انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

الگوریتم STR کلی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 25

 

الگوریتم STR کلی (تعمیم یافته):

داده ها: پارامتر d مرتبه رگولاتور یعنی درجه R* ، و درجه S* را بدانیم. چند مجموعه ای روبتگر Ao* به جای چند جمله ای C* که نامعلوم است (تقریب C*)

چند جمله ایهای پایدار P* و Q*

سیگنالهای فیلتر شده زیر بایستی معرفی شوند:

 

گام 1 : تخمین ضرایب R* و S* بروش LS:

 

( C* : note)

گام 2 : سیگنال کنترل را از روی محاسبه می کنیم

تکرار گامهای فوق در هر پریود نمونه برداری

در صورت همگرایی تخمین : S* و R* گام بعدی با قبلی برابر است)

 

=

 

ویا:

فرم کلی در صورت عدم حذف همه صفرهای فرآیند

اتحاد (2) به شکل زیر نوشته می شود:

C*Q*=A*P*R'*+q-dB-*S* R'* از این رابطه بدست می آید.

و سیگنال کنترل می شود:

 

کنترل فید فوردوارد (پیشخور) – STR (دانستن دینامیک فرایند لازم است)کنترل پیشخور برای کاهش یا حذف اغتشاش معلوم بکار می رود. خود سیگنال فرمان می تواند برای STR ، یک اغتشاش معلوم فرض شود

مثالهایی از اغتشاش قابل اندازه گیری (معلوم): درجه حرارت و غلظت در فرایندهای شیمیایی درجه حرارت خارجی در کنترل آب و هوا – ضخامت کاغذ در سیستمهای milling machinc

مدل فرضی :

چند جمله ایهای ، S* و T* بایستی تخمین زده شوند و آنگاه:

 

مثال : تاثیر فیلتر کردن (همان فرایند مثالهای قبل را در نظر بگیرید) {رفتار الگوریتم تصمیم یافته توضیح داده می شود}

Y(t)+ay(t-1)=bu(t-1)+e(t)+ce(t-1)

مقادیر واقعی پارامتر : a = -0.9 ,b=3 , c=-0.3

فیلترها را بصورت زیر در نظر بگیرید

 

اتحاد: C * Q*=A*P*R'*+q-dB-*S*

در این مثال : از مدل فرآیند داریم

اتحاد

 

قانون کنترل:

R*P*=R'*P*B+*

 

 

فیلتر باید پیش فاز باشد که در نتیجه سیستم حلقه بسته بصورت پایین گذر فیلتر خواهد شد.

سئوال P1 و q1 را چگونه انتخاب کنیم؟

جواب: یک روش انتخاب بررسی اثر آنها بر روی واریانس y و u است. فرض کنید e(t) دارای واریانس 1 است.

حالت (a): no filtering P"q1=0

 

 

این حالت همان وضعیت کنترل حداقل واریانس است بدون هیچگونه فیلتر کردن .

حالت q1=-0.3 p1=0(b)

 

سه مبدا

 

الگوریتم STR کلی( تعمیم یافته):

داده ها: پارامترd، مرتبه رگولاتور یعنی درجه و درجه را بدانیم. چند جمله ای رویتگر ( بجای چند جمله ای که نامعلق است



خرید و دانلود  الگوریتم STR کلی


دانلود پروژه دنیای امار (word)

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 22

 

دید کلی

از آنجا که در سرشماری تمام واحدهای جامعه باید شمارش شود این کار پرهزینه و وقت‌گیر خواهد بود. برای صرفه جویی در وقت و هزینه مجبوریم روش دیگری را بکار بریم. در اینجاست که اهمیت روش نمونه‌گیری آشکار می‌شود. در نمونه گیری معمولا نمونه کوچکی از جامعه را بررسی می‌کنیم و آن را برای کل جامعه تعمیم می‌دهیم.هر وقت تصمیم بگیریم که بوسیله بررسیهای نمونه‌ای اطلاعاتی را تهیه کنیم، فورا با دو مطلب مواجه می‌شویم: تعریف دقیق جامعه‌ای که علاقمند به مطالعه آن هستیم، و گزینش مشخصه یا مشخصه‌هایی که باید ثبت شوند. مفاهیم کلی برای نمونه گیری از قبیل جامعه ، نمونه ، سرشماری و... را برای ارائه دید کلی از روش نمونه گیری و مزایای آن در انجام بررسیهای آماری ضروری است معرفی شوند.

تعاریف

جامعه: در هر بررسی آماری ، مجموعه عناصر مورد نظر را جامعه می‌نامند. به عبارت دیگر ، جامعه مجموعه تمام مشاهدات ممکنی است که می‌توانند با تکرار یک آزمایش حاصل شوند.

سرشماری: سرشماری از جامعه متناهی ، بررسی است که تمام واحدهای جامعه را دربرمی‌گیرد. در بسیاری از موارد ، اجرای سرشماری در یک جامعه متناهی ، کاری است شدنی.

نمونه: نمونه بخشی از جامعه تحت بررسی است که با روشی که از پیش تعیین شده است انتخاب می‌شود. به قسمی که می‌توان از این بخش ، استنباطهایی درباره کل جامعه بدست آورد.

انواع بررسیهای نمونه‌ای

بررسی توصیفی: در بررسی توصیفی ، هدف صرفا کسب اطلاعاتی درباره گروههای بزرگ است.

بررسی تحلیلی: در بررسی تحلیلی ، بین زیر گروههای متفاوتی از جامعه ، برای کشف تفاوتهای آنها مقایسه‌هایی صورت می‌گیرد و یا فرضهایی را درباره دلائل این تفاوتها عنوان کرده و مورد تحقیق قرار می‌دهند.

مزایای نمونه گیری

تقلیل هزینه: اگر داده‌ها فقط از نسبت کوچکی از توده جامعه تامین شوند مسلما هزینه تهیه آنها به مراتب کمتر از سرشماری است. در جامعه‌های بزرگ نتایجی که از طریقه نمونه گیری بدست می‌آیند آن قدر دقیق هستند که می‌توان آنها را به عنوان نتایج خود جامعه مورد استفاده قرار داد.

سرعت بیشتر: چون حجم نمونه کمتر از حجم جامعه در سرشماری است، جمع آوری و تلخیص داده‌ها با سرعت بیشتر ، یعنی با وقت کمتری انجام می‌شود.

قدرت عمل بیشتر: در برخی از نمونه گیری‌ها که وجود افراد متخصص و آموزش دیده و همچنین وسایل اندازه گیری و انجام آزمونهای دقیق برای تهیه داده‌ها ضروری است مسلما به علت کمبود این امکانات ، انجام سرشماری عملا غیر ممکن است.

صحت عمل بیشتر: چون برای انجام یک نمونه گیری به دلیل حجم کار کمتر ، امکان آموزش افراد برای تهیه پرسشنامه و انجام مصاحبه‌ها وجود دارد، لذا صحت عمل در نمونه گیری بیشتر از سرشماری است.

حفظ واحدهای جامعه: در بعضی از جامعه‌ها امکان انجام سرشماری نیست و ناگزیریم برای بررسی مشخصه مورد نظر از نمونه گیری استفاده کنیم.

انواع نمونه گیری تصادفی

نمونه گیری تصادفی بدون جایگذاری: یک ویژگی مهم نمونه گیری تصادفی ساده بدون جایگذاری این است که احتمال استخراج هر واحد مشخص از جامعه در هر استخراجی مساوی با احتمال استخراج آن واحد مشخص در استخراج اول است.

نمونه گیری تصادفی با جایگذاری: اگر در انتخاب n واحد نمونه ، پس از انتخاب هر واحد ، آن را به جامعه برگردانیم و انتخاب بعدی را انجام دهیم نمونه گیری تصادفی ساده را با جایگذاری می‌نامند. در این روش ، انتخاب هر واحد مستقل از انتخاب واحدهای دیگر است.

انواع نمونه گیری

نمونه گیری برای تعیین یک نسبت

بعضی اوقات مایلیم نسبت واحدهایی از جامعه را که صفت معینی دارند برآورد کنیم. به واحدهایی که صفت مورد نظر را دارند، مقدار 1 را تخصیص می‌دهیم، و به بقیه واحدها مقدار 0 را منسوب می‌کنیم.

نمونه گیری تصادفی طبقه بندی شده

یکی از عمده‌ترین طرح های مفید عملی ، نمونه گیری تصادفی طبقه بندی شده نامیده می‌شود، ابتدا جامعه را به قسمتهای همگنی تقسیم کرده، آنگاه نمونه‌های تصادفی ساده مستقل ، از این زیر مجموعه‌های جداگانه استخراج می‌کنیم.

نمونه گیری سیستماتیک

نمونه گیری سیستماتیک مشتمل بر گزینش واحدها به روشی سیستماتیک و در نتیجه به صورتی غیر تصادفی است. منظور از این نوع فن نمونه گیری معمولا پخش کردن واحدها بطور یکنواخت بر روی چارچوب است. عنصر تصادفی بودن اغلب به این ترتیب دخالت داده می‌شود که اولین واحد را بطور تصادفی انتخاب می‌کنند. در این صورت گزینش اولین واحد ، بقیه واحدهای نمونه را معین می‌کنند.

نمونه گیری خوشه‌ای

در بسیاری از مواقع ، می‌توان بوسیله اجرای یک وسیله با انتخاب تصادفی گروهها یا خوشه‌هایی از واحدهای نمونه گیری به جای گرفتن یک نمونه تصادفی ساده از جامعه ، در میزان هزینه بطور اساسی صرفه جویی کرد. نمونه گیری خوشه‌ای ما را از ساختن چارچوب برای تمامی جامعه بی‌نیاز می‌کند، که این تهیه چارچوب خود اغلب یک کار پرخرج و خسته کننده‌ای است. به علاوه چون واحدهای یک خوشه ، مجاور هم هستند و بنابراین دسترسی به آنها آسان است، فرآیند نمونه گیری بطور قابل توجهی به صرفه است.

مراحل اصلی در یک بررسی نمونه‌ای

اهداف بررسی: همواره باید حکمی روشن و صریح درباره هدفهای بررسی در دست باشد. در غیر این صورت با افزایش حجم کار و جزئیات دیگر نمونه گیری ، تصمیمهایی اتخاذ می‌شوند که با اصل اهداف هماهنگی ندارند.

جامعه مورد نمونه گیری: جامعه‌ای که نمونه از آن می‌گیریم، باید دقیقا تعریف شود. جامعه‌ای که از آن نمونه می‌گیریم باید منطبق بر جامعه هدف باشد یعنی جامعه‌ای که می‌خواهیم درباره آن کسب اطلاع کنیم.

جمع آوری داده‌ها: لازم است تحقیق کنیم که تمام داده‌ها به اهداف بررسی مربوط‌اند وهیچ داده اساسی از قلم نیفتاده است.

درجه دقت مطلوب: نتایج یک بررسی نمونه‌ای همیشه با عدم حتمیت همراه است، زیرا اولا نسبتی از جامعه مورد اندازه گیری قرار گرفته است و ثانیا اندازه گیری‌ها همیشه با خطا همراه‌اند. میزان این عدم دقت را می‌توان با نمونه‌های بزرگتر و با استفاده از وسایل اندازه گیری دقیق‌تر تقلیل داد.

روش اندازه گیری: در جامعه ، برای اندازه گیری واحدهای نمونه ، انتخاب ابزار اندازه گیری و روش اندازه گیری واجد اهمیت است.

چارچوب: قبل از انتخاب نمونه جامعه را باید به بخشهایی تقسیم کرد. این بخشها را واحدهای نمونه گیری یا فقط واحدها می‌نامند.

انتخاب نمونه: حال طرحهای متعددی وجود دارند که می‌توان با آنها نمونه را انتخاب کرد. برای هر طرحی و با توجه به درجه دقت مورد نیاز در برآوردها باید حجم خاصی از نمونه را مشخص نمود.

پیش آزمون: تجربه نشان داده است که قبل از انجام نمونه گیری نهایی ، امتحان کارایی پرسشنامه و یا روشهای مورد نظر با مقیاسی کوچک بسیار مفید است.

آموزش آمارگران: در بررسیهای جامع نمونه‌ای ، اغلب با مسائل خاص حرفه‌ای مواجهیم. لذا آمارگران باید قبلا درباره هدف نمونه گیری و روشهای نمونه گیری و جمع آوری داده‌ها و سایر خط مشی‌ها آموزش ببینند.

تلخیص و تحلیل داده‌ها: اولین مرحله ، آماده کردن پرسشنامه‌های تکمیل شده برای انتقال داده‌ها به ماشین است.

اطلاعات حاصل برای بررسیهای آتی: هر نمونه‌ای که از جامعه گرفته می‌شود بالقوه راهنمایی برای اصلاح نمونه گیریهای بعدی است.

چه روش نمونه گیری را باید بکار برد؟

تعیین طرحی از نمونه گیری که باید به کار برد و انتخاب کردن حجمهای نمونه‌ای ، از موضوعهای کلیدی در طرح ریزی یک بررسی هستند. انتخاب یک روش نمونه گیری مناسب مبتنی بر عاملهایی از قبیل ساختار جامعه ، نوع اطلاع مورد جستجو ، و تسهیلات اداری و پرسنل موجود برای اجرای بررسی است. در رابطه با انتخاب



خرید و دانلود دانلود پروژه  دنیای امار (word)


اصول کلی برای آرماتورگذاری و گره زدنi 32 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 32

 

بسمه تعالی

اصول آرماتور گذاری ( پی ، دیوار، ستون )

نام استاد: مهندس صلاتی

گردآوری: احسان چهکندی – ایمان امینی نیا

بهمن 86

اصول کلی برای آرماتورگذاری و گره زدن

مقدمه

پوشش بتنی یا حفاظت

حدود مجاز در فاصلـه گذاری آرما تورها دردیوارها و دال های توپر

قاصله گذاری عرضی آرماتورها درتیرچه ها، تیرها و تیرهای اصلی

حدود مجاز در ارتفاع آرماتورهای فوقانی

حد مجاز در فاصله گذاری خاموت ها

ابزار و سیم گره

ابزار

اصول کلی گره زدن آرماتورها

آرماتورگذاری در پی ها، دیوارها و ستون ها

پی های منفرد مربعی یا مستطیلی

پی های طره ای یا مرکب

پی های دالی گسترده

بوشن های لوله ای

دیوارها

ستون ها

پیش مونتاژ قطعات مارپیچ

پیش مونتاژ قطعات خاموت

قطعات ستون درجا مونتاژ شده

فاصله گذاری خاموت های ستون

ارتفاع مارپیچ ها

همپوشی آرماتورهای اصلی ستون

نگه داری قطعات ستون

اصول کلی برای آرماتورگذاری وگره زدن

GENERAL PRINCIPLES FOR

BAR PLACING AND TYING

مقدمه

آماتورها باید با دقت و به طور دقیق ،منطبق با شرایط نقشه ها ، جداول و جزئیات کار گذاشته شوند. اغلب لازم است که بر روی نقشه های مهندس سازه کارهای معینی انجام بگیرد تا با جزئیات استاندارد خاص و توضیحات مطابقت کند .طراح جزئیات ، کلیه دستور

کارهایی که در این جزئیات وتوضحات وجود دارد را در نقشه کارگذاری آماتورها پیاده

می کند، این نقشه ها باید اقلام گوناگون آرماتور را به وضوح مشخص نمایند. به عنوان مثال باید نشان دهند که آرماتور بالایی است یا پایینی یا دور آرماتورهای دیگر قلاب می شود،همچنین باید نشان دهند که آرماتورها در کدام سمت یا نمای عضو سازه باید کار گذاشته شوند.آرماتورها باید طبق پلان در اطراف پوشن ها ، مغزیها ،سوراحها و بازشوها قرار بگیرند . سرکارگر آرماتوربندی و بازرس باید نقشه های مهندسی را کاملا بررسی کنند تا مطمئن شوند طراح جزئیات، توضیحات خاص و جزئیات نقشه های مهندسی را در نقشه کارگذاری در نظر گرفته است.

قبل از شروع کار سرکـارگر آرمـاتوربـندی این نکات را با بازرس و مـهندس تبـادل نظر مـی کند تا خاطرجمع گردد که درک روشنی از شرایط کار دارد.

مهندس ناظر کلیه کارهای آرماتوربندی را طبق نقشه ها و جزئیات قبل ازبتن ریزی کاملا بازدید نموده و در صورتی که نواقصی وجود داشته باشد به مسئول آرماتوربندی یا پیمانکار گزارش می



خرید و دانلود  اصول کلی برای آرماتورگذاری و گره زدنi 32 ص


اصول کلی رادار و عملکرد آن 50 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 51

 

فصل اول

مقدمه:

1-1-اصول کلی رادار و عملکرد آن

رادار یک سیستم الکترومغناطیسی است که برای تشخیص و تعیین موقعیت هدفها به کار می رود. این دستگاه بر اساس یک شکل موج خاص به طرف هدف برای مثال یک موج سینوسی با مدولاسیون پالسی(Pulse- Modulated) و تجزیه وتحلیل بازتاب (Echo) آن عمل می کند. رادار به منظور توسعه توانایی حسی‏های چندگانه انسانی برای مشاهده محیط اطراف مخصوصاً حس بصری به کار گرفته شده است. ارزش رادار در این نیست که جایگزین چشم شود بلکه ارزش آن در عملیاتی است که با چشم نمی توان انجام داد. رادار نمی تواند جزئیات را مثل چشم مورد بررسی قرار دهد و یا رنگ اجسام را با دقتی که چشم دارد تشخیص داد بلکه با رادار می توان درون محیطی را که برای چشم غیر قابل نفوذ است دید مثل تاریکی، باران، مه، برف و غبار و غیره. مهمترین مزیت رادار، توانایی آن در تعیین فاصله یا حدود هدف می باشد.

یک رادار ساده شامل آنتن فرستنده، آنتن گیرنده و عنصر آشکارساز انرژی یا گیرنده می‏باشد. آنتن فرستنده پرتوهای الکترومغناطیسی تولید شده توسط نوسانگر (Oscillator) را منتشر می کند. بخشی از سیگنال ارسالی (رفت) به هدف خورده و در جهات مختلف منعکس می گردد. برای رادار انرژی برگشتی در خلاف جهت ارسال مهم است.

آنتن گیرنده انرژی برگشتی را دریافت و به گیرنده می دهد. در گیرنده بر روی انرژی برگشتی عملیاتی، برای تشخیص وجود هدف و تعیین فاصله و سرعت نسبی آن، انجام می‌شود. فاصله آنتن تا هدف با اندازه گیری زمان رفت و برگشت سیگنال رادار معین می‌شود. تشخیص جهت، یا موقعیت زاویه ای هدف توسط جهت دریافت موج برگتشی از هدف امکان پذیر است. روش معمول بری مشخص کردن جهت هدف، به کار بردن آنتن با شعاع تشعشعی باریک می باشد. اگر هدف نسبت به رادار دارای سرعت نسبی باشد، تغییر فرکانس حامل موج برگشتی (اثر دوپلر) (Doppler) معیاری از این سرعت نسبی (شعاعی) میباشد که ممکن است برای تشخیص اهداف متحرک از اهداف ساکن به کار برود.در رادارهایی که بطور پیوسته هدف را ردیابی می کنند، سرعت تغییر محل هدف نیز بطور پیوسته آشکار می‌شود.

نام رادار برای تاکید روی آزمایشهای اولیه دستگاهی که آشکارسازی وجود هدف و تعیین فاصله آن را انجام می داده بکار رفته است. کلمه رادار (RADAR) اختصاری از کلمات: Radio Detection And Ranging است، چرا که رادار در ابتدا به عنوان وسیله ای برای هشدار نزدیک شدن هواپیمای دشمن به کار می رفت و ضدهوائی را در جهت مورد نظر می گرداند. اگر چه امروزه توسط رادارهای جدید و با طراحی خوب اطلاعات بیشتری از هدف، علاوه بر فاصله آن بدست می آید، ولی تعیین فاصله هدف (تا فرستنده) هنوز یکی از مهمترین وظایف رادار می باشد. به نظر می رسد که هیچ تکنیک دیگری به خوبی و به سرعت رادار قادر به اندازه گیری این فاصله نیست.

معمولترین شکل موج در رادارها یک قطار از پالسهای باریک مستطیلی است که موج حامل سینوسی را مدوله می کند. فاصله هدف با اندازه گیری زمان رفت و برگشت یک پالس، TR به دست می آید. از آنجا که امواج الکترومغناطیسی با سرعت نور در فضا منتشر می شوند. پس این فاصله، R، برابر است با:

 

به محض ارسال یک پالس توسط رادار، بایستی قبل از ارسال پالس بعدی یک مدت زمان کافی بگذرد تا همه سیگنالهای انعکاسی دریافت و تشخیص داده شوند.

بنابراین سرعت ارسال پالسها توسط دورترین فاصله‏ای که انتظار می رود هدف در آن فاصله باشد تعیین می گردد. اگر تواتر تکرار پالسها (Pulse Repetiton Frequency) خیلی بالا باشد، ممکن است سیگنالهای برگشتی از بعضی اهداف پس از ارسال پالس بعدی به گیرنده برسند و ابهام در اندازه گیری فاصله ایجاد گردد. انعکاسهایی که پس از ارسال پالس بعدی دریافت می شوند را اصطلاحاً انعکاسهای مربوط به پریود دوم (Second-Time-Around) گویند چنین انعکاسی در صورتی که به عنوان انعکاس مربوط به دومین پریود شناخته نشود ممکن است فاصله راداری خیلی کمتری را نسبت به مقدار واقعی نشان بدهد.

حداکثر فاصله ای که پس از آن اهداف به صورت انعکاسهای مربوط به پریود دوم ظاهر می گردند را حداکثر فاصله بدون ابهام (Maximum Unambiguous Range) گویند و برابر است با:

 

که در آن=تواتر تکرار پالس بر حسب هرتز می باشد. در شکل زیر حداکثر فاصله بدون ابهام بر حسب تواتر تکرار پالس رسم شده است.

اگر چه رادارهای معمولی یک موج با مدولاسیون پالسی(pulse-Modulated Waveform) ساده را انتشار می دهند ولی انواع مدولاسیون مناسب دیگری نیز امکان پذیر است حامل پالس ممکن است دارای مدولاسیون فرکانس یا فاز باشد تا سیگنالهای برگشتی پس از دریافت در زمان فشرده شوند. این عمل مزایایی درقدرت تفکیک بالا در فاصله (High Range Resolution) می‌شود بدون این که احتیاج به پالس باریک کوتاه مدت باشد. روش استفاده از یک پالس مدوله شده طولانی برای دسترسی به قدرت تفکیک بالای یک پالس باریک، اما با انرژی یک پالس طولانی، به نام فشردگی پالس (Pulse Compression) مشهور است.

در این مورد موج پیوسته (CW) را نیز می توان به کاربرد و ازجابجایی تواتر دوپلر. برای جداسازی انعکاس دریافتی از سیگنالرفت و انعکاسهای ناشی از عوامل ناخواسته ساکن(Cluttre) استفاده نمود. با استفاده از موج CW مدوله نشده نمی توان فاصله را تعیین کرد و برای این کار باید مدولاسیون فرکانس یا فاز به کار رود.

2-1-فرم ساده معادله رادار

معادله رادار برد رادار را به مشخصات فرستنده، گیرنده، آنتن، هدف و محیط مربوط می سازد. این معادله نه تنها جهت تعیین حداکثر فاصله هدف تا رادارمفید است بلکه برای فهم عملکرد رادارو پایه‏ای برای طراحی رادار به کار می رود.

در این قسمت فرم ساده معادله رادار ارائه می گردد.



خرید و دانلود  اصول کلی رادار و عملکرد آن 50 ص


اصول کلی رادار و عملکرد آن 56 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 56

 

فصل اول

مقدمه:

1-1-اصول کلی رادار و عملکرد آن

رادار یک سیستم الکترومغناطیسی است که برای تشخیص و تعیین موقعیت هدفها به کار می رود. این دستگاه بر اساس یک شکل موج خاص به طرف هدف برای مثال یک موج سینوسی با مدولاسیون پالسی(Pulse- Modulated) و تجزیه وتحلیل بازتاب (Echo) آن عمل می کند. رادار به منظور توسعه توانایی حسی‏های چندگانه انسانی برای مشاهده محیط اطراف مخصوصاً حس بصری به کار گرفته شده است. ارزش رادار در این نیست که جایگزین چشم شود بلکه ارزش آن در عملیاتی است که با چشم نمی توان انجام داد. رادار نمی تواند جزئیات را مثل چشم مورد بررسی قرار دهد و یا رنگ اجسام را با دقتی که چشم دارد تشخیص داد بلکه با رادار می توان درون محیطی را که برای چشم غیر قابل نفوذ است دید مثل تاریکی، باران، مه، برف و غبار و غیره. مهمترین مزیت رادار، توانایی آن در تعیین فاصله یا حدود هدف می باشد.

یک رادار ساده شامل آنتن فرستنده، آنتن گیرنده و عنصر آشکارساز انرژی یا گیرنده می‏باشد. آنتن فرستنده پرتوهای الکترومغناطیسی تولید شده توسط نوسانگر (Oscillator) را منتشر می کند. بخشی از سیگنال ارسالی (رفت) به هدف خورده و در جهات مختلف منعکس می گردد. برای رادار انرژی برگشتی در خلاف جهت ارسال مهم است.

آنتن گیرنده انرژی برگشتی را دریافت و به گیرنده می دهد. در گیرنده بر روی انرژی برگشتی عملیاتی، برای تشخیص وجود هدف و تعیین فاصله و سرعت نسبی آن، انجام می‌شود. فاصله آنتن تا هدف با اندازه گیری زمان رفت و برگشت سیگنال رادار معین می‌شود. تشخیص جهت، یا موقعیت زاویه ای هدف توسط جهت دریافت موج برگتشی از هدف امکان پذیر است. روش معمول بری مشخص کردن جهت هدف، به کار بردن آنتن با شعاع تشعشعی باریک می باشد. اگر هدف نسبت به رادار دارای سرعت نسبی باشد، تغییر فرکانس حامل موج برگشتی (اثر دوپلر) (Doppler) معیاری از این سرعت نسبی (شعاعی) میباشد که ممکن است برای تشخیص اهداف متحرک از اهداف ساکن به کار برود.در رادارهایی که بطور پیوسته هدف را ردیابی می کنند، سرعت تغییر محل هدف نیز بطور پیوسته آشکار می‌شود.

نام رادار برای تاکید روی آزمایشهای اولیه دستگاهی که آشکارسازی وجود هدف و تعیین فاصله آن را انجام می داده بکار رفته است. کلمه رادار (RADAR) اختصاری از کلمات: Radio Detection And Ranging است، چرا که رادار در ابتدا به عنوان وسیله ای برای هشدار نزدیک شدن هواپیمای دشمن به کار می رفت و ضدهوائی را در جهت مورد نظر می گرداند. اگر چه امروزه توسط رادارهای جدید و با طراحی خوب اطلاعات بیشتری از هدف، علاوه بر فاصله آن بدست می آید، ولی تعیین فاصله هدف (تا فرستنده) هنوز یکی از مهمترین وظایف رادار می باشد. به نظر می رسد که هیچ تکنیک دیگری به خوبی و به سرعت رادار قادر به اندازه گیری این فاصله نیست.

معمولترین شکل موج در رادارها یک قطار از پالسهای باریک مستطیلی است که موج حامل سینوسی را مدوله می کند. فاصله هدف با اندازه گیری زمان رفت و برگشت یک پالس، TR به دست می آید. از آنجا که امواج الکترومغناطیسی با سرعت نور در فضا منتشر می شوند. پس این فاصله، R، برابر است با:

 

به محض ارسال یک پالس توسط رادار، بایستی قبل از ارسال پالس بعدی یک مدت زمان کافی بگذرد تا همه سیگنالهای انعکاسی دریافت و تشخیص داده شوند.

بنابراین سرعت ارسال پالسها توسط دورترین فاصله‏ای که انتظار می رود هدف در آن فاصله باشد تعیین می گردد. اگر تواتر تکرار پالسها (Pulse Repetiton Frequency) خیلی بالا باشد، ممکن است سیگنالهای برگشتی از بعضی اهداف پس از ارسال پالس بعدی به گیرنده برسند و ابهام در اندازه گیری فاصله ایجاد گردد. انعکاسهایی که پس از ارسال پالس بعدی دریافت می شوند را اصطلاحاً انعکاسهای مربوط به پریود دوم (Second-Time-Around) گویند چنین انعکاسی در صورتی که به عنوان انعکاس مربوط به دومین پریود شناخته نشود ممکن است فاصله راداری خیلی کمتری را نسبت به مقدار واقعی نشان بدهد.

حداکثر فاصله ای که پس از آن اهداف به صورت انعکاسهای مربوط به پریود دوم ظاهر می گردند را حداکثر فاصله بدون ابهام (Maximum Unambiguous Range) گویند و برابر است با:

 

که در آن=تواتر تکرار پالس بر حسب هرتز می باشد. در شکل زیر حداکثر فاصله بدون ابهام بر حسب تواتر تکرار پالس رسم شده است.

شکل 1-1 حداکثر فاصل بدون ابهام بر حسب تواتر تکرار پالس

اگر چه رادارهای معمولی یک موج با مدولاسیون پالسی(pulse-Modulated Waveform) ساده را انتشار می دهند ولی انواع مدولاسیون مناسب دیگری نیز امکان پذیر است حامل پالس ممکن است دارای مدولاسیون فرکانس یا فاز باشد تا سیگنالهای برگشتی پس از دریافت در زمان فشرده شوند. این عمل مزایایی درقدرت تفکیک بالا در فاصله (High Range Resolution) می‌شود بدون این که احتیاج به پالس باریک کوتاه مدت باشد. روش استفاده از یک پالس مدوله شده طولانی برای دسترسی به قدرت تفکیک بالای یک پالس باریک، اما با انرژی یک پالس طولانی، به نام فشردگی پالس (Pulse Compression) مشهور است.

در این مورد موج پیوسته (CW) را نیز می توان به کاربرد و ازجابجایی تواتر دوپلر. برای جداسازی انعکاس دریافتی از سیگنالرفت و انعکاسهای ناشی از عوامل ناخواسته ساکن(Cluttre) استفاده نمود. با استفاده از موج CW مدوله نشده نمی توان فاصله را تعیین کرد و برای این کار باید مدولاسیون فرکانس یا فاز به کار رود.



خرید و دانلود  اصول کلی رادار و عملکرد آن 56 ص