لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 23
اعداد اول
اعداد اول اعدادی طبیعی هستند که بر هیچ عددی بجز خودشان و عدد ۱ بخشپذیر نباشند. تنها استثنا عدد ۱ است که جزو این اعداد قرار نمیگیرد. اگرعددی طبیعی وبزرگتر از ۱ اول نباشد مرکب است.
عدد یکان اعداد اول بزرگتر از ۱۰ فقط ممکن است اعداد ۱، ۳، ۷، ۹ باشد.
پیدا کردن ضابطه ای جبری برای اعداد اول جزو یکی از معماهای ریاضی باقیمانده است و هنوز کسی به فرمولی برای آنها به دست نیاورده است.
دنبالهٔ اعداد اول به این صورت شروع میشود: ۲، ۳، ۵، ۷، ۱۱، ۱۳، ۱۷، ۱۹ ...
قضیه ۱: تعداد اعداد اول بینهایت است.
برهان: حکم را به روشی که منسوب به اقلیدس است اثبات میکنیم: فرض کنید تعداد اعداد اول متناهی و تعداد آنها n تا باشد. حال عدد M را که برابر حاصلضرب این اعداد به علاوه ۱ را در نظر بگیرید. این عدد مقسومعلیهی غیر از آن n عدد دارد که با فرض در تناقض است.
قضیه ۲ (قضیه اساسی حساب): هر عدد طبیعی بزرگتر از ۱ را می توان به شکل حاصلضرب اعدادی اول نوشت.
قضیه ۳ (قضیه چپیشف):اگر n عددی طبیعی و بزرگتر از ۳ باشد، حتما" بین n و ۲n عدد اولی وجود دارد. قضیه ۴ هر عدد زوج را میتوان بصورت جمع سه عدد اول نوشت.
قضیه ۵ هر عدد فرد (شامل اعداد اول) را میتوان به صورت جمع سه عدد اول نوشت (اثبات بر پایه قضیه ۴)
قضیه 6-هر عدد فرد را میتوان به صورت دو برابر یک عدد اول بعلاوه یک عدد اول دیگر نوشت (برهان آن را بنویسد).
خواص اعداد اول:
1- هر عدد اول برابر است با 6n+1 یا 6n-1 که n یک عدد صحیح است.
2-مجذور هر عدد اول برابر است با 24n+1.
3-تفاضل مجذورهای دو عدد اول مضربی از 24 است.
4-حاصلضرب هر دو عدد اول بجز 2و3 مضربی از 6 بعلاوه یا منهای یک است.
توان چهارم هر عدد اول بجز 2و3 مضربی از 240 بعلاوه یک است.
بزرگترین عدد اول کشف شده برابر دو به توان ۳۰میلیون و ۴۰۲هزار و ۴۵۷منهای یک است.این عدد یک عدد مرسن است. عدد مرسن عددی است که برابر 2 به توان n منهای یک است.
لازم به ذکر است که تعداد 3000 عدد اول در سایت مگاسندر www.megasender.org وجود دارد و افرادی که مایل به دریافت بیشتر این اعداد هستند می توانند با سایت مذکور تماس گرفته و تعداد بیشتری از آنها را بر روی لوح فشرده دریافت نمایند و طراحان این سایت خودشان این اعداد را محاسبه نموده اند
تاریخچه اعداد اول
در سال ۲۰۰۱دو تن از دانشجویان او یعنی کایال و سکسنا به یک نکته بسیار حساس و فنی توجه کردند. ابتدا این مساله سبب شد تا گروه سه نفره در آبهای عمیق نظریه اعداد غوطه ور شوند، اما اندک اندک برایشان روشن شد که تنها یک مانع در راه تکمیل روشی جهت آزمودن دقیق و سریع اعداد اول وجود دارد. مانع از این قرار بود که روش آنان تنها در صورتی کار میکرد که عدد اول مورد نظر که با pنمایش داده میشود همواره در محدوده خاصی جای داشته باشد که با اعدادی که در آزمون شرکت داده میشوند مرتبط باشد. مشخصه ویژه این مانع آن است که عدد " p-1 " باید یک مقسوم علیه یا بخشیاب بسیار بزرگ باشد. گروه سه نفر ریاضی دانان هندی برای غلبه بر مشکل به هر دری زدند و با بررسی مقالات مختلف بالاخره دریافتند که در سال ۱۹۸۵یک ریاضیدان فرانسوی به نام اتن فووری از دانشگاه پاریس ۱۱این نکته را به صورت ریاضی اثبات کرده است. به این ترتیب آخرین بخش معما حل شد و آلگوریتم پیشنهادی این سه نفر با موفقیت پا به عرصه گذارد. اما این موفقیت "مشروط" بود. به این معنی که این روش برای اعداد اولی که انسان در حال حاضر میتوان به سراغ آنها برود از کارآیی چندانی برخوردار نیست. در روایت اولیه روش پیشنهادی، زمان لازم برای محاسبات که متناسب با ارقام عدد اول مورد نظر بود، با آهنگ ۱۰۱۲ازدیاد پیدا می کرد. در روایتهای بهبود یافته اخیر این روش، سرعت ازدیاد زمان لازم برای محاسبات به ۱۰۷.۵کاهش یافته اما حتی در این حالت نیز این روش در مقایسه با روش آ پی آر تنها در هنگامی موثر تر خواهد بود که تعداد ارقام عدد اولی که قصد شکار و یافتن آن را داریم در حدود ۱۰۱۰۰۰باشد. اعدادی تا این اندازه بزرگ در حافظه هیچ کامپیوتر جای نمیگیرند و حتی آن را نمیتوان در کل کیهان جای داد. اما حال که ریاضی دانان توانستهاند یک طبقه خاص از آلگوریتمهای توانی را برای شناسایی اعداد اول مشخص کنند، این امکان پدید آمده که به دنبال نمونههای بهتر این روش بگردند. پومرانس و هندریک لنسترا از دانشگاه کالیفرنیا در برکلی با تلاش در همین زمینه توانستهاند زمان لازم برای محاسبات را از توان ۷.۵به توان ۶کاهش دهند. این دو از همان استراتژی کلی گروه هندی موسسه کانپور استفاده کردند اما تاکتیهای دیگری را به کار گرفتند. اگر فرضیههای دیگری که درباره اعداد اول مطرح شده درست از کار درآید آنگاه میتوان زمان محاسبه را از توان ۶به توان ۳تقلیل داد که در این حد این روش کارآیی عملی پیدا خواهد
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 10
چقدر به حل مسائل ریاضی علاقه مندید؟
متغیر
فراوانی مطلق
فراوانی نسبی
درصد فراوانی نسبی
درجه
اصلا
4
13/0
13%
8/46
کم
6
2/0
20%
72
متوسط
15
5/0
50%
180
زیاد
5
17/0
17%
2/61
چه اوقاتی از شبانه روز را برای حل مسائل ریاضی انتخاب می گنید ؟
متغیر
فراوانی مطلق
فراوانی نسبی
درصد فراوانی نسبی
درجه
بعد از خواب
6
2/0
20%
72
بعد از مدرسه
0
0
0%
0
قبل از مدرسه
6
2/0
20%
72
وقت خاص ندارد
18
6/0
60%
8/64
هنگام روبرو شدن با یک مسئله ابتدا به شناسایی کدامیک از عوامل زیر می پردازید؟
متغیر
فراوانی مطلق
فراوانی نسبی
درصد فراوانی نسبی
درجه
معلومات
27
9/0
90%
324
مجهولات
3
1/0
10%
36
برای فهم و درک صحیح صورت یک مسئله چقدر وقت اختصاص می دهید
متغیر
فراوانی مطلق
فراوانی نسبی
درصد فراوانی نسبی
درجه
کمتر از 2 دقیقه
2
7/0
7%
2/25
بین 5 تا 2 دقیقه
14
47/0
47%
2/169
بیشتر از 5 دقیقه
13
43/0
43%
8/154
هیچ
1
03/0
3%
8/10
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 16
بازی و ریاضی
مقدمه
بازی و ریاضی بسیاری از موضوعات و بخش های جذاب و متنوع علم ریاضی را در بر می گیرد که توسط یک محقق و ریاضیدان آمریکایی به نام مارتین گاردنر به جهانیان عرضه شد. گاردنر با نشان نبوغ و خلاقیتش در به کار گیری ریاضی در بازی و سرگرمی، دیگر دانشمندان و ریاضیدانان را به تهیج واداشت. در این مسیر یعنی به کار گیری ریاضی در جهان امروز داگلاس هافستادر نیز همانند گاردنر سهم بسزایی داشت. در مجموع محبوب ترین و معروف ترین ریاضیدانان که در سال های اخیر کمک شایانی به این امر داشته اند عبارتند از:
جان کاندی
مارتین گاردنر
داگلاس هافستادلر
همچنین کسانی که با تلاش های بی شائبه خود تحقیقات وسیعی را در نشر و گسترش علم ریاضی در بین عموم جامعه انجام داده اند عبارتند از:
هنری دُدنی
پیت هین
سم لوید
مقدمه
تاریخچه ریاضی
انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجههایش را میداند انجام میداد. اما بزودی مجبور شد وسیلة شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده میباشد قدیمیترین دستگاه شماری است که آثاری از آن در کهنترین مدارک موجود یعنی نوشتههای سومری مشاهده میشود.سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بینالنهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند. در این موقع مصریها نیز در سواحل سفلای رود نیل تمدنی درخشان پدید آورده بودند. طغیان رود نیل هر سال حدود و ثغور زمینهای زراعتی این قوم را محو میکرد. احتیاج به تقسیم مجدد این اراضی موجب رهبری آنها به اولین احکام سادة هندسی گردید. همچنین مبادلات تجارتی و تعیین مقدار باج و خراج سالیانه آنها را وادار به توسعه علم حساب نمود این اطلاعات همگی از روی پاپیروسها و الواحی است که در نتیجه حفاریها بدست آمده و به خط هیروگلیفی میباشد. قدیمیترین آنها که مربوط به 1800 سال قبل از میلاد است شامل چند رساله دربارة علم حساب و مسائل حساب مقدماتی میباشد، از آن جمله رسالة پاپیروس آهس است که درسال 1868 توسط ایسنلر مصرشناس مشهور ترجمه شد. سایر تمدنهای شرقی نظیر چینی و هندی در ترویج دانش نقش مؤثری نداشتهاند و جز برخی نتایج پراکنده که در زیر فشار مفاهیم ماوراءالطبیعه خرد شده است چیزی از آنان در دست نیست. قریب هزار سال پس از نابودی فرهنگ قدیم مصر و محو تمدن آَشور، یونانیان از روی مقدمات پراکنده و بیشکل آنها علمی پدید آوردند که در واقع به عالیترین وجه مرتب و منظم گردیده و عقل و منطق را کاملاً اقناع مینمود. نخستین دانشمند معروف یونانی طالس ملطلی (639_548ق.م) است که در پیدایش علوم نقش مهمی بعهده داشته و میتوان ویرا موجد علوم فیزیک ، نجوم و هندسه «تشابه» به او کاملاً بیاساس است.در اوایل قرن ششم ق.م. فیثاغورث (572_500 قبل از میلاد) از اهالی ساموس یونان کمکم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت. فیثاغورثیان عدد را بخاطر همآهنگی و نظمی که دارد اساس ومبدأ همه چیز میپنداشتند و بر این عقیده بودند که تمام مفاهیم را به کمک آن میتوان بیان نمود. پس از فیثاغورث باید از زنون فیلسوف و ریاضیدان یونانی که در 490ق.م در ایلیا متولد شده است نام ببریم. در اوایل نیمه دوم قرن پنجم بقراط از اهالی کیوس فضاهایی متفرق آن زمان را گردآوری کرد و در حقیقت همین قضایا است که مبانی هندسة جدید ما را تشکیل میدهند. در قرن چهارم قبل از میلاد افلاطون در باغ آکادموس در آتن مکتبی ایجاد کرد که نه قرن بعداز او نیز همچنان بر-پا ماند. وی ریاضیات مخصوصاً هندسه را بسیار عزیز میداشت، تا جائی که بر سردر مکتب خود این جمله را حک کرده بود: «هرکس هندسه نمیداند به اینجا قدم نگذارد». این فیلسوف بزرگ به تکمیل منطق که رکن اساسی ریاضیات است همت گماشت و چندی بعد منجم و ریاضیدان معاصر وی ادوکس با ایجاد تئوری نسبتها نشان داد که کمیات اندازه نگرفتنی که تا آن زمان در مسیر علوم ریاضی گودالی حفر کرده بود هیچ چیز غیر عادی ندارد و میتوان مانند سایر اعداد قواعد حساب را در مورد آنها بکار برد. در این احوال اسکندر کشورها را یکی پس از دیگری فتح میکرد و هرجا را که بر روی
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 13
هدف و اهمیت رشته ریاضی
هدف
ریاضی کاربردی :
ریاضی محض:
ریاضی دبیری:
ماهیت :
گرایشهای مقطع لیسانس:
معرفی دروس تخصصی
ریاضیات گسسته:
برنامهسازی پیشرفته:
آنالیز عددی:
ساختمان دادهها:
تحقیق در عملیات:
آینده شغلی ، بازار کار ، درآمد:
تواناییهای مورد نیاز و قابل توصیه
وضعیت کنونی نیاز کشور به این رشته
نکات تکمیلی
مقاطع کارشناسی ارشد و دکتری
هدف
ریاضیات علم نظم است و موضوع آن یافتن، توصیف و درک نظمی است که در وضعیتهای ظاهرا پیچیده نهفته است و ابزارهای اصولی این علم ، مفاهیمی هستند که ما را قادر میسازند تا این نظم را توصیف کنیم» . دکتر دیبایی استاد ریاضی دانشگاه تربیت معلم تهران نیز در معرفی این علم میگوید: «علم ریاضی، قانونمند کردن تجربیات طبیعی است که در گیاهان و بقیه مخلوقات مشاهده میکنیم . علوم ریاضیات این تجربیات را دستهبندی و قانونمند کرده و همچنین توسعه میدهند.» دکتر ریاضی استاد ریاضی و رئیس دانشگاه صنعتی امیرکبیر نیز در معرفی این علم میگوید: «ریاضیات علم مدلدهی به سایر علوم است. یعنی زبان مشترک نظریات علمی سایر علوم ، علم ریاضی میباشد و امروزه اگر علمی را نتوان به زبان ریاضی بیان کرد، علم نمیباشد.» گرایشهای مختلف این رشته و اهداف آنها عبارتند از:
ریاضی کاربردی:
هدف از این شاخه تربیت کارشناسی است که با اندوخته کافی از دانش ریاضی، توانایی تحلیل کمی از مسائل صنعتی، اقتصادی و برنامهریزی را کسب نموده، توان ادامه تحصیل در سطوح بالاتر را داشته باشد.
ریاضی محض:
هدف از این شاخه ریاضی، تربیت متخصصان جامع در علوم ریاضی است که آمادگی لازم برای ادامه تحصیل در جهت اشتغال به پژوهش و نیز انتقال علم ریاضی در سطوح دانشگاهی را داشته باشند. آشنایی با تجزیه و تحلیل مسائل در قالب ریاضی و مدلسازی ریاضی نیز از اهداف دیگر شاخه ریاضی محض است.
ریاضی دبیری:
هدف از شاخه دبیری تربیت دبیران وکارشناسان متخصص آموزش ریاضی است که پاسخگوی نیازهای آموزش و پرورش کشور در سطوح پیشدانشگاهی باشند.
ماهیت :
» ریاضیات بر خلاف تصور بعضی از افراد یکسری فرمول و قواعد نیست که همیشه و در همهجا بتوان از آن استفاده کرد بلکه ریاضیات درست فهمیدن صورت مساله و درست فکر کردن برای رسیدن به جواب است و برای به دست آوردن این توانایی ، دانشجو باید صبر و پشتکار لازم را داشته باشد تا بتواند حتی به مدت چندین ساعت در مورد یک مساله ریاضی فکر کرده و در نهایت با ابتکار و خلاقیت آن را حل کند« فارغالتحصیلان این رشته میتوانند پس از پایان تحصیلات، در ادارات دولتی برای مسوولیتهایی که به نوعی با تجزیه و تحلیل مسائل سروکار دارند، در بخش خصوصی در اموری همانند طراحی سیستمها در امر بهینهسازی و بهرهوری ، در بخش صنعت برای اموری همانند مدلسازیهای ریاضی و در آموزش و پرورش و ... ، مسوولیتهای متفاوتی را به عهده گیرند.
گرایشهای مقطع لیسانس:
«رئیس اتحادیه بینالمللی ریاضیدانان جهان در یازدهمین اجلاس آکادمی جهان سوم که اخیرا در تهران برگزار شد، عنوان کرد که بهتر است بگوییم ریاضیات و کاربردهای آن، نه اینکه ریاضیات را به محض و کاربردی تفکیک کنیم چرا که به
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 8 صفحه
قسمتی از متن .doc :
مقدمه :
برای محاسبه اعداد y Betti را محاسبه کنیم، از هومولوژی (همگون سازی) ساده شده استفاده می کنیم. یک بردار غیرمربع را برای یک بردار با مدخلش در {0,1} تعریف کنید.
بگذارید M یک ایدهآل تک جمله ای باشد و
{بردارهای غیرمربعc مانند
این مجموعه بالایی ساده شده کوزل M مثلا در (12) تعریف شده است. ما میتوانیم اعداد بتی درجه Nn مربوط به M را با نسبت از (تئوری 34-1) محاسبه کنیم. جمع کردن تمام b های غیرمربع بادرجه j و Bij(M) را به دست میدهد.
یا نشان می دهیم که ، که ثابت می کند J یک تجزیه خطی ندرد (وقتی . یگ بردار غیرمربع واحد ،مرتبط با درجه b=(1,…,1) , 2r+1 وجوددارد که به حداقل مربوطند. در اینجا یک مجموعه زنجیره ای داریم
در زیر ، ما باید از نکته پایین استفاده کنیم: اگر یک بردار با مدخل هایی در {0,1} مربوط به صورتی در مجموعه ساده شده مان باشد،غالبا باید صورت را به صورت بنویسیم، که در آن jt دقیقا مدخل های غیرصفر مربوط به می باشد و
تمامی صورت هایی که با آنها کار می کنیم، حداکثر دو بعد دارند .ما صورت ها را به نحوی میگردانیم که اگر را در مسیر مثبت و رادر جهت منفی قرار دهیم. به طور مشابه ما خطوط را به نحوی هدایت میکنیم که رفتن از xi0 به xi1 در جهت مثبت باشد.
برای یافتن ، ما نیازمند حساب کردن هستیم. اگر بتوانیم عنصری در ایجادکنیم که در نباشد، نشان داده ایم.
که . ما باید به پوشش های رئوس وتک جمله ای مرتبط پایین به صورت متغیر رجوع می کردیم.
نخست فرض کنید که 2r+1>v ،ما حالت 2r+1=v را به طور جداگانه انجام می دهیم. ما نخست ادعا می کنیم که . اگر بود ،پس باید یک پوشش راس حداقل وجود داشته باشد که آن را تقسیم کرده باشد. اما بعد را تقسیم می کند چون وجود ندارند. برای پوشاندن خطوط9-27 باقی مانده ای که پوشانده نشده اند حداقل به رئوس 4-r نیازمندیم. این یعنی اینکه درجه ،اما همه پوشش های رئوس حداقل وبنابراین حداقل تولید کننده های j درجه r+1 دارند. (توجه کنیدکه وقتی 2r+1=9 ، حداقل تولید کننده های J درجه 5 دارند ، و درجه 6 دارند.بنابراین بعد نشان میدهیم که در J هستند.
برای اثبات این امر باید نشان بدهیم که یک پوشش راس حداقل هر یک از این تک جمله ای ها را تقسیم می کند. درنخستین حالت از استفاده کنید ؛ در دومی عمل می کند. و در آخری از استفاده کنید.
بنابراین خطوط هستند، اما صورتی از نیست. بنابرین در تصویر وجود ندارد.
البته ،
بنابراین f در قسمت است و سپس J یک تجزیه خطی ندارد.
وقتی 2r+1=7 مباحث کمی متفاوتی نیاز داریم. یک فرد می تواند حساب کند که در این حالت ،دوگانگی الکساندر به صورت زیر است.
و تجزیه آزاد حداقل درجه را دارد:
بدلیل جفت دوم دردرجه هفتم، یک تجزیه خطی ندارد. بنابراین G به ترتیب کوهن-مکوالی نیست.
نکته 2-4-قضیه 1-4 مستقل از خاصیت K است.توجه کنید که اگر k ویژگی اولیه داشته باشد،اعداد درجه بندی شده بتنی R/J مانند حالت در صفر هستند یا بالا می روند، به این دلیل است که رفتار برای بعد گروه های هومولوژی که ما حساب کرده ایم، یکسان است. ابعاد گروههای هومولوژی در ویژگی p>0 با حالت صفر یکسان هستند یا ممکن است اگر یک قسمت پیچش p معرفی می شود، افزایش یافند. برای نمونه ، قسمت پایانی بحث ضرایب جهانی را در فصل 9و13 ببینید. بنابراین برای تمامی حالت های k داریم
حالت 5 دایره ای نشان میدهد که عکس فرضیه 2-3 نادرست است .گراف های غیروتری بسیاری هستند که به ترتیب کوهن-مکوالی می باشند. ما اینجا دونمونه ساده می آوریم تا نشان دهیم که تغییرات کوچک در گرافی که به ترتیب کوهن-مکوالی نیست میتواند گرافی را به دست بدهد که چنین ویژگی را داراست.