انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

توابع مثلثاتی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 15

 

ارتفاع مثلث

ALTITUDE OF A Triangle

هر ارتفاع مثلث، پاره خطی است که یک سر آن یک رأس مثلث، و سر دیگر آن، پای عمودی است که از آن رأس بر ضلع مقابل به آن رأس فرود می‎آید؛ مانند ارتفاع هر مثلث، سه ارتفاع دارد، ، و که در یک نقطة مانند به نام مرکز ارتفاعی مثلث همرسند. اندازة ارتفاعهای ، و را بترتیب با ، و نشان می‎دهند.

اصل نامساوی مثلثی

Axiom Triangle Inequality

هر گاه A، B و C سه نقطة دلخواه باشند، آن گاه . تساوی، وقتی برقرار است که سه نقطه روی یک خط راست، و نقطة B بین دو نقطة A و C باشد.

انتقال) توابع مثلثاتی

Axiom Triangle Inequality

برای محاسبة مقادیر نسبتهای مثلثاتی در ربعهای دوم، سوم و چهارم می‎توان از رابطه‎‏های زیر استفاده کرد:

 

توابع کسینوس و سینوس دوره‎ای، با دورة ْ360 هستند:

 

تابع تانژانت دوره‎ای، با دورة ْ180است:

 

همچنین از تبدیلهای زیر نیز می‎توان استفاده کرد:

 

اندازة زاویه

Measure of an angle

نسبت آن زاویه است، به زاویه‎ای که به عنوان واحد زاویه اختیار شده است.

اندازة شعاع کرة محاطی چهار وجهی منتظم

( چهار وجهی منتظم

اندازة شعاع کرة محیطی چهار وجهی منتظم

( چهار وجهی منتظم

اندازة مساحت مثلث

Area of a Triangle

برابر است با نصف حاصلضرب اندازة هر ضلع مثلث در اندازة ارتفاع نظیر آن ضلع. اگر مساحت مثلث ABC را با S نمایش دهیم، داریم:

 

با توجه به این که است، داریم:

 

برای محاسبة مساحت مثلث از دستور که در آن و به دستور هرون Heron مرسوم است، نیز استفاده می‎کنند.

اندازة نیمسازهای زاویه‎های برونی مثلث

Measure of external angle bisectors of triangle

تصفیه: در هر مثلث، مربع اندازة نیمساز هر زاویة برونی، برابر است با حاصلضرب اندازه‎های دو پاره خطی که آن نیمساز بر ضلع سوم پدید می‎آورد، منهای حاصلضرب اندازه‎های دو ضلع آن زاویه.

یعنی اگر در مثلث ABC AD(نیمساز زاویة برونی A باشد داریم:

 

اگر اندازة نیمسازهای زاویه‎ای برونی A، B و C از مثلث ABC را بترتیب با ، d(a و d(b و d(c محیط مثلث را با ‍P2 نشان دهیم، داریم:

 

 

 

اندازة نیمسازهای زاویه‎های برونی مثلث

Measure of internal angle bisectors of triangle

قضیه: در هر مثلث، مربع اندازة نیمساز هر زاویة درونی برابر است با حاصلضرب اندازة دو ضلع آن زاویه، منهای حاصلضرب دو پاره خطی که آن نیمساز بر ضلع سوم پدید می‎آورد. یعنی اگر AD نیمساز زاویة درونی A از مثلث ABC باشد، داریم:

 

اگر اندازة نیمسازهای زاویه‎های درونی A، B و C از مثلث ABC به ضلعهای BC=a ,AC=b و AB=c را بترتیب da، db و dc بنامیم، داریم:

 

 

 

تابع تانژانت

Tangent function

این تابع به صورت ‎tgx = yمی‎باشد. دورة تناوب آن ( است. کافی است نمودار تابع را در فاصلة



خرید و دانلود  توابع مثلثاتی


نظرات 0 + ارسال نظر
امکان ثبت نظر جدید برای این مطلب وجود ندارد.