع راه اندازی این موتورها گفته شد در این قسمت انواع روشهای کنترل دور را می نویسم . با دانستن رابطه Nr=[60f/p](1-S) دور موتور آسنکرون را میتوان به طریقه های زیر تنظیم نمود :
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 27
موتورهای جریان متناوبAC سنکرون موتورهای جریان متناوبAC 1- موتورهای سنکرون 2- موتورهای آسنکرون موتورهای آسنکرون به علت نداشتن کلکتور و سادگی ساختمان آن بیشتر از موتور سنکرون متداول است. مزایای موتور سنکرون: 1- این موتور دارای ضریب قدرت مناسب و قابل تنظیم است. 2- بازده عالی دارد. 3- در مقابل نوسان ولتاژ حساسیت ندارد. 4- امکان بکار بردن آن به طور مستقیم با ولتاژ زیاد وجود دارد. 5- با تحریک مناسب هیچگونه قدرت راکتیو مصرف نمیکند و فقط قدرت اکتیو مناسب می گیرد. 6- از این موتور میتوان به عنوان مولد قدرت راکتیو برای بالا بردن ضریب قدرت خط استفاده کرد. معایب موتور سنکرون: 1- یک وسیله راه اندازی اولیه که موتور کمکی و غیره می باشد احتیاج دارد. 2- علاوه بر جریان متناوب برای سیم پیچ استاتور ، جریان دائم برای قطبهای آن هم مورد احتیاج است در نتیجه قیمت ماشین را نسبت به مشابه خود بالا میبرد. 3- سرعت آن ثابت است در نتیجه قابل تنظیم است. 4- نداشتن تحمل اضافه بار ( در صورتیکه خیلی زیادتر از حد مجاز به آن بار دهند میایستد و دوباره بایستی آنرا راه اندازی کرد.) کاربرد موتور سنکرون: به خاطر راه اندازی مشکل موتور سنکرون ، مورد استفاده آن محدود است. به خاطر سرعت ثابت آن، در مواردیکه دور ثابت نیاز باشد، استفاده می شود. در وسایل دقیق مانند ساعتهای الکتریکی و گرام و .... کاربرد مهم موتور سنکرون ، برای اصلاح Cosφ است. بار روی آن قرار نداده یعنی موتور بدون بار کار میکند در این حالت موتور سنکرون را خازن سنکرون گویند.
درایوها چه کاری انجام میدهند؟ درایو یا کنورتور فرکانس و یا کنترل کننده دور موتور برای تنظیم دور الکتروموتورهای AC (موتورهای سه فاز ) استفاده میگردد. درایوها قادرند دور موتور را از صفر تا چندین برابر دور نامی موتور و بطور پیوسته تغییر دهند. تنظیم دور در الکتروموتورها علاوه بر منعطف نمودن پروسه های صنعتی ، در کاربردهای زیادی منجر به صرفه جوئی انرژی هم میگردد. علاوه بر آن درایوها جریان راه اندازی کشیده شده از شبکه را به میزان زیادی کاهش میدهند. بطوریکه این جریان خیلی کمتر از جریان اسمی موتور است. درایوها میتوانند موتور را بطور نرم و کاملا کنترل شده استارت و استپ نمایند. زمان استارت و استپ را میتوان بدقت تنظیم نمود. این زمانها میتوانند کسری از ثانیه و یا صدها دقیقه باشد. توانائی درایو در استارت و استپ نرم موجب کاهش قابل ملاحظه تنشهای مکانیکی در کوپلینگها و سایر ادوات دوار میگردد. کنترل کننده های دور موتور : کنترل کننده های دور موتورهای الکتریکی هر چند که ادوات پیچیده ای هستند ولی چون در ساختمان آنها از مدارات الکترونیک قدرت استاتیک استفاده می شود و فاقد قطعات متحرک می باشند، از عمر مفید بالائی برخوردار هستند . مزیت دیگر کنترل کننده های دور موتور توانائی آنها در عودت دادن انرژی مصرفی در ترمزهای مکانیکی و یا مقاومت های الکتریکی به شبکه می باشد . در چنین شرائطی با استفاده از کنترل کننده های دور مدرن می توان از اتلاف این نوع انرژی جلوگیری نمود . بطوریکه در برخی کاربردها قیمت انرژی بازیافت شده از این طریق ، در کمتر از یکسال معادل هزینه سرمایه گذاری سیستم بازیافت انرژی می شود . کنترل کننده های دور موتور انواع مختلفی دارند. آنها قادرند انواع موتورهای AC و DC را کنترل کنند. قیمت کنترلرها وابسته به نوع تکنولوژی بکار رفته در ساختمان آنها میباشد. 1- روش تثبیت نسبت ولتاژ به فرکانس(یا کنترل V/ F ثابت) : ساده ترین روش کنترل موتورهای AC روش تثبیت نسبت ولتاژ به فرکانس میباشد. اینک این روش، بطور گسترده در کاربردهای صنعتی مورد استفاده قرار میگیرد. این نوع کنترلرها از نوع اسکالر بوده و بصورت حلقه باز با پایداری خوب عمل میکنند. مزیت این روش سادگی سیستمهای کنترلی آن است. در مقابل این نوع کنترلرها برای کاربردهای با پاسخ سریع مناسب نمی باشند. 2- روش کنترل برداری : روبوتها و ماشینهای ابزار نمونه هائی از کاربردهای با دینامیک بالا هستند. در این کاربردها روشهای کنترلی برداری استفاده میشود. در روشهای کنترلی برداری با تفکیک مولفه های جریان استاتور به دو مولفه تورک ساز و فلو ساز، و کنترل آنها با استفاده از رگولاتورهای PI ترتیبی داده میشود که موتور AC نظیر موتور DC کنترل شود. و بدین ترتیب تمام مزایای موتور DC از جمله پاسخ گشتاور سریع آنها در موتورهای AC نیز در دسترس خواهد بود. 3- روش کنترل مستقیم گشتاور (Direct Torque Control ) : پاسخ گشتاور در روشهای برداری حدود 10 – 20msو در روشهای کنترل مستقیم گشتاور (Direct Torque Control ) این زمان حدود 5ms است.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 25
موتورهای جریان متناوبAC سنکرون موتورهای جریان متناوبAC 1- موتورهای سنکرون 2- موتورهای آسنکرون موتورهای آسنکرون به علت نداشتن کلکتور و سادگی ساختمان آن بیشتر از موتور سنکرون متداول است. مزایای موتور سنکرون: 1- این موتور دارای ضریب قدرت مناسب و قابل تنظیم است. 2- بازده عالی دارد. 3- در مقابل نوسان ولتاژ حساسیت ندارد. 4- امکان بکار بردن آن به طور مستقیم با ولتاژ زیاد وجود دارد. 5- با تحریک مناسب هیچگونه قدرت راکتیو مصرف نمیکند و فقط قدرت اکتیو مناسب می گیرد. 6- از این موتور میتوان به عنوان مولد قدرت راکتیو برای بالا بردن ضریب قدرت خط استفاده کرد. معایب موتور سنکرون: 1- یک وسیله راه اندازی اولیه که موتور کمکی و غیره می باشد احتیاج دارد. 2- علاوه بر جریان متناوب برای سیم پیچ استاتور ، جریان دائم برای قطبهای آن هم مورد احتیاج است در نتیجه قیمت ماشین را نسبت به مشابه خود بالا میبرد. 3- سرعت آن ثابت است در نتیجه قابل تنظیم است. 4- نداشتن تحمل اضافه بار ( در صورتیکه خیلی زیادتر از حد مجاز به آن بار دهند میایستد و دوباره بایستی آنرا راه اندازی کرد.) کاربرد موتور سنکرون: به خاطر راه اندازی مشکل موتور سنکرون ، مورد استفاده آن محدود است. به خاطر سرعت ثابت آن، در مواردیکه دور ثابت نیاز باشد، استفاده می شود. در وسایل دقیق مانند ساعتهای الکتریکی و گرام و .... کاربرد مهم موتور سنکرون ، برای اصلاح Cosφ است. بار روی آن قرار نداده یعنی موتور بدون بار کار میکند در این حالت موتور سنکرون را خازن سنکرون گویند.
معرفی چند دستگاه برای کنترل سرعت موتورهای AC : این دستگاهها برای کنترل سرعت موتورهای AC آسنکرون قفس سنجابی و یا سیم پیچی شده ساخته شده اند. ( ساخت شرکت پرتو صنعت ) این دستگاهها قابل کنترل از راه دور بوده و می توانند به کامپیوتر یا PLC متصل شوند. همچنین با اتصال چندین دستگاه به هم امکان ایجاد شبکه بر اساس پروتکل RS485 وجود دارد. این دستگاهها می توانند بصورت مستقل و یا در سیستمهای کنترل و اتوماسیون صنعتی مورد استفاده قرار گیرند. سیستم کنترل این دستگاهها میکروپروسسوری بوده و تنظیم تمامی پارامترهای سیستمی دستگاه، بصورت نرم افزاری و از طریق پانل کنترل روی دستگاه انجام می گیرد. مشخصات فنی و معرفی قابلیتهای دستگاههای PSMC-RM این دستگاهها در توانهای مختلف از 2.2 تا 11 کیلو وات موجود می باشند. دستگاههای2.2 ،3 و 4 کیلووات فاقد فن خنک کننده و دستگاههای 5.5 ، 7.5 و 11 کیلووات دارای فن خنک کننده می باشند. برای دریافت pdf یا Word Zip file درباره مشخصات تکنیکی دستگاه PSMC-RM مشخصات فنی و معرفی قابلیتهای دستگاه و نصب و راه اندازی اینجا را کلیک کنید
درایوها چه کاری انجام میدهند؟ درایو یا کنورتور فرکانس و یا کنترل کننده دور موتور برای تنظیم دور الکتروموتورهای AC (موتورهای سه فاز ) استفاده میگردد. درایوها قادرند دور موتور را از صفر تا چندین برابر دور نامی موتور و بطور پیوسته تغییر دهند. تنظیم دور در الکتروموتورها علاوه بر منعطف نمودن پروسه های صنعتی ، در کاربردهای زیادی منجر به صرفه جوئی انرژی هم میگردد. علاوه بر آن درایوها جریان راه اندازی کشیده شده از شبکه را به میزان زیادی کاهش میدهند. بطوریکه این جریان خیلی کمتر از جریان اسمی موتور است. درایوها میتوانند موتور را بطور نرم و کاملا کنترل شده استارت و استپ نمایند. زمان استارت و استپ را میتوان بدقت تنظیم نمود. این زمانها میتوانند کسری از ثانیه و یا صدها دقیقه باشد. توانائی درایو در استارت و استپ نرم موجب کاهش قابل ملاحظه تنشهای مکانیکی در کوپلینگها و سایر ادوات دوار میگردد. کنترل کننده های دور موتور : کنترل کننده های دور موتورهای الکتریکی هر چند که ادوات پیچیده ای هستند ولی چون در ساختمان آنها از مدارات الکترونیک قدرت استاتیک استفاده می شود و فاقد قطعات متحرک می باشند، از عمر مفید بالائی برخوردار هستند . مزیت دیگر کنترل کننده های دور موتور توانائی آنها در عودت دادن انرژی مصرفی در ترمزهای مکانیکی و یا مقاومت های الکتریکی به شبکه می باشد . در چنین شرائطی با استفاده از