لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 21
به نام خدا
مقدمه ای درباره خنک سازی دمابرقی (ترموالکتریک)
دستگاه خنک کننده ترموالکتریک ، گاهی اوقات به آن ترموالکتریک یا دستگاه خنک کننده «پلیتر» نیز می گویند . که نیمه رسانای است که دارای اجزا و ترکیبات الکترونیکی است که عملکردهایی مانند گرم کردن با پمپ را در بر می گیرد . منبع نیرو با ولتاژ پایین DC با مدل TE کار می کند . گرما از آن محدوده به طرف دیگر حرکت خواهد کرد ، بنابراین . یک طرف خنک می شود وقتی که هنوز طرف دیگر همزمان گرم است ، مهم است به خاطر داشته باشید زمانی که این اتفاق معکوس می شود که به موجب آن قطبش نیز تغییر می کند. (مثبت و منفی) و ولتاژ DC سبب می شود که گرما به طرف دیگر برود، در نتیجه ، ترموالکتریک به کار برده می شود برای گرم سازی و خنک سازی در نتیجه بسیار مناسب است برای کنترل دقیق دمای مورد استفاده قرار می گیرد . نظریه اساسی برای کاربران درباره تونایی دستگاه خنک کننده ترموالکتبیک داده شده است که با ارائه این نمونه ، مفید است . یک نوع مرحله ترموالکتریک در یک مخزن گرمایی است که دمای اتاق را نگه می دارد و سپس به یا باطری مناسب متصل می شود . یا به دیگر منابع نیروی DC متصل می گردد . طرف سرد نمونه تقریباً به دمای می رسد . در این لحظه نمونه بدون گرما پمپ می شود و به بیشترین میزان ولتاژ T می رسد . اگر گرما به تدریج به طرف سرد نمونه اضافه شود ، قسمت سرد دمایش بالا می رود و سرانجام برابر قسمت گرما می شود . در این هنگام دستگاه خنک کننده TE به بیشترین میزان گرما می رسد (). دستگاههای خنک کننده ترموالکتریک به یخچالهای مکانیکی کنترل کنند با همان قوانین بنیادی ترمودینامیک و سیستم های سردسازی اگرچه به طور قابل ملاحظه ای در فرم متفاوت هستند عملکردشان به یک صورت می باشد . در سیستم های سردسازی مکانیکی دستگاه فشار برای فشردن هوا به مایع فشار می آورد در میان سیستم سرما راپخش می کند . فضای تبخیر کننده یا منجمد کننده که به نقطه جوش می رسد طی مراحل تدریجی مداوم تبخیر می شود . دستگاه سرد کننده گرما را می گیرد (جذب می کند) به همین علت است که دستگاه سرد می شود . گرمای جذب شده توسط دستگاه سرد کننده به طرف دستگاه منقبض کننده حرکت می کند . در جایی که سردکننده تراکم را به محیط انتقال می دهد در سیستم سردسازی ترموالکتریک پیش بینی می شود که یک نوع نیمه هادی جای مایع سرد کننده را می گیرد و منقبض کننده جایگزین قسمت گرمایی می شود . دستگاه فشردن هوا جایگزین منبع نیروی DC می شود .
استفاده از نیروی DC در ترموالکتریک به این علت است که الکترون ها به طرف مواد نیمه هادی حرکت می کنند . در انتهای قسمت سردکننده مواد نیمه هادی گرما را جذب می کنند توسط حرکت الکترون ها و از میان مواد حرکت می کنند و قسمت انتهایی گرم کننده از آن خارج می شود تا زمانی که قسمت انتهایی گرم کننده مواد بطور فیزیکی به مخزن گرما متصل شده است گرما از مواد به طرف مخزن می رود و سپس در عوض به محیط انتقال داده می شود . قائده کلی فیزیکی
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 5
سیستم خنک کنندگی ترانسهای قدرت
اصولا در ترانسهای قدرت در اثر القای متقابل سیم پچها ، تولید گرما و حرارت می شود که بسته به بار اعمالی به ترانس این گرما میتواند حتی منجر به آسیب دیدن سیم پیچ ها شود . یکی از اجزای اصلی در خنک شدن ترانس ها روغن ترانس است که با توجه به ویسکوزیته آن و مدت زمان بهره برداری از ترانس میتواند نقش مهمی در خنک شدن ترانس داشته باشد . در ترانسهای با کار کرد بالا تر بدلیل رسوبات روغن و ناخالصی های موجود در آن میزان خنک شوندگی ترانس کمتر خواهد شد.عموما در ترانس ها با قدرت بالا ، از رادیاتورها استفاده میشود که در ترانسهای با قدرت 500 کیلو ولت آمپر به بالا تنها از پره های خنک شونده و در ترانسهای 1000 کیلو ولت آمپر به بالا از رادیاتورهایی که روغن در آن به جریان می افتد استفاده می شود. در ترانسفورماتورهای با توان بالا و ولتاژ بالا از سیستمهایی چون فن های کنترل شونده و پمپ ها جهت خنک کردن ترانس استفاده میشود که به هر یک اشاره خواهیم کرد .
ادامه مطلب
|+| نوشته شده در دوشنبه یکم مهر 1387ساعت 23:58 توسط کوچکسرایی | 2 نظر
ساختمان ترانسهای قدرت روغنی : قسمتهای اصلی در ساختمان ترانسفورماتورهای قدرت روغنی عبارتند از: ١ - هسته یک مدار مغناطیسی ٢- سیم پیچ های اولیه و ثانویه ٣- تانک اصلی روغن به جز موارد فوق اجزا دیگری نیز به منظور اندازه گیری وحفاظت به شرح زیر وجوددارند :١- کنسرواتوریا منبع انبساط روغن ٢ - تپ چنجر ٣ - ترمومترها ٤- نشان دهنده های سطح روغن ٥ - رله بوخهلتز ٦- سوپاپ اطمینان یا لوله انفجاری / شیر فشار شکن ٧- رادیاتور یا مبدلهای حرارتی ٨- پمپ و فن ها ٩- شیرهای نمونه برداری از روغن پایین و بالای تانک ١٠ - شیرهای مربوط به پرکردن و تخلیه روغن ترانس ١١ - مجرای تنفسی و سیلیکاژل مربوط به تانک اصلی و تب چنجر ١٢ - تابلوی کنترل ١٣ - تابلوی مکانیزم تب چنجر ١٤ - چرخ ها
١٥ - پلاک مشخصات نامی
ساختمان ترانسهای قدرت روغنی : قسمتهای اصلی در ساختمان ترانسفورماتورهای قدرت روغنی عبارتند از: ١ - هسته یک مدار مغناطیسی ٢- سیم پیچ های اولیه و ثانویه ٣- تانک اصلی روغن به جز موارد فوق اجزا دیگری نیز به منظور اندازه گیری وحفاظت به شرح زیر وجوددارند :١- کنسرواتوریا منبع انبساط روغن ٢ - تپ چنجر ٣ - ترمومترها ٤- نشان دهنده های سطح روغن ٥ - رله بوخهلتز ٦- سوپاپ اطمینان یا لوله انفجاری / شیر فشار شکن ٧- رادیاتور یا مبدلهای حرارتی ٨- پمپ و فن ها ٩- شیرهای نمونه برداری از روغن پایین و بالای تانک ١٠ - شیرهای مربوط به پرکردن و تخلیه روغن ترانس ١١ - مجرای تنفسی و سیلیکاژل مربوط به تانک اصلی و تب چنجر ١٢ - تابلوی کنترل ١٣ - تابلوی مکانیزم تب چنجر ١٤ - چرخ ها
١٥ - پلاک مشخصات نامی ١- هسته : هسته ترانس یک مدار مغناطیسی خوب با حداقل فاصله هوایی و حداقل مقاومت مغناطیسی است تا فورانهای مغناطیسی براحتی از آن عبور کنند . هسته بصورت ورقه ورقه ساخته شده و ضخامت ورقه ها حدود0.3 میلیمتر و حتی کمتر است . برای کاهش تلفات فوکو ورقه ها تا حد امکان نازک ساخته می شوند و لی ضخامت آنها نباید بحدی برسد که از نظر مکانیکی ضعیف شده و تاب بردارد . در ترانسهای قدرت ضخامت ورقه ها معمولاً 0.3 یا 0.33 میلیمترانتخاب می شود که این ورقه ها توسط لایه نازکی از وارنیش عایقی با یک سیم نازک عایقی ، نسبت به هم عایق می شوند . ٢- سیم پیچی های ترانس در ساختمان سیم پیچ های ترانس باید موارد متعددی در نظر گرفته شوند که در ذیل به مهمترین آنها اشاره می نمائیم : ١ - در سیم پیچ هاباید جنبه های اقتصادی که همان مصرف مقدار مس و راندمان ترانس می باشد ، مراعات شود . ٢ - ساختمان سیم پیچ ها برای رژیم حرارتی که باید در آن کار کند محاسبه شود ، زیرا در غیر این صورت عمر ترانس کاسته خواهد شد . ٣- سیم پیچ ها در مقابل تنش ها و کشش های حاصل از اتصال کوتاه های ناگهانی مقاوم شوند ٤ - سیم پیچ ها باید در مقابل اضافه ولتاژهای ناگهانی از نقطه نظر عایق ، مقاومت لازم را داشته باشند . سیم پیچ ترانس ها نسبت به هم در نوع سیم پیچ ، تعداد حلقه ها درجه و اندازه سیمها و ضخامت عایق بین حلقه ها متفوت خواهند بود . هر چه ولتاژ ترانس بالا برود ، تعداد حلقه های سیم پیچ بیشتر می شود و هر چه ظرفیت ترانس بیشتر شود ، اندازه سیم ها بزرگتر می گردد . در ترانس با هسته ستونی ، سیم پیچها اعم از فشار قوی ، متوسط و فشار ضعیف و سیم پیچ تنظیم – بصورت استوانه متحدالمرکز روی ستونهای هسته قرار می گیرند . معمولاً سیم پیچ فشار ضعیف در داخل و فشار قوی در خارج واقع می شوند و ترتیب فوق به این دلیل رعایت می شود که عایق کاری فشار ضعیف نسبت به هسته راحت تر است . ٣- تانک اصلی روغن تانک ترانس یک ظرف مکعب یا بیضوی شکل است که هسته و سیم پیچ های ترانس در آن قرار می گیرند و نقش یک پوشش حفاظتی را برای آنها ایفا می کند داخل این ظرف از روغن پر می شود بطوریکه هسته و سیم پیچ کاملاً در روغن فرو می روند . سطح خارجی تانک تلفات گرمایی داخل ترانس را به بیرون منتقل می کند از هر مترمربع سطح تانک حدوداً 400 الی 450 وات توان گرمایی به خارج منتقل می شود ، بطوریکه در ترانسهای کوچک ، همین سطح برای خنک کاری کافی است و به تمهیدات دیگری نظیر رادیاتور وفن نیاز نمی باشد . در ترانسهای تا KVA 50 بدنه تانک از ورق ساده فولادی به ضخامت حدوداً MM3 میلیمتر ساخته می شود ، سطح آن صاف بوده و نیازی به میله های تقویتی یا لوله های خنک کن ندارد . هر 4 وجه ترانس از یک ورق یک پارچه درست می شود و فقط در یک گوشه جوشکاری می گردد . تانک ترانس بایستی موجب شود که موارد مشروحه ذیل تأمین گردند : - حفاظتی برای هسته ، سیم پیچ ، روغن و سایر متعلقات داخلی باشد . - دارای استقامت کافی باشد که در حین حمل و نقل و نیز در زمان اتصال کوتاه داخلی بتواند تنش های مکانیکی ایجاد شده را تحمل نماید . - ارتعاشات و صدا در آن به حداقل برسد . - ساختمان آن در برابر نشت روغن و یا نفوذ هوا کاملاً آب بندی باشد . - سطوح کافی برای دفع گرمای ناشی از تلفات ترانس را تأمین کند . - محلی برای نصب بوشینگها ، تب چنجر ، مخزن ذخیره روغن و سایر متعلقات باشد. - از نظرابعاد در حد باشد که براحتی قابل تحمل و حمل و نقل از طریق جاده یا راه آهن باشد .- حداقل تلفات فوکو در آن ایجاد شود . - حداقل میدان مغناطیسی در خارج از آن وجود داشته باشد . به این ترتیب طراحی تانک ترانس به روش پیش بینی شده برای حمل و نفل آن نیز بستگی دارد.
٤- مقره ها ( بوشینگ ها ( سرهای خروجی سیم پیچ های فشار قوی و فشار ضعیف باید نسبت به بدنه فلزی تانک ، عایقکاری شوند . برای این منظور از مقره ها استفاده می شود . مقره یا بوشینگ تشکیل شده است از یک هادی مرکزی که توسط عایق های مناسبی در میان گرفته شده است . بوشینگها روی در پوش فوقانی ترانس نصب می شوند و در موارد نادری بوشینگها را روی دیواره جانبی تانک هم نصب می کنند . انتهای پایینی مقره در داخل تانک جای می گیرد ، در حالیکه سر دیگر آن در بالای درپوش و در هوای خارج واقع می شود . ترمینالهای هر دو سر دارای بستهای مناسبی برای اتصال به سر هادی های داخل ترانس و نیز هادی های
شبکه می باشند . شکل و اندازه بوشینگها به کلاس ولتاژ ، نوع محل ( داخل ساختمان یا در هوای آزاد ) و جریان نامی آن بستگی دارد . بوشینگهای داخل ساختمانی نسبتاً کوچک بوده و سطح آن صاف است ، اما بوشینگهای هوای آزاد کاملاً در معرض شرایط مختلف جوی نظیر برف و باران و آلودگی و ... قرار می گیرند ، بنابراین از نظر شکل کاملاً متفاوتند و از سپرهایی به شکل چتر تشکیل می شوند ، تا سطح زیرین آنها در مقابل باران خشک نگه داشته شوند . دراین صورت سطح خارجی آنها زیاد شده و فاصله خزش جرقه روی سطح چینی عایق زیادتر می گردد و در نتیجه استقامت الکتریکی بوشینگ افزایش می یابد . در حال حاضر تمام ترانسهای با قدرت زیاد ، برای کار در هوای آزاد ساخته می شوند و مقره های عایقی ، برای ولتاژهای مختلف زیر موجود می باشند : ٥/٠و١و٣ و٦ تا ١٠ و٢٠ و ٣٥ و١١٠ و٢٢٠و٣٢٠ و٥٠٠ و٧٥٠ کیلووات. درترانسهای قدرت از ٣ تا١٠ کیلووالت، همان بوشینگ kv10 بکارمی رود.برای ترانسهای kv 1 وکمتراز مقره چینی ساده یامقره اپوکسی زرین ساخته می شود .
سیستم های اندازه گیری و حفاظت ترانس ١- کنسرواتور یا منبع انبساط روغن منبع ذخیره روغن که به اسامی منبع انبساط و کنسرواتور نیز نامیده می شود ، تانکی است که در بالاترین قسمت ترانس نصب می شود در حین تغییرات بار روزانه ، روغن ترانس انبساط وانقباض می یابد و در حین انبساط وارد منبع ذخیره می شود . اندازه و حجم منبع ذخیره به اندازه ترانس و تغییرات دمایی آن در هنگام بهره برداری بستگی دارد . در ترانسهایی که دارای تب چنجر قابل قطع زیر بار هستند ، منبع انبساط به دو بخش تقسیم می گردد که قسمت کوچکتر برای تب چنجر و قسمت بزرگتر برای تانک اصلی در نظر گرفته می شود . از بالای هر قسمت منبع ذخیره ، لوله ای به فضای آزاد آورده می شود ، که به آن مجرای تنفسی می گویند (Breather) در ورودی این مجرا ظرف شیشه ای قرار دارد ، که داخل آن از ماده ای رطوبت گیربه نام سیلیکاژل پرمی شود . به این ترتیب هوای ورودی به ترانس رطوبت خود را از دست داده و کاملاً خشک خواهد بود . در هر قسمت منبع ذخیره ، یک نشان دهندة سطح روغن نصب می شود تا سطح روغن را در حین کار ترانس بتوان نظارت کرد و همچنین دو سطح منبع دیگر که مجهز به کنتاکت آلارم می باشند نیز بر روی آنها نصب می گردند سطح خارجی منبع ذخیره نیز با رنگ مناسب پوشیده می شود تا از خوردگی و زنگ زدن محافظت گردد . ٢ - تپ چنجر در بارهای مختلف افت ولتاژ در ترانسفورماتورها و خطوط نیز تغییر می کند و سبب تغییر ولتاژ شبکه می شود . کنترل ولتاژ شبکه های توزیع و انتقال عمدتاً توسط تب چنجر ایجاد می شود . اساس کار تب چنجر بر تغییر نسبت تبدیل ترانس استوار است . بدین ترتیب که با انشعاباتی که در سیم پیچ فشار قوی تعبیه می گردد تعداد دور سیم پیچ را تغییر داده و سبب تغییر ولتاژ خروجی ترانس می گردد. تپ چنجرها بطور گسترده ای برای کنترل ولتاژ شبکه در سطوح مختلف ولتاژی بکار گرفته می شوند . معمولاً کنترل ولتاژ در محدوده %١٥ +_ مقدور است . ولتاژ هر پله تب چنجر عموماً بین ١ تا ٥/٢ درصد تغییر می کند انتخاب مقدار کم برای پله ها سبب افزایش تعداد تپ ها می گردد و انتخاب مقدار بالا برای هر پله باعث عدم امکان تنظیم دقیق ولتاژ مورد نظر می گردد . محل تپ چنجر : در داخل تانک اصلی ، قسمتی را برای بخش اصلی تب چنجر ) دایورترسوئیچ ) در نظر گرفته اند این قسمت کاملاً آب بندی شده است داخل آن نیز با روغن ترانس پر شده است . این روغن کاملاً از روغن تانک اصلی جداست و باهم مخلوط نمی شود . تپ چنجر را در سمت فشار قوی نصب کرده اند که دارای مزیت های زیرمی باشند : الف) در طرف فشار قوی جریان کمتر است لذا برای تپ چنجرهایی که زیر بار عمل می کنند حذف جرقه ساده تراست.ب) چون تعداد دورسیم پیچهای فشارقوی بیشتر است ، لذا امکان تغییرات یکنواخت تروپه های کوچکتر به راحتی میسر است . در اتصال ستاره انشعابات تب چنجر را در سمت نقطه صفر قرار می دهند تا عایق کاری آن نسبت به
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 214
انتخاب یک سیستم خنک سازی توربین گازی
Boris Glezer
راه حل های توربین بهینه سازی شده, سان دیگو, کالیفرنیا, U.S.A
مقدمه....................................................................................................................................................1
خنک سازی توربین بعنوان یک تکنولوژی کلیدی برای بهینه سازی موتورهای توربین گازی....................................................................................................................................................7
چالش های خنک سازی برای دماهای پیوسته درحال افزایش گاز ونسبت فشارکمپرسور........................8
تکنیک های خنک سازی استفاده شده متداول.....................................................................................14
تاثیر خنک سازی.................................................................................................................................18
مشکلات خنک سازی..........................................................................................................................22
ترکیب پوشش های حصار حرارتی و خنک سازی..................................................................................30
فرایند بهبود خنک سازی ایرفویل........................................................................................................32
تعریف پارامترهای شباهت انتقال جرم و حرارت اصلی...........................................................................35
کنش متقابل انتقال جرم – حرارت در لایه مرزی ایرفویل.......................................................................36
نقش تشابه در رقابت تجربی حرارت ایرفویل توربین و انتقال جرم.........................................................42
موضوعات انتقال حرارت گذرا و پایدار در بخش داغ موتور.....................................................................44
دمای فلز و تاثیر آن روی عمر اجزای توربین.......................................................................................46
موضوعات مربوط به تغییرمکان های دمایی گذرای روتوربه استاتوروکنترل فاصله نوک آزاد..................48
خنک سازی نازل توربین......................................................................................................................56
تقابل با محفظه احتراق........................................................................................................................58
انتقال حرارت پره..............................................................................................................................65
-خمیدگی......................................................................................................................................69
-تاثیرات ناهمواری..........................................................................................................................74
-اغتشاش.....................................................................................................................................................76
خنک سازی فیلم پره..........................................................................................................................76
-نسبت دمش.................................................................................................................................86
-انحنای سطح................................................................................................................................87
-گرادیان فشار...............................................................................................................................88
-آشفتگی جریان اصلی...................................................................................................................89
-شیارهای خنک سازی فیلم...........................................................................................................91
-تجمع فیلم.................................................................................................................................92
-تاثیر تزریق هوای خنک سازی فیلم روی انتقال حرارت سطح......................................................94
موضوعات خنک سازی دیواره نهایی....................................................................................................95
خنک سازی تیغه توربین...................................................................................................................100
تاثیرات سه بعدی ودورانی روی انتقال حرارت تیغه.............................................................................102
-نیروهای دورانی.........................................................................................................................102
-تاثیرات سه بعدی......................................................................................................................105
پروفایل دمای گاز شعاعی................................................................................................................106
تاثیرات ناپیوستگی...........................................................................................................................107
تکنیک های خنک سازی درونی تیغه................................................................................................109
-گذرگاههای درونی هموار............................................................................................................111
- تیرک ها/فین ها (نوارهای زاویه دار یا طولی)..............................................................................113
-پین فین ها..............................................................................................................................121
-تاثیر جت ................................................................................................................................................128
-جریان گردابی...........................................................................................................................138
-خنک سازی فیلم.......................................................................................................................141
موضوعات خنک سازی سکو و راس ...................................................................................................144
خنک سازی ساختارهای روتور و استاتور............................................................................................148
-منبع خنک سازی و سیستم های هوای ثانویه .............................................................................148
بافر کردن مجموعه دیسک و روشهای خنک سازی دیسک.................................................................153
خنک سازی ساختارحفاظتی نازل و جایگاه توربین...........................................................................158
خنک سازی محفظه احتراق..............................................................................................................161
-تاثیر تحول طراحی محفظه احتراق روی تکنیک های خنک سازی..............................................161
خنک سازی تعریق..........................................................................................................................167
خنک سازی نشتی...........................................................................................................................169
همرفتی بخش پشتی افزوده.............................................................................................................173
پوشش دهی حصار حرارتی...............................................................................................................177
انتقال حرارت تجربی پیشرفته و معتبر سازی خنک سازی..................................................................179
ارزیابی انتقال حرارت بیرونی و تکنیک های معتبر سازی خنک سازی...............................................180
-رنگ حساس به فشار.................................................................................................................182
-ارزیابی غیر مستقیم آشفتگی....................................................................................................185
ارزیابی های انتقال حرارت و جریان داخلی.........................................................................................188
شبیه سازی انتقال حرارت مزدوج و معتبر سازی در یک آبشار داغ......................................................194
-معتبر سازی تاثیر خنک سازی تیغه در آبشار داغ........................................................................194
شرایط مرزی تجربی دیسک توربین...................................................................................................200
تائید خنک سازی در یک آزمون موتور..............................................................................................204
-ابزار بندی متعارف......................................................................................................................204
-پیرومتر درج شده درگاه بروسکوب............................................................................................205
-رنگ های حرارتی دما بالا...........................................................................................................206
بررسی های چند نظامی در انتخاب سیستم خنک سازی توربین........................................................207
مقدمه
این فصل عمدتاً روی موضوعات انتقال جرم و حرارت تمرکز می یابد چون آنها برای خنک سازی اجزا ی دستگاه توربین بکار می روند و انتظار می رود که خواننده با اصول مربوطه در این رشته ها آشنایی داشته باشد. تعدادی از کتابهای فوق العاده (1-7) در بررسی این اصول توصیه می شوند که شامل Streeter، دینامیک ها یا متغیرهای سیال Eckert و Drake، تجزیه و تحلیل انتقال جرم و حرارت، Incropera و Dewitt، اصول انتقال حرارت و جرم, Rohsenow و Hartnett، کتاب دستی انتقال حرارت, Kays، انتقال جرم و حرارت همرفتی, Schliching، تئوری لایه مرزی، و Shapiro، دینامیک ها و ترمودینامیک های جریان سیال تراکم پذیر.
وقتی یک منبع جامع اطلاعات موجود باشد. مولف این فصل خواننده را به چنین منبعی ارجاع میدهد. با این وجود وقتی داده ها در صفحات یا مقالات گوناگون پخش شده باشند, مولف سعی می کند که این داده ها را در این فصل بطور خلاصه بیان نماید.
فهرست اسامی نمادها
a- سرعت صورت
b- بعد خطی در عدد دورانی
منطقه مرجع, منطقه حلقوی مسیر گاز
Ag – سطح خارجی ایرفویل
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 8 صفحه
قسمتی از متن .doc :
تیم های خنک کننده تابستانی گلخانه
سیستم تشک و پنکه
عمده مسایل مربوط به سیستم تشک و پنکه به ترتیبی که مورد بحث قرار خواهند گرفت عبارتند از 1 سرعتی که هوای گرم باید با آن از گلخانه خارج شود تا هوای خنک بتواند به داخل کشیده شود 2_ انواع تشکهای بکار رفته برای تبخیر آب و ویژگی های آنها 3 نصب پنکه ها 4 مسیر جریان هوا
سرعت جابجا هوا
با افزایش ارتفاع گلخانه ، سرعت خروج هوا نیز باید افزایش یابد در ارتفاع بالا هوا رقیق تر و سبکتر می شود توانایی هوا برای کاستن گرمای خورشیدی در گلخانه به وزن آن بستگحی دارد نه به حجم آن بنابراین در ارتفاعات بالا حجم بزرگتری از هوا باید از میان گلخانه جابجا شود تا اثر خنک کنندگی معادل ارتفاعات پایین به دست آید .
سرعت جابجایی هوا به شدت نور داخل گلخانه نیز بستگی دارد با افزایش شدت نور گرمای حاصل از انرژی خورشیدی افزایش یافته و در نتیجه سرعت خارج شدن هوا از گلخانه باید افزایش یابد به طور کلی شدت نور 8/53 کیلولوکس (5000 فوت شمع) برای محصولات گلخانه مناسب است و می توان با ایجاد پوششی از یک ماده سایه انداز بر روی گلخانه و یا کشیدن صفحه ای بر روی دیواره های داخلی گلخانه به این میزان روشنایی دست یافت. انرژی خورشیدی ، هوا را در حین جابجا شدن از تشک به پنکه های تهویه گرم می کند معمولا ، افزایش دمایی معادل (VF) 4c در عرض گلخانه ، قابل قبول است . اگر حفظ دمای نسبتا ثابتی در عرض گلخانه ضرورت پیدا کند یعنی افزایش دما کاهش یابد لازم است که سرعت جابجایی هوا در میان گلخانه افزایش یابد .
تشک و پنکه باید در دو دیوار مقابل هم قرار داده شوند. این دیوارها می توانند دیوارهای جانبی یا انتهایی گلخانه باشند فاصله بین تشک و پنکه ها عامل مهمی برای تعیین دیوارهای مورد نظر است. معمولا بهترین فاصله 60-30 متر است فواصل بیش از 60 متر به افزایش دماهای بالاتر از حد مطلوب در عرض گلخانه منجر می شوند. اگر فاصله کمتر از 30 متر باشد سرعت جابجایی هوا در بند عرض کاهش می یابد و حالت سرمای مرطوب در محیط گلخانه ایجاد می شود. این وضعیت باید با افزایش اندازه پنکه های تهویه یا به عبارت دیگر ، با افزایش سرعت جابجایی هوا اصلاح شود این عمل هزینه سیستم را بالا می برد اندازه تعداد پنکه ها باید تعیین شود پنکه ها باید حداقل معادل سرت هوای مورد نیاز انتخاب شوند و ظرفیت آنها باید به روشی ارزیابی شود که در فشار آب استاتیک 30 پاسکال این کارایی را داشته باشند. اگر پنکه های مخصوص دیوارهای شیبدار مورد استفاده قرار گیرند ظرفیت پکنه ها باید در فشار آب استاتیک 15 پاسکال ارزیابی شود. در واقع عدد فشار استاتیک ن برای در نظر گرفتن مقاومت پره ها در برابر هوابکار می رود.
فاصله پنکه ها از یکدیگر نباید بیش از 6/7 متر باشد اگر عرض انتهای گلخانه 18 متر باشد حداقل 3 پنکه مورد نیاز خواهد بود .
مشخصات تشک سلولزی دارای شیار عرضی
در ابتدا تشکهای ساخته شده از تراشه های چوب که ضخامت آنها 4_5/2 سانتیمتر بود مورد استفاده قرار می گرفتند ولی اغلب تشکهایی که امروزه بکار می روند از مواد سلولزی خاص که دارای شیار عرضی هستند تهیه می شوند این تشکها ظاهری مقوا مانند و شیار دار دارند در صورت استفاده درست این تشکها می توانند تا 10 سال دوام بیاورند سلولز با محلول نمکهای ضد زنگ ، محلولهای اشباع سخت کننده و عوامل مرطوب کننده آغشته می شود تا استحکام ، دوام و خاصیت رطوبت پذیری پیدا کند. تشکهای سلولزی ظاهرا گرانترند ولی در مقایسه با تشکهای تراشه ای مقرون به صرفه تر می باشند .
تشکهای سلولزی دارای شیار عرضی در واحدهای به پهنای 30 سانتیمتر و ضخامت 5 و 10 و 15 یا 30 سانتیمتر عرضه می شوند ارتفاع تشک با تقسیم مساحت کل تشک بر طول آن محاسبه می شود . تشکها باید بدون هیچ فاصله ای در داخل دیوار جانبی یا انتهایی نصب شوند. این دیوار باید به هوا گیرهای خارجی مجهز باشد . تا در روزهای گرم سال هوا بتواند وارد شود و در طول شبهای سرد پاییز و بهار از ورود هوای بیرونی جلوگیری کند دسته ها و چرخ دنده های این هواگیر ها در خارج گلخانه قرار دارند. پنکه های هواکش باید در دیوار مقابل تشک نصب شوند تا هوای خنک از تمام بخشهای گلخانه عبور کند .
جهت سورخهای لوله های توزیع آب تشکهای سلولزی رو به بالاست یک پوشش پخش کننده آب بر روی لوله توزیع قرار می گیرد آب از سوراخهای لوله به بالا فوران می کند و پس از برخورد با سطح داخلی پوشش پخش می شود آنچه که اهمیت دارد این است که تمام تشک باید مربوط شود در تشک خشک مقاومت کمتری در برابر جریان هوا ونجود دارد بنابراین هوا از نقاط خشک عبور کرده و کارایی کلی تشک کاهش می یابد. آبرویی که در قاعده تشک قرار دارد آب را جمع آوری می کند و آن را به مخزن آب دوباره به بالای تشک پمپ می شود.
وقتی که آب از سطح تشک تبخیر می شود نمکهای موجود در آن باقی می مانند و اگر به مدت طولانی اتفاق بیفتد رسوب نمک سفید رنگی هنگام خاموش بوده دستگاه بر روی تشک ایجاد میشود بسته به محتوای نمک آب مورد استفاده ممکن است لازم باشد که 1 تا 2 درصد آب دوباره به گردش در آمده را از طریق لوله ای خارج کرد تا از ایجاد نمک جلوگیری شود. برای این منظور یک دریچه 5/9 میلیمتری برای خروج آب بر روی لوله خروجی پمپ قرار داده می شود .
برای جلوگیری از رویش جلبکها بر روی تشکهای سلولزی عرضی می توان ب آب محلول 1 درصد هیپوکلریت سدیم به داخل لوله تامین آب تشک اضافه کرد.
ویژگیهای تشک تراشه ای
تشک تراشه ای حدود 5/2 سانتیمتر ضخامت داشته و از الیاف چوب تشکیل شده است . تشک در داخل چهار چوب سیمی مشبک که ابعاد روزنه های آن 5/2 سانتیمتر در 5 سانتیمتر است قرار داده می شود به ازاء هر متر مربع از سطح تشک تراشه ای سطح تبخیر کمتری در مقایسه با همان سطح از تشک سلولزی شیار دار عرضی ضخیمت وجود دارد. بنابر این مساحت هر تشک تراشه ای باید بزرگتر از مساحت یک تشک سلولزی شیار دار عرضی باشد تاب تواند همان کار را انجام دهد . آب با سرعتی معادل 1/4 به ازاء هر متر مربع از طول تشک به بالای تشک انتقال داده می شود . از آنجایی که کل آب به هنگام خاموش بودن دستگاه به مخزن باز خواهد گشت ، مخزنی به گنجایش 19 لیتر برای هر متر از طول تشک مورد نیاز است .
نصب پنکه ها
حتی الامکان درگلخانه بهتر است پنکه ها درست مخالف با دو تشک ها در طرف رو به بادها غالب نصب شوند تا باد سیستم خنک کننده را تقویت کند اگر پنکه ها در سمت مقابل باد بگیرند. ظرفیت آنها باید حداقل به میزان 10 درصد افزایش داده شود وقتی که دو یا چند گلخانه در جنب یکدیگر قرار دارند، فاکتورهایی مهمتر از جهت باد در تعیین محل نصب پنک ها دخالت می کنند. پنکه های یک گلخانه نباید هوای گرم و مرطوب داخل را به سمت تشکهای
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 12 صفحه
قسمتی از متن .doc :
سیستمهای خنک کننده :
در طول زمان احتراق مخلوط سوخت و هوا داخل سیلندرها حرارت زیادی در حدود 1800 تا 2000 درجه سانتیگراد ایجاد می شود. تنهای قسمتی از حرارت به وجود آمده (حدود 20 تا 24 درصد در موتورهای بنزینی و 27 تا 35 درصد در موتورهای دیزل) به کار مفید تبدیل می شود.قسمت دیگری از این حرارت (حدود 20 تا 34 درصد در موتورهای بنزینی و 20 تا 32 درصد در موتورهای دیزل) می بایست توسط سیستم خنک کننده جذب شود در غیر اینصورت قطعات موتور بخصوص پیستونها و سوپاپ ها که مستقیماً به شعله تماس دارند بیش از حد گرم شده ، حرارت زیاد باعث از بین رفتن سریع آنها می گردد. ضمناً حرارت زیاد از حد، موجب سوختن روغن می شود.
خنک شدن بیش از حد یک موتور در حال کار نیز مطلوب نیست. در موتوری که بیش از حد خنک می شود توان ،در نتیجه تلفات حرارت کاهش می یابد ،تلفات اصطکاکی براثر سفت شدن روغن بالا می رود و بخشی از مخلوط سوخت و هوا تبدیل به مایع شده و روغن از دیواره هی سیلندر شسته و پایین می برد. این موارد موجب فرسایش اجزاء موتور می گردد. در موتوری که حرارتش خیلی پایین است خوردگی دیواره های سیلندر در نتیجه تولد ترکیبات گوگردی افزایش می یابد. جدول 1 اثر درجه حرارت خنک کننده بر روی توان موتور مصرف سوخت و فرسایش یک موتور بنزینی را نشان می دهد. این در موقعی است که حرارت موتور پایین تر از حد توصیه شده 82 درجه سانتی گردا باشد.
امروزه دو نوع سیستم خنک کننده در موتورها به کار می رود سیستم خنک کننده هوایی که در آن از هوا به نوان واسطه خنک کننده استفاده می شود . و دوم سیستم خنک کننده مایعی یا آبی که در آن از مایع برای خنک کردن موتور و از هوا برای خنک کردن مایع استفاده می گردد.
حرارت
خنک کننده OC
توان
% حداکثر
مصرف سوخت
% حداقل
فرسایش سیلندر
% حداقل
80
100
100
100
70
98
103
166
60
96
114
334
40
92
125
668
4
88
136
2670
سیستم خنک کننده هوایی
این سیستم معمولاً در موتورهای کوچک مورد استفاده قرار می گیرد . زیرا عبور هوا از تمام نقاط داغ در موتورهای بزگتر مشکل است. در این سیستم معمولاً از پره ها لوله ها و دمنده ها برای کمک در پخش هوا استفاده می شود. موتورهای چند سیلندر که با هوا خنک می شوند سیلندرهایشان به جای این که به صورت جفت جفت با هم ویا همگی در یک بدنه ریخته شوند به صورت منفرد و جدا از هم ریخته می شوند تا حداکثر عمل خنک شدن در آنها انجام گیرد. موتورهای هواپیما ، موتور سیکلت،چمن زن ها ،تراکتورهای باغی ،تراکتورهای کوچک و متوسط دیزل و مولدهای دیزلی ، از جمله متورهای چند سیلندری هستند که با هوا خنک می شوند. این موتورها دارای مزایای زیر می باشند:
وزنشان کمتر است
دارای ساختمان ساده تری هستند
کارکردن با آنها راحت تر است و با زحمت کمتری همراه می باشد.
خطر یخ زدن آنها در هوای سرد وجود ندارد.
سیستم خنک کننده هوایی دارای معایب زیر است :
خنک نگه داشتن موتور در تمام شرایط مشکل است.
کنترل کامل حرارت سیلندرها تقریباً غیر ممکن است.
موتورهایی که با هوا خنک می شوند معمولاً کمی داغ تر از موتورهایی کار می کنند که با آب خنک می شوند و نیازبه روغنکاری بیشتری دارند.
سیستم خنک کننده مایعی
در موتورهایی که دارای سیستم خنک کننده مایعی هستند از آب یا بعضی مایعات با درجه یخ زدگی پایین که به ضد یخ معروفند به عنوان عامل خنک کننده یا مایع خنک کننده استفاده می شود.
آب که خنک کننده خوب و مطلوب برای استفاده در تراکتورها ، کامیون ها و اتومبیل ها محسوب می شود دارای مزایای عمده زیر است:
به مقدار فراوان در همه نقاط و به آسانی قابل دسترس می باشد.
حرارت را به خوبی جذب می کند.
به سهولت در حرارتهای بین نقطه انجماد و جوش جریان می یابد.
خطرناک و مضر نبوده و کار با آن ناخوشایند نمی باشد.
معایب عمده برای خنک کردن موتور عبارت است از:
دارای نقطه انجماد بالایی است
ممکن است موجب خوردگی بیش از حد رادیاتور و قسمتهای فلزی مشخصی از موتور شود. آب تمیز و خالص مانند آب باران بهترین نتایج را می دهد .
سیستم خنک کننده ای که در اکثر تراکتورها،اتومبیل ها و کامیون ها مورد استفاده قرار می گیرد ترکیبی از خنک کننده هوایی و مایعی می باشد.
یک سیستم خنک کننده مایعی شکل معمولاً از قسمتهای زیر تشکیل شده است:
رادیاتور و درپوش فشاری رادیاتور
پروانه و تسمه پروانه
پمپ آب