لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 26
فشار جانبی خاک و دیوارهای حایل
5-1 مقدمه
دیوار حایل، دیواری است که تکیهگاه جانبی برای جدارههای قائم و یا نزدیک به قائم خاک به وجود میآورد. از دیوار حایل در بسیاری از پروژههای ساختمانی نظیر راهسازی، پلسازی، محوطهسازی، ساختمانسازی و به طور کلی هر جا که احتیاج به تکیهگاه جانبی برای جدار قائم خاکبرداری باشد، استفاده میشود. بر حسب مصالح و هندسه مورد احتیاج، دیوار حایل دارای انواع زیر میباشد:
1- دیوار حایل وزنی
2- دیوار حایل نیمه وزنی
3- دیوار حایل طرهای
4- دیوار حایل پشت بنددار
دیوارهای حایل وزنی (شکل 5-1-الف) از بتن ساده (غیرمسلح) و یا مصالح بنایی (بخصوص سنگ با ملات ماسه سیمان) ساخته میشوند. پایداری این دیوارها در مقابل فشار جانبی، در درجة اول بستگی به وزن آنها دارد. (در کشور ما ایران، به علت وجود بناهای سنگکار ماهر و دستمزد مناسب، ساخت دیوارهای حایل با مصالح بنایی سنگی بسیار معمول است. هر چند که استفاده اقتصادی از آنها در محدودة ارتفاعهای 4 تا 5 متر میباشد، لیکن استفاده از آنها در دیوارهای بلند هم مشاهده میشود.)
شکل 5-1- انواع دیوار حایل
گاهی مواقع با استفاده از مقدار محدودی میلگرد، از عرض دیوار حایل وزنی مقداری کاسته میشود. این میلگردها در خمش با مصالح بنایی مشارکت میکنند. به چنین دیوارهایی، دیوارهای نیمهوزنی میگویند. (شکل 5-1-ب).
دیوارهای حایل طرهای (شکل 5-1-پ) از بتن مسلح ساخته میشوند و متشکل از دیوار تیغه، و دال پایه میباشند. حداکثر ارتفاع اقتصادی این دیوارها 6 تا 8 متر است.
دیوارهای حایل پشتبنددار (شکل 5-1-ت) مشابه دیوارهای حایل طرهای هستند با این اختلاف که در فواصل منظم دارای پشتبندهایی عمود بر دیوار تیغه میباشند. پشتبندها، تیغه و پایه را به یکدیگر میدوزند و در نتیجه با ایجاد رفتار دو طرفه از مقدار نیروی برشی و لنگر خمشی در آنها میکاهند.
در طراحی دیوار حایل، برای طراح باید پارامترهای پایة خاک- یعنی وزن مخصوص، زاویة اصطکاک، و چسبندگی هم برای خاکریز پشت دیوار و هم برای خاک زیر پایه- معلوم باشد. از پارامترهای مربوط به خاکریز پشت، طراح فشار جانبی و از پارامترهای مربوط به خاک زیر پایه، طراح ظرفیت باربری مجاز خاک را برای تحمل فشار زیر پایه به دست میآورد.
در طراحی دیوار حایل دو مرحله وجود دارد. اول با معلوم شدن فشار جانبی، پایداری کل سازه کنترل میشود. کنترل پایداری شامل کنترل در مقابل واژگونی، لغزش، و ظرفیت باربری خاک زیر شالوده میباشد. در مرحلة دوم طراحی سازهای اجزای مختلف دیوار در مقابل نیروهای وارده انجام میشود. نتیجة این مرحله تعیین ضخامت دیوارها و مقادیر میلگردها میباشد.
در این فصل تأکید بیشتر روی تعیین فشارهای جانبی خاک و کنترل پایداری دیوارهاست. در پیوست این فصل مختصر اشارهای به طراحی سازهای دیوار حایل میشود.
5-2- فشار جانبی خاک در حال سکون
مطابق شکل 5-2، دیواری به ارتفاع H در نظر بگیرید که حایل خاکی به وزن مخصوص میباشد. در سطح خاک پشت دیوار نیز با گستردهای به شدت q بر واحد سطح تأثیر مینماید. مقاومت برشی s خاک نیز از رابطة زیر به دست میآید:
که در آن:
c= چسبندگی
= زاویة اصطکاک
= تنش مؤثر قائم
در عمق z از سطح خاکریز پشت، تنش قائم از رابطة زیر به دست میآید:
(5-1)
شکل 5-2- فشار جانبی خاک در حال سکون
در صورتی که دیوار حایل حرکتی به سمت جلو و یا پشت نداشته باشد (یعنی حالت کرنش افقی صفر)، فشار جانبی در عمق z از رابطة زیر به دست میآید:
(5-2)
که در آن:
u= فشار حفرهای آب
= ضریب فشار خاک در حالت سکون
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 30
1-مقدمه :
عمده ترین اساس توسعه فنلاند و اتحادیه اروپا پیشگیری از اتلاف دفع زباله و آشغال در زیر خاک مطابق قانون با خطاب به مردم برای کاهش اسراف (اتلاف) مواد ضروری عموم در مواقع لزوم . دولت فنلاند برای طرح دفع زباله و آشغال در زیر خاک تصمیمی اتخاذ کرد (VNP861/197)که طرح موضع عمومی شورای اتحادیه اروپا با بررسی شورای رهنمود در مورد اتلاف دفع زباله در زیر خاک را تصویب کرد . این طرح اهداف عمده ای را برای سازماندهی به نیازها در بر می گیرد . و طرح دفع زباله طبق قوانین تحت پوشش قرار می گیرد . دستورات جدید برای این طرح ما را به سمتی سوق می دهدکه با وجود مشکلات مالی طبق روشهای امروزی مقرون به صرفه می باشد که دفع هر نوع زباله زیر خاک از اینرهنمودها پیروی دارد که بعد باید در موردشان به بحث پرداخت . ظاهر تمیز آبهایی که در زیرشان زباله دفع شده فقط نتیجه ظاهری ارائه می دهد . زباله ها به محل واگذار می شوند و مسائل زیست محیطی کاهش می یابد گاز از دفع زباله جمع آوری شده یا از سوزاندن زباله حاصل می شود . اگر هیچ کدام از موارد مورد استفاده بازگشت پذیر به طبیعت نباشند تغییرات اساسی در مناظر محیط زیستو اکوسیستم به چشم می خورد . علاوه بر این ، به طور کلی پیدا کردن مواد طبیعی مناسب استفاده مشکل است ، بنابراین ، مواد دوباره وارد چرخه انسان می شود که این برگشت پذیری در کارخانه ها بسیار پرهزینه است . هدف مدیریت ضایعات منطقه ای پاسخ به این سوالات می باشد . واقعاً چه طور می توان از اتلاف تولیدات جلوگیری کرد ؟ چه طور می توان میزان مضرات ضایعات را کاهش داد ؟ چه طور می توان استفاده از ضایعات اولیه به عنوان ماده و ضایعات ثانویه رابه عنوان انرژی افزایش داد ؟ چه طور می توان مدیریت برای ضایعات تشکیل داد طوری که خطر و ضرری به سلامتی و محیط زیست نرساند ؟
در جنوب unsima صدور 40 زمین محل دفع زباله هستند که 13 آنها مربوط به شهرداری منطقه ها و 10 آنها مربوط به کارخانجات منطقه ها هستند . در ضمن ، کارخانه ها در منطقه تولید مواد ضایعاتی می کنند که قابل استفاده می باشند که تنها در محل دفع زباله زیرخاک یافت می شوند . هدف این طرح ، ایجاد روش جدید برای دفع زباله و اشغال زیرخاک طوری که جنبه مالی و زیست محیطی آن در نظر گرفته شود . روش می تواند در محل یا منطقه باشد که در فنلاند و اروپا بهتر از دیگر نقاط دنیا به کار برده شده است . روش این چنین خواهد بود : افزایش قیمت مناسب دفع زباله و آشغال زیر خاک بررسی ارائه خدمات کیفی با هدف دفع زباله افزایش به کارگیری مجدد محصولات کارخانه ای و جلوگیری از صدور کالا به کشور دیگر بابهای کمتر از بهای عادی کاهش استفاده از میزان مواد طبیعی ، افزایش همکاری بین کارخانجات ، انجمن شهرها و مسئولان ، ایجاد مشاغل ، افزایش محل دفع زباله زیر خاک و بناها باچشم انداز ، هدف دیگر این طرح افزایش روشهایی برای تسهیلات مربوط به حفظ محیط زیست است . این روش دستوراتی برای مطالعه مواد و بررسی مقدماتی دفع زباله و نیز سازماندهی اهداف و نظریات را در بر می گیرد . تشخیص تسهیلات مربوط به حفظ محیط زیست اصلی و حیاتی است . مانند خلبان که بعد از کنترل عملکردهای مراقبتی که در محل دفع زباله Koivissiha انجام داد . مواد مورد استفاده بدنه فیبرگل Metsaserla و بال و دکمه (کلید) خاک Helsingin است . خاکستر خاک به چند دلیل کارآیی دارند ، میزان تولید باید به اندازه کافی باشد چون فعالیت شرکت در همکاری و تحقیق و نیازمند به حل سوالات می باشد .
2-طرح سازماندهی :
این طرح توسط مدیریت ضایعات خاک جنوب نظارت می شود . سازمان برای مدیریت و نظارت گروه اداره می شود و گروهی دیگر کار را انجام می دهند . گروه نظارت شامل نمایندگان مدیریت ضایعات خاک جنوب unsima ، انجمن شهرهای unsima، شرکتهای تولید کننده ، Metsa-serla ، Kymmen upm , kirkniem – Lohjanpaperi و Helsingin Engergia ، سازمان محیط زیست فنلاند (FEI) می باشد . گروه کار شامل نمایندگان در بخش : مدیریت ضایعات خاک جنوب unsima – سازمان محیط زیست فنلاند – وتایک (مشاور)، می باشد . گروه کنترل نظارت در دسامبر و 1997 ، 1998 جلسه ای داشتند . علاوه بر این گروه اطلاع تمام و کمال درباره پیشرفت طرح داشتند.
گروه کار تقریباً ماهیانه کار را به اتمام می رساندند .
3-فعالیت های فنی :
اهداف طرح دفع زباله و نگهداری توسط گروه مشاور در طول این پروژه در Koivissiha Eelsingin ، Lohjanpaperi ، Stormossen ، osterby و karjaa انجام شد . علاوه بر این، طرح کلی محدود کردن منطقه دفع زباله در جنوب unsima اجرا شد . دفع زباله koi در vihta به داشتن سایت واقعی پوار چون هدف کارخانه استفاده محصولات و تشکیل زمینه این طرح در Koi و محل دفع زباله منطقه جالب به نظر می رسد .
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 71
شناسایی و طبقهبندی خاک
4-1. مقدمه
قبلاً توضیح داده شده است که یک خاک را توسط اجزای مشخصی نظیر شن، ماسه، لای و رس تعیین میکردیم. که این اصل بر میانگین اندازه دانهها یا ذرات استوار است.
اکثر خاکهای طبیعی از مخلوط شدن 2 یا چند نوع از آنها ایجاد میشوند، که امکان وجود ترکیبات آلی نیز در آنها است.
ذره کوچکتر یک مخلوط خاکی در تعیین خصوصیات خاک نسبت به ذرات بزرگتر برتری دارد به عنوان مثال: ماسههای روان، ماسههای رسی و غیره.
به خاکی که در حد مقدار مواد ماسه، لای و رس آنها تقریباً برابر باشد لوام (خاک گلدانی) گفته میشود.
تفاوت بین خاکی که از دانههای درشت و زبر تشکیل شده و خاکی که از دانههای ریز تشکیل شده در فصلهای 3 و 1 مطرح شده است.
در این فصل روشهای مشخص برای شناسایی طبیعت انواع خاک، به خوبی روشهای معمول برای دستهبندی خاکها همراه با مطالب کمکی مرتبط با موضوع بحث با برخی جزئیات مطرح خواهد شد.
2-4. شناسایی خاکها
نحوه تشخیص دانهدرشت یا دانهریز بودن خاکها به این نحوه است که آیا میتوان تکتک ذرات خاک را با چشم غیرمسلح دید یا نه.
بنابراین اندازه ذرات به خودی خود برای تشخیص میان شن و ماسه کافی به نظر می رسد. اما تشخیص میان لای و رس با این روش عملی نیست.
شناسایی خاکها میتواند آسانتر شود اگر شخص بتواند شن را از ماسه و ماسه را از لای و لای را از رس تشخیص دهد. در ادامه روشهای تشخیص آنها خلاصهوار آمده است.
نحوه تشخیص شن از ماسه
اگر اندازه خاک بین mm75/4 تا mm80 باشد، شن نامیده میشود و اگر اندازه ذرات خاک بین mm075/0تا mm75/4 باشد، ماسه نامیده میشود. (رجوع به: 1970-1498 دستهبندی و شناسایی خاکها برای {مقاصد} مهندسی عمومی).
این محدودیت اگرچه در طبیعت اختیاری هستند ولی پذیرفته شدهاند. همچنین شکل ذرات نیز دارای اهمیت است و ممکن است با اسامی angular، sub-angular، rounded توصیف شوند. شناسایی شن از ماسه در صورت امکان بهتر است شامل بخش شناسایی ترکیب کانیها نیز باشد.
نحوه تشخیص ماسه از لای
ذرات ریز ماسه را نمیتوان با آزمایشهای ساده از لای تشخیص داد. لای ممکن است کمی تیره به نظر آید.
به هر حال تفاوت آن دو را با تست پراکندگی (dispersion)* میتوان فهمید. نحوه تست اینگونه است که یک قاشق پر از نمونه را در یک ظرف شیشهای از آب میریزیم اگر ماده ماسه باشد در یک یا دو دقیقه رسوب میکند ولی اگر لای باشد بین 15 دقیقه تا یک ساعت طول میکشد تا تهنشین شود. سرانجام در هر دوی این موارد چیزی در آب به صورت معلق باقی نمیماند و همه ذرات رسوب میکنند.
نحوه تشخیص لای از رس
آزمایشهای میکروسکوپی ذرات فقط در لابراتورها امکانپذیر است. تعدادی تست ساده برای مواقعی که دسترسی به لابراتورها وجود ندارد طراحی شده است.
1. آزمون لرزش
مقداری از ماده را روی دستمال ریخته و آن را تکان میدهیم (میلرزانیم) اگر ماده لای باشد آب روی سطح آن قرار میگیرد و سطح آن روشن و شفاف میشود اگر ماده خمیر مانند شد رطوبت آن دوباره وارد خاک شده و روشنایی سطح آن از بین خواهد رفت.
اگر ماده رس باشد آب نمیتواند به راحتی حرکت کند و به همین دلیل تیره و کدر به نظر میرسد.
اگر ماده مخلوطی از لای و رس باشد سرعت نسبی پایدار ماندن روشنایی سطح میتواند مقدار لای موجود در آن را به صورت تقریبی نشان دهد. این آزمون همچنین با نام dilatancy نیز معروف است.
2. آزمون مقاومت
یک کلوخ (briquette) کوچک از ماده را آماده و خشک میکنیم سپس سعی می کنیم که آن را بشکنیم، اگر به آسانی شکسته شد، ماده لای است. اگر ماده رس باشد برای شکسته شدن نیروی بیشتری را میطلبد. همچنین اگر ماده لای باشد میتوان در سطح کلوخ ذرات جدا شده ماده را پاک کرد. وقتی خاک مرطوب بین انگشتان فشرده شود رس سطح صابونی مانندی را پدید میآورد و لیس است به آرامی خشک میشود و ذرات سطح آن به آسانی جدا نمیشوند.
3. آزمون لوله
تلاش میکنیم از خاک مرطوب شده رشتهای به قطر حدود mm3 بسازیم. اگر ماده لای باشد این کار امکانپذیر نیست و از هم میپاشد. اگر ماده رسی باشد چنین رشتهای را میتوان حتی با طول حدود cm30 نیز درست کرد. و حتی میتوانیم آن را از یک طرف گرفته و بلند کنیم (وزنش را تحمل میکند) نام دیگر این آزمون Toughness است.
4. آزمون پراکندگی
یک قاشق پر از خاک را در یک ظرف شیشهای پر از آب میریزیم. اگر نمونه لای باشد ذرات در مدت 15 دقیقه تا 1 ساعت تهنشین میشود. اگر نمونه رسی باشد سوسپانسیونی ایجاد میشود که پایداری آن ساعتها و حتی روزها طول میکشد و Provided Flocculadion اتفاق نمیافتد.
چند نمونه آزمون متنوعی در ادامه معرفی شده است.
خاکهای محتوی مواد آلی و رنگ آنها
خاکهای محتوی مواد آلی که مرطوب و تازه باشند معمولاً دارای بوی خاصی هستند که نشانه تجزیه مواد آلی است. و به آسانی با گرما دادن قابل تشخیص است. روش دیگری برای شناسایی این خاکها تیرگی آنها است.
آزمون اسیدی
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 47
مکانیک خاک :
علمی که به نام مکانیک خاک مشهور است هدف تعیین واقعی تر مقادیر ظرفیتهای ایمن تاب فشاری خاکها را در حالات خاص دنبال می کند و اگر از این علم به طور منطقی و عقلانی استفاده شود می توان مقاومتهای خاک را دقیقتر از آنچه که از جداول استخراج می گردد و یا با فرو کردن پاشنة کفش در ته گودال پی حاصل می گردد برآورد نمود. اما نباید تصور کرد که مکانیک خاک یک علم دقیق است و در جوابهایش جای هیچگونه تردیدی نیست. مکانیک خاک هرگز نمی تواند ظرفیت دقیق تاب فشاری یک خاک واقعی را به دست دهد زیرا که خواص فیزیکی تمام خاکهای واقعی در محل ساختمان نقطه به نقطه چه در سطح و چه در عمق تغییر می کند مکانیک خاک فقط می تواند بگوید که مقاومت حجم کوچکی از خاک که به عنوان نمونه از عمق معینی و از گمانه معینی برداشت شده است چقدر است مقاومت خاکهای سایر قسمتهایی که فقط چند متر دورتر نه ممکن است از مقاومت نمونه هابیشتر و یا کمتر باشد به عبارت دیگر در مورد خاک نمی توان گفت که مشت نمونه خروار است.
در نتیجه شیفتگی و پر بها دادن به مکانیک خاک بی فایده است تعیین مقدار متوسط نتایج آزمایش نیز عملاً بی فایده است زیرا که این عمل عیناً مشابه اینست که نتایج ضعیف تر (نقطه ضعف خاک) صرفنظر گردد. در کاربرد نتایج آزمایشات باید هوشیارانه از قضاوت خودمان استفاده نمائیم زیرا که خاکها در وضعیت طبیعی خود چنان متغییرند و این تغییرات چنان دامنه وسیعی دارد که فی الواقع یک جواب واقعی برای ظرفیت مجاز تاب فشاری موجود نمی باشد و اگر در هر مطالعه خاکی وانمود شود که مسئله ساده است و عاری از هر گونه سردرگمی می باشد بی شک نتایج حاصله به علت بی توجهی به علم بی ارزش خواهد بود و در واقع مکانیک خاک چه می گوید و چگونه باید از زمین نمونه برداری نمود و چگونه این نمونه ها را در آزمایشگاه آزمایش کرد و نتایج حاصله از آزمایشات چه معنی و مفهومی دارند سپس تعداد مثال طراحی پی ها را بررسی و مختصری از آزمایش و نوع پی ها و ظرفیت مجاز تاب فشاری و غیره که تمام این در ارتباط با خاک بوده.
ظرفیتهای ایمن تاب فشاری برای خاکهای غیر چسبنده
نوع خاک
ظرفیت ایمن تاب فشاری KN/m2
خشک
مخاط در آب (غرتاب)
سنگریزه متراکم و سنگریزه ماسه ای (شن) متراکم
600 و بیشتر
300 و بیشتر
شن با تراکم متوسط ماسه ای با تراکم متوسط
600 ـ 200
300 ـ 100
شن سست و شل ماسه ای سست و شل
کمتر از 200
کمتر از 100
ماسه متراکم
300 و بیشتر
150 و بیشتر
ماسه با تراکم متوسط
300 ـ 100
150 ـ 50
ماسه سست و شل
کمتر از 100
کمتر از 50
بررسی مختصر محلی :
به فرض این که می خواهیم برای ساختمانی در محلی پی طراحی کنیم و می دانیم که خاک از نظر مشخصات یکنواخت می باشد و تا عمق قابل ملاحظه ای بدون تغییر امتداد یافته است اگر قبلاً تجربه ای با این نوع خاک داشته باشیم ممکن است قادر باشیم از خیس آن و ظاهرش قضاوت کنیم که چند کیلو نیوتن بر متر مربع بار را به طور ایمن تحمل خواهد کرد به عنوان مثال می توان
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 20
«تستهای مربوط به تنش در خاک»
1. بار نواری به شدت بر سطح زمین اعمال میشود، با فرض توزیع تنش تقریبی (2 به 1) در عمق 3 متری زمین، تنش ایجاد شده در نقاط A و B به ترتیب چند میباشد؟ (سال 81)
1) 0, 6.6 2)0, 8 3) 4, 8 4) 3.3 , 6.6
بار نواری
این q به دست آمده در محدوده ذوزنقه تشکیل شده در زیر پی است و خارج محدوده تنش صفر است، نقطه B خارج از محدوده قرار دارد و تنش آن صفر خواهد بود.
2. مطابق شکل روبرو شالوده مربعی تحت بارهای متمرکز بدون خروج از مرکزیت به فاصله یک متر از یکدیگر در سطح زمین قرار گرفتهاند چنانچه بارگذاری در یک زمان انجام شود، افزایش تنش در وسط لایه رسی برابر کدام گزینه است؟ (سال 79)
(راهنمایی: بهتر است برای محاسبه افزایش تنش در عمق از رابطه تقریبی با شیب 2 به 1 استفاده کنید).
1) 2) 3) 4)
باید محدوده تأثیر شالودهها را مشخص کنیم:
در صورتی که افزایش تنش A مورد نظر باشد، افزایش تنش تنها ناشی از بار 50 t است. در صورتی که افزایش تنش B مورد نظر باشد، افزایش تنش ناشی از تنها بار 30 t است. در صورتی که افزایش در C مورد نظر باشد، افزایش تنش ناشی از بار 30 t، 50 t است و در صورتی که در D مورد نظر باشد، افزایش تنش در این نقطه برابر صفر است، چون سؤال موقعیت نقطه را مشخص نکرده، نقطه C را در نظر میگیریم: (محدوده همپوشانی تنشها)
3. یک بار نواری به شدت و به عرض 4 m به سطح زمین وارد میشود، مقدار تنش قائم، () ناشی از بار فوقالذکر در زیر حاشیه سطح بارگذاری و در عمق 4 m از سطح زمین چند درصد خواهد بود. (سال 78)
1) 25% 2) 41%
3) 50% 4) 62%
استفاده از روش تقریبی 2 به 1:
استفاده از فرمول دقیق:
حل تست مورد نظر:
چون جواب روش دقیق در گزینهها وجود دارد، گزینه 2 صحیح است.
4. تست قبل را با این فرض که در زیر پی و وسط پی مورد نظر است حل کنید:
1) 55% 2) 45% 3) 65% 4) 41%
5. کدام گزینه در مورد منحنیهای تأثیر نیومارک صحیح نیست؟ (سال 80)
1) برای هر نوع سطح بارگذاری شده در هر عمق دلخواهی میتوان قائم را تعیین کرد.
2) هیچگونه شرطی بین ابعاد بارگذاری شده و عمق مورد نظر برای تعیین تنش قائم وجود ندارد.
3) اگر نقطه مورد نظر برای تعیین تنش قائم در محدوده سطح بارگذاری باشد، نتایج معتبر است.
4) سطوح بارگذاری شده بین دو دایره متوالی تنشهای قائم یکسان در عمق مفروض در مرکز دوایر متحدالمرکز ایجاد مینمایند.
گزینه 2 صحیح است.
6. در زیر یک پی لایهای از خاک غیراشباع به ضخامت 3.5 m بر روی یک لایه رس اشباع به ضخامت 10.5 متر و در زیر لایه رسی یک لایه خاک مخلوط درشتدانه اشباع به ضخامت 8 m وجود دارد. نشست در هر یک از این لایهها چگونه خواهد بود؟ (سال 78)
1) لایههای اشباع نشست تحکیمی و لایه غیراشباع نشست آنی دارد.
2) لایه خاک غیر اشباع نشست آنی، لایه رسی نشست تحکیمی و لایه خاک درشتدانه آنی خواهد داشت.
3) لایه خاک غیراشباع و لایه رسی نشست درازمدت تحکیمی و لایه خاک درشتدانه نشست آنی خواهد داشت.
4) به علت بالاتر بودن سطح آب زیرزمینی نشست آنی ناچیز است و عمده نشست تحکیمی است.