انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

تحقیق درباره، اشعه فروسرخ

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 3

 

اشعه فروسرخ

/

بکار بردن گرما یکی از متداولترین روشهای درمان فیزیکی است. از موارد استعمال درمانی مادون قرمز موارد زیر را میتوان ذکر کرد. 

تفاوت عدسی عینکها در درصد پرتوهای فرابنفش وفروسرخی است که به چشم منتقل میکنند.عینکهای آفتابی پلاستیکی(مخصوص بچه ها)وعینکهای آفتابی پولاروید در مقایسه با شیشه های روشن یا عینکهای آفتابی تجارتی امریکا“نورفروسرخ بیشتری به چشم وارد میکند.

 

لامپهای گرمایی که درصد بیشتری ازنورفروسرخ را با طول موجهایnm2000-1000تولید میکنند معمولا در درمانهای فیزیکی بکار میروند.نور فروسرخ بیشتر از نور دیدگانی در بافتها نفوذ میکند بنابراین بافتهای عمقی را بهتر گرم مینماید

در روش عکس برداری با بازتاب از طول موجهای900-700نانومتربرای نشان دادن اشکال سیاهرگهای زیر پوست استفاده میشود.بعضی ازاین سیاهرگها با چشم قابل رویت اند.تفاوت چشمگیری دراشکال سیاهرگهای افراد طبیعی وجود دارد.حتی ممکن است شکل سیاهرگها در دوپستان فرد بسیارمتفاوت باشد.سرطان وسایر بیماریها نیز تغییراتی درشکل سیاهرگها ایجاد میکنند.اما ممکن است این تغییرات ازنظردور بمانند.همچنین وجود یک لایه چربی درزیر پوست می تواند تغییرشکل سیاهرگ را کمتر آشکار کند. 

امواج نزدیک فروسرخ بدون توجه به رنگ پوست تقریبا 3MM  در پوست نفوذ می کنند.انواع پوستهای رنگی مقداریکسانی ازنور فروسرخ را بازمیتابانند“بنابراین تصاویر فروسرخ سیاهپوستان وسفید پوستان تقریبا مشابه است.

 

پرتو فروسرخ را همچنین میتوان برای عکسبرداری از مردمک ”بدون تحریک واکنشی که آنرا تغییر میدهد“بکارگرفته شود.این عکسبرداری کاربرد بالینی چشمگیری ندارد.اما دربرخی پژوهشهای بینایی سودمند است.

 

در روش عکس برداری با گسیل امواج بلند گرمایی فروسرخ از بدن گسیل میشوند

که نشان دهنده دمای بدن است.وبه آن دما نگاری میگویند.

تلسکوپها و آشکارسازهایی که توسط ستاره شناسان مورد استفاده قرار میگیرند نیز از خودشان انرژی گرمایی منتشر میسازند. بنابراین برای به حداقل رساندن این تاثیرات نامطلوب و برای اینکه بتوان حتی تشعشعات ضعیف آسمانی را هم آشکار ساخت، اخترشناسان معمولا تلسکوپها و تجهیزات خود را به درجه حرارتی نزدیک به ۴۵۰فارنهاید، یعنی درجه حرارتی حدود صفر مطلق ، میرسانند. مثلا در یک ناحیه پرستاره ، نقاطی که توسط نور مرئی قابل رویت نیستند، با استفاده از تشعشعات مادون قرمز بخوبی نشان داده میشود. همچنین مادون قرمز میتواند چند کانون داغ و متراکم را همره با ابرهایی از گاز و غبار نشان دهد. این کانونها شامل مناطق پرستاره‌ای هستند که در واقع میتوان آنها را محل تولد ستاره‌ای جدید دانست. با وجود این ابرها ، رویت ستاره‌های جدید با استفاده از نور مرئی به سختی امکانپذیر است

 

گرمایی که ما از خورشید یا از یک محیط گرم احساس میکنیم، همان تشعشعات مادون قرمز یا به عبارتی انرژی گرمایی است. حتی اجسامی ‌که فکر میکنیم خیلی سرد هستند، نیز از خود انرژی گرمایی منتشر میسازند (یخ و بدن انسان). سنجش و ارزیابی انرژی مادون قرمز ساطع شده از اجرام نجومی ‌به علت اینکه بیشترین جذب را در اتمسفر زمین دارند مشکل است. بنابراین بیشتر ستاره شناسان برای مطالعه انتشار گرما از این اجرام از تلسکوپهای فضایی استفاده میکنند. 

انتشار گرما باعث آشکار شدن آنها در تصاویر مادون قرمز میشود. اختر شناسان با استفاده از طول موجهای بلند مادون قرمز میتوانند به مطالعه توزیع غبار در مراکزی که محل شکل گیری ستاره‌ها هستند، بپردازند. با استفاده از طول موجهای کوتاه میتوان شکافی در میان گازها و غبارهای تیره و تاریک ایجاد کرد تا بتوان نحوه شکل گیری ستاره‌های جدید را مورد مطالعه قرار داد. ابرهای بین ستاره‌ای که حاوی گاز و غبار هستند، در طول موجهای بلند مادون قرمز خیلی بهتر آشکار میشوند (100 برابر بیشتر از نور مرئی).

اخترشناسان برای دیدن ستاره‌های جدید که توسط این ابرها احاطه شده‌اند، معمولا از طول موجهای کوتاه مادون قرمز برای نفوذ در ابرهای تاریک استفاده میکنند. اخترشناسان با استفاده از اطلاعات بدست آمده از ماهوارهای نجومی ‌مجهز به مادون قرمز صفحات دیسک مانندی از غبار را کشف کردند که اطراف ستاره‌ها را احاطه کرده‌اند. این صفحات احتمالا حاوی مواد خامی ‌هستند که تشکیل دهنده منظومه‌های شمسی هستند. وجود آنها خود گویای این است که سیاره‌ها در حال گردش حول ستاره‌ها هستند.

•اگر نگاه دقیق و علمی ‌به یک طیف الکترومغناطیسی بیندازیم، میبینیم که از یک طرف طیف تا سوی دیگر آن ، انواع تشعشعات و پرتوها بر اساس طول موج و فرکانس‌های مختلف قرار دارند، از آن جمله میتوان به تشعشعات گاما ، اشعه ایکس ، ماورای بنفش ، نور مرئی ، مادون قرمز و امواج رادیویی اشاره کرد. هر کدام از این پرتوها و تشعشعات همگام با پیشرفت بشر ، به نوبه خود چالش‌هایی را در زمینه‌های علمی ‌پدید آورده‌اند که در اینجا علاوه بر کاربرد مادون قرمز در شاخه ستاره شناسی ، اشاره‌ای به کارآیی چشمگیری این پرتو در رشته پزشکی خواهیم داشت.

با وجود حرارت ملایم ، کاهش درد به احتمال زیاد بواسطه اثر تسکینی بر روی پایانه‌های عصبی ، حسی ، سطحی است. همچنین به علت بالا رفتن جریان خون و متعاقب آن متفرق ساختن متابولیتها و مواد دردزای تجمع در بافتها ، درد کاهش مییابد. تابش این اشعه راه مناسبی برای درمان اسپاسم و دستیابی به استراحت عضلانی میباشد

از مهمترین کابردهای تشخیصی آن میتوان توموگرافی را نام برد. اصطلاح ترموگرافی به عمل ثبت و تفسیر تغییراتی که در درجه حرارت سطح پوست بدن رخ میدهد، اطلاق میشود. تصویر حاصل از این روش که توموگرام نامیده میشود، بخش الگوی حرارتی سطح بدن را نشان میدهد. در توموگرافی ، آشکار ساز ، تشعشع حرارتی دریافت شده توسط دوربین را به یک سیگنال الکترونیکی تبدیل میکند و سپس آن را علاوه بر تقویت بیشتر ، پردازش میکند تا اینکه یک صفحه کاتودیک مثل مونیتور تلویزیون آشکار شود.



خرید و دانلود تحقیق درباره، اشعه فروسرخ


اشعه کاتدی و نظریه اتمی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 8

 

اشعه کاتدی و نظریه اتمی

اشعه‌ی کاتدی چیست؟ جریان از این قرار است که در ساختار بلور فلزّات، به ازای هر اتم یک یا چند الکترون آزاد وجود دارد که تقریباً در همه‌ی نمونه‌ی فلزّی که می‌بینیم می‌تواند آزادانه حرکت کند. میزان انرژی لازم برای این که بشود این الکترونها را از فلز خارج کرد کم است و البتّه برای فلزّات مختلف متفاوت است. امّا به طور کلّی اگر شما یک قطعه فلز را داغ کنید، میلیاردها الکترون به راحتی انرژی لازم برای فرار کردن از ساختار بلوری فلز را به دست می‌آورند و از سطح آن جدا می‌شوند. فلزّاتی که انرژی لازم برای جدا کردن الکترون از آنها کمتر است، غالباً برای ساخت کاتد به کار می‌روند و جریانی که با گرم کردن آنها (کاتد گرم) یا انرژی دادن به آنها به روشهای دیگر (کاتد سرد) به دست می‌آید، جریان یا اشعه‌ی کاتدی نام دارد. اگر الآن این نوشته‌ها را روی یک مانیتور CRT می‌خوانید، در پشت صفحه‌ی مانیتور و دقیقاً روبه‌روی شما یک تفنگ الکترونی قرار دارد که الکترونها مورد نیازش را از طریق یک قطعه فلزّ کاتد فراهم می‌کند و بعد از جهت‌دهی آنها را به سمت صفحه می‌فرستد.

اشعه کاتدی: ذرات الکترونی پر انرژی هستند که از کاتد حرارت دیده ساطع میشوند.

از اشعه های یون زا برای استریل کردن وسائل و بسته های پلاستیکی مثل سرنگ ها و بوات های یکبار مصرف استفاده میشود.

شناخت اشعه کاتدی

طی آزمایشاتی که بر روی الکترولیز توسط فاراده Faraday انجام شد وی دو قانون معروف خود را به شرح زیر در سال ۱۸۳۰ میلادی منتشر نمود:

۱- در الکترولیز مقدار عنصر آزاد شده متناسب با مقدار جریان الکتریسته است.به عنوان مثال اگر ۱ فاراد یا ۹۶۵۰۰ کولن الکتریسته را ازمحلول نمک حاوی یون تک ظرفیتی جیوه عبور دهیم، ۱ مول اتم جیوه و اگر از محلول نمک حاوی یون دو ظرفیتی عبور دهیم ۰.۵ مول اتم جیوه ته نشین می شود. پس بسته هایی از الکتریسته وجود دارد که یک بسته از آن ها به سمت فلز تک ظرفیتی و دو بسته به سمت فلز دو ظرفیتی حرکت می کنند.

۲- هرگاه مقدار یکسان جریان الکتریسیته را از سه ظرف بگذرانیم که حاوی نمک ها با ظرفیت های متفاوت هستند، یعنی در ظرف اول نمک یک ظرفیتی، در ظرف دوم نمک دو ظرفیتی و در ظرف سوم نمک سه ظرفیتی داشته باشیم. رسوبهای فلز حاصل از عبور جریان الکتریسیته از ظروف متناسب با جرم اتمی فلز تقسیم بر ظرفیت عناصر آن می باشد.

نتیجه: هر اتم مقداری ثابت بار می گیرد. اتم یک ظرفیتی یک بسته، اتم دو ظرفیتی دو بسته و اتم سه ظرفیتی سه بسته بار می تواند حمل نماید.و هرگز جزء کسری از بار الکتریکی مانند ۱.۲۳ را به خود نمی گیرند. این بسته برای تمام اتمها یکسان است، یعنی الکتریسته از بسته ها یا ذرات کوچکی تشکیل شده اند. که آنها را الکترون می گوییم.

بعد از آزمایش الکترولیز بر روی مایعات و جامدات نوبت به الکترولیز گازها رسید که در الکترولیز گازها نتایج زیر به دست آمد:

۱- ولتاژ معمولی از گازها عبور نمی کند.

۲- در ولتاژهای بالا چنانچه فاصله دو الکترود زیاد باشد جریان الکتریسیته عبور نمی کند.

۳- در فشار معمولی به ازای هر سانتیمتر فاصله الکترودها به ۳۰۰۰۰ ولت اختلاف پتانسیل نیازمندیم.

در جریان این آزمایش ها دانشمندان مجبور به ساختن لوله هایی از جنس شیشه شدند تا بتوانند فشار داخل آن را کاهش داده و به بررسی هایمختلف بپردازند. بعد از ساخت این لوله ها دانشمندان به نتایج زیر دست یافتند:

۱- در فشار 0.1 اتمسفر اگر ولتاژ ۱۰۰۰۰ ولت برقرار شود، گاز درون لوله ملتهب شده و به رنگ های گوناگون پرتو افشانی می نماید. به عنوان مثال نئون رنگ قرمز، هوا رنگ صورتی ملایم، بخار سدیم رنگ زرد و بخار جیوه رنگ آبی مایل به سبز را ایجاد می نماید.

 

۲- در فشار کمتر از 0.0001 اتمسفر و ولتاژ بالای ۱۰۰۰۰ ولت جداره شیشه ملتهب شده و نور سبز مغز پسته از خود منتشر می نماید.

 

۳- با کم کردن فشار تا 0.000001 اتمسفر روشنایی از بین رفته و نوعی درخشندگی یا تابش مهتابی در دیواره لوله ایجاد می شود که در حضور صفحات فلوئور به طور کامل قابل مشاهده است.

 

این اشعه که توسط ویلیام کروکس William Crookes کشف گردید به اشعه کاتدی معروف شد. اشعه کاتدی نیز به نوبه خود مورد مطالعه قرارگرفته و ویژگی های یکی پس از دیگری کشف گردید. به آزمایش های زیر و نتایج به دست آمده از آنها توجه کنید:

۱- برای اینکه ماهیت این اشعه هرچه بیشتر برای ما روشن گردد یک مانع بین دو الکترود در لوله قرار می دهیم.



خرید و دانلود  اشعه کاتدی و نظریه اتمی


ضدعفونی با اشعه ماورای بنفش

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 20

 

ضدعفونی با اشعه ماورای بنفش

برخلاف اغلب ضدعفونی کننده‌ها، تشعشع اشعه ماورای بنفش ، میکروارگانیسمها را به وسیله اثر متقابل شیمیایی غیر فعال نمی‌کند بلکه آنها را به وسیله جذب نور توسط خودشان غیر فعال می نماید که باعث واکنش فتوشیمیایی می‌شود.

نگاه کلی

انسان از قرنها پیش اعتقاد داشت که نور خورشید می‌تواند از اشاعه عفونتها جلوگیری کند در سال ۱۸۷۷ دو محقق انگلیسی به نامهای دانز و بلونت دریافتند که تکثیر میکروارگانیسمها زمانی که تحت تابش نورآفتاب قرار می‌گیرد متوقف می‌گردد. تحقیقات بعدی نشان داد که عامل این پدیده طیف غیر قابل رؤیت اشعه خورشید با طول موج ۲۵۴ نانومتر است. در پی این کشف ، امکان طراحی و ساخت دستگاههای مولد اشعه باکتری کش میسر گردید. امروزه این نوع اشعه که باعث جلوگیری از فعالیت باکتریها می‌گردد به عنوان اشعه ماورای بنفش"UV" شناخته شده است. تحقیقات جدید در مورد تاثیر این پرتو بر روی میکروارگانیسمها منتج به ساخت سیستمهای جدید ضدعفونی برای مایعات ، هوا و همچنین سطح اجسام گردید. بدین ترتیب ، ضدعفونی بدون استفاده از مواد شیمیایی و یه به کارگیری حرارتهای بالات میسر شد و ضدعفونی در مواردی که قبلا مشکل و یا غیر ممکن بود نیز امکان پذیر گردید. امروزه ضدعفونی با اشعه ماورای بنفش ، نه فقط به عنوان یک روش با ارزش و موثر شناخته شده، بلکه در خیلی از موارد به عنوان مکمل سایر روشهای ضدعفونی بکار گرفته می‌شود.

مکانیسم ضدعفونی با اشعه ماورای بنفش

برخلاف اغلب ضدعفونی کننده‌ها، تشعشع اشعه ماورای بنفش ، میکروارگانیسمها را به وسیله اثر متقابل شیمیایی غیر فعال نمی‌کند بلکه آنها را به وسیله جذب نور توسط خودشان غیر فعال می نماید که باعث واکنش فتوشیمیایی می‌شود. اشعه مذکور ، مواد مولکولی ضروری برای عامل سلولی را تغییر می دهد. چون اشعه uv در دیواره سلول میکروارگانیسمها نفوذ می‌کند، اسیدهای نوکلئیک و دیگر مواد سلولی حیاتی به وسیله آن اثر، تحت تاثیر قرار می‌گیرند. در نتیجه ، سلولهایی که در معرض این اشعه قرار گرفته اند ضدمه دیده و یا نابود می‌شوند. مدارک کافی وجود دارد که اگر انرژی uv به مقدار کافی به ارگانیسمها تابیده شود، اشعه uv می تواند آب را به اندازه‌ای که نیاز است ضدعفونی کند. برای از بین بردن میکروارگانیسمهای کوچک مانند باکتریها و ویروسها مقداری اشعه uv لازم است اما برای از بین بردن و غیر فعال کردن پروتوزآ مانند ژیاردیا و کریپتواسپوریدیوم انرژی uv مورد نیاز ، چندین برابر انرژی لازم برای غیر فعال کردن باکتریها و ویروسها خواهد بود. در نتیجه اشعه uv برای ضدعفونی کردن و یا برای آبهای زیرزمینی که در آنها ژیاردیا و کریپتواسپوریدیوم وجود ندارد موثر است.

محدوده طول موج اشعه uv برای ضدعفونی

انرژی موجی اشعه uv در محدوده طول موج اشعه الکترومغناطیسیnm) ۱۰۰-۴۰۰) بین اشعه ایکس و طیف نور مرئی است. منطقه بهینه برای میکروب‌کشی توسط اشعه uv در محدوده nm) ۲۴۵-۲۸۵) است. ضدعفونی توسط اشعه uv، هم به وسیله لامپهای با فشار کم که حداکثر انرژی خروجی آنها در طول موج ۷. ۲۵۳ است و هم با لامپهای فشار متوسط که انرژی آنها در طول موجnm) ۱۸۰-۳۷۰) است و یا لامپهایی که انرژی آنها در دیگر طول موج ها با شدتهای زیاد نوسانی منتشر می‌شود، انجام می‌گیرد.

موارد بکارگیری روش ضدعفونی با اشعه uv

سه مورد اصلی استفاده از روش ضدعفونی با اشعه uv وجود دارد:

ـ ضدعفونی مایعات

ـ ضدعفونی فضاها

ـ ضدعفونی سطوح اجسام

▪ ضدعفونی مایعات

روش ضدعفونی با اشعه uv می‌تواند برای آب آشامیدنی ، آبهای فرایندی و فاضلاب یعنی تمامی مواردی که آب بدون آلودگی یا با آلودگی تقلیل یافته مورد نظر است، استفاده شود. امروزه کلرزنی بیش از هر روش دیگری برای ضدعفونی کردن آب ، مورد استفاده قرار می‌گیرد ولی متاسفانه کلر "هالوفرم" هایی نظیر کلروفرم ایجاد می‌کند که احتمال تاثیر سرطان زایی آنها شناخته شده است. این امر باعث گردید که محققان به طور جدی در صدد جایگزینی و یا محدودکردن به کارگیری این ماده شیمیایی برآیند. تنها روش شناخته شده امروزی که هیچ تغییری در خواص شیمیایی و فیزیکی آب ایجاد نکرده و ماده ای به آب اضافه نمی‌نماید، ضدعفونی با اشعه ماورای بنفش است.

ـ موارد کاربرد اشعه uv برای ضدعفونی مایعات :

۱) صنایع غذایی

۲) آبهای فرایندی و آب آشامیدنی

۳) پرورش ماهی ، میگو ، دام و طیور

۴) فاضلابهای شهری و صنعتی

۵) صنایع آرایشی و بهداشتی ، شیمیایی ، دارویی و الکترونیک (آب فوق العاده تمیز)

۶) استخرهای شنا ، آب‌نماها و جکوزیها

۷) سیستمهای آب خنک کننده مدار بسته و سیستمهای تهویه مطبوع

ضدعفونی فضاها و سطوح

ضدعفونی فضا و سطوح بعد از ضدعفونی آب یکی از مهمترین و موفق‌ترین موارد استفاده از اشعه ماورای بنفش به شمار می‌آید. در حالی که ضدعفونی هوا با وسایل متداول ضدعفونی به سختی ممکن بوده و یا عملی نباشند، اشعه ماورای بنفش به عنوان وسیله‌ای موثر برای از بین بردن میکروارگانیسمهای معلق در هوا به کار می‌رود. در این روش کل هوای موجود در فضا به کمک جریان طبیعی از مجاورت لامپها عبور نموده و تراکم میکروبی موجود در فضا به میزان بسیار زیادی تقلیل می‌یابد. بدین ترتیب از انتقال بیماریها و عفونتهایی که از راه تنفسی سرایت می‌کنند جلوگیری می‌گردد.

ـ موارد کاربرد اشعه uv برای ضدعفونی فضاها :

۱) بیمارستانها (اتاق عمل ، اتاق انتظار ، بخشها و لباسشوییها)

۲) داروسازی ، آزمایشگاهها و آشپزخانه ها

۳) صنایع غذایی ، کشتارگاهها ، صنایع لبنی ، پرورش دام و طیور ، تولید خشکبار



خرید و دانلود  ضدعفونی با اشعه ماورای بنفش


بکارگیری اشعه درگندزدایی آب

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 12

 

بکارگیری اشعه UV در استراتژی های گندزدایی آب شهری

 

چکیده

 

بکارگیری پرتو فرابنفش در فرایند پالایش آب و تصفیه فاضلاب روشی شناخته شده برای جایگزینی مواد شیمیایی گندزدا از قبیل کلر میباشد. پرتو فرابنفش عمل ضد عفونی  را به طور موثر و بدون تولید ترکیبات مشکل زای جانبی ناشی از گندزداهای شیمیایی از قبیل کلر انجام میدهد.

مناسب ترین زمان برای بازبینی استراتژی کلی فرایند گندزدایی در تصفیه خانه ها و شبکه توزیع آب شهری، زمان نوسازی تاسیسات موجود تصفیه آب آشامیدنی و یا در خلال طراحی تاسیسات جدید می باشد. گندزدایی مقدماتی و ثانویه شبکه توزیع آب‌‌،‌‌ هر دو بایستی در قالب یک استراتژی کلی گندزدایی گنجانده شوند. در این مقاله مقایسه ای بین گندزداهای شیمیایی وUV  به عمل آمده و تاثیرات انتخاب هر یک تشریح گردیده است.

پردازش یک استراتژی موفق  گندزدایی نیازمند درک یکپارچه کلیه عوامل زیر است‌ :

     1.       هدف از گندزدایی و میزان مجاز میکروب باقیمانده پس از ضدعفونی

      2.        بیولوژی مرتبط با فرایند تصفیه آب و شبکه توزیع

      3.        تاثیر عملکرد واحد گندزدایی مقدماتی و کیفیت آب بر روی عملکرد سیستم گندزدایی ثانویه

      4.        ملاحظات مکانیسمی، مقایسه محاسن و معایب و انتخاب محل برای استقرار سیستم گندزدا

  

1) ضرورت بررسی استراتژی های جدید برای گندزدایی

گندزدایی آب یک وسیله شناخته شده برای حفاظت جوامع از میکرواورگانیزم های بیماری زای آبزی به شمار می رود. با این وجود، در حال حاضر حتی در جوامع پیشرفته نیز استراتژیهای  گندزدایی کامل نیستند. در خلال سالهای 1988-1981 تعداد 248مورد شیوع بیماریهای ناشی از آب آشامیدنی در ایالات متحده آمریکا گزارش شده است. 45% موارد آلودگی در سیستم های تامین آب شهری، 34% در سیستم های تامین آب برون شهری، 11% در منابع تامین آب خصوصی و 10%  در آب تسهیلات ورزشی- تفریحی مشاهده شده اند[2].  

44% از بیماریهای شایع شده توسط پاتوژنهای موجود در آب مربوط به استفاده از آبهای زیرزمینی آلوده، 26% مربوط به استفاده از آبهای سطحی آلوده و 13%  مربوط به آلودگی شبکه توزیع از محل اتصالات ویا هنگام تعمیرات بوده است.

 با وجود اینکه گندزدایی شیمیایی بوسیله کلر روشی کاملا عمومیت یافته به شمار    می رود، با توجه به تجربیات علمی فزاینده در مورد مصون شدن میکروبها در مقابل گندزداهای شیمیایی و بالا رفتن آگاهی وحساسیت مردم در مورد سلامتی، ایمنی، هزینه ومحیط زیست، نیاز به یافتن فرایندهای پیشرفته تصفیه آب با بکارگیری روش های گندزدایی غیرشیمیایی و حذف کامل گندزداهای شیمیایی ماندگار ازشبکه های توزیع بیش از پیش ضروری گردیده است.

 

  2)  گند زدایی با UV

گندزدایی با UV به عنوان یک روش مطمئن برای  جایگزینی مواد شیمیایی  بطور روزافزون بکارمی رود. دستگاه های UV می توانند برای دامنه وسیعی از کاربردها طراحی شوند. با در نظر گرفتن کیفیت آب و هدف از گندزدایی،  پرتو فرابنفش با موفقیت کامل برای طیف وسیع کاربردی زیر مورد استفاده قرار گرفته است:

      1.         آب شرب ( شهرها، شهرک ها، برج ها، کارخانجات، منازل و غیره ) از منابع آب سطحی و یا زیرزمینی

      2.       آبهای فرایندی و تولیدی صنعتی شامل :

           الف) صنایع غذایی، نوشابه سازی و آبمعدنی

             ب) آبهای سیستم های خنک کننده و تهویه مطبوع

             ج ) تاسیسات پرورش ماهی و میگو، و غیره

     3.         فاضلاب های شهری، پس از تصفیه مرحله دوم  یا سوم (بازیافت)

دلایل اصلی انتخاب گندزدایی به روش UV عبارتند از:

    -  تاثیر گذاری (در مقایسه با کلر، UV می تواند با دوز مصرف نسبتا پایینی  طیف وسیعی از میکروبها، باکتری ها ویروسها را نابود کند.)

    -  حداقل ریسک برای سلامتی ( ترکیبات جانبی بسیار کم و قابل اغماض است.)

    -  به جا نگذاشتن باقیمانده که با مواد آلی موجود در آب ایجاد واکنش نموده و در نتیجه رنگ، عطر و طعم درمحصولات غذایی را تغییر دهد.)

    -  ایمنی مصرف کنندگان، مسئولان و جامعه (عدم حمل و نگهداری و کار با مواد شیمیایی سمی)   

    -  سادگی و هزینه پایین در کاربری و نگهداری (دستگاههای   UV نسبت به دستگاههای مولد اوزن و دی اکسید کلر از پیچیدگی بسیار کمتری بر خوردارند.) 

    - عدم نیاز به مخازن بزرگ تماس (ضد عفونی با UV در ظرف چند ثانیه کامل می شود در حالیکه سایر روشهای گندزدایی به 10 تا 60 دقیقه زمان نیاز دارند)

    -  هزینه پایین سرمایه گذاری دستگاههای UV (در طراحی تاسیسات جدید، ضدعفونی با UV کمترین هزینه



خرید و دانلود  بکارگیری اشعه   درگندزدایی آب


جدیدترین نرم افزار برای مدس سازی در مطالعات پرتوشناسی اشعه ا

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 24

 

جدیدترین نرم افزار برای مدس سازی در مطالعات پرتوشناسی اشعه ایکس

تحقیقی از: م . سانچر دل ریو

دانشکده اروپایی تشعشعات Syncrhrtorn

خلاصه :

برای طراحی ازابزارهای نوری برنامه های نرم افزاری متعددی در بازار موجود می باشد . ولی اغلب آنها برای مدل سازی اجزاء نوری اشعه ایکس مناسب نیستند . شبیه سازی مشخصات منبع تولید اشعه ایکس ( انتشار نور و شکل فضایی ) بانوع دستگاه ژنراتور بکار رفته ( وسایل تزریق سنکروترون ،FEL ، لوله اشعه ایکس ، پلاسمای بوجود آمده از لیزر وغیره ) ارتبغاط زیادی دارد . اجزاء نوری معمول عبارتند از آینه groying ، کریستال ها و چند لایه ها که مشخصات بسیار متفاوتی از سایر اجزاء نوری بکار رفته در سایر محدوده های فوتونی دارند علاوه برآن قدرت انعکاس این اجزاء نوری را نیز باید بادر نظر گرفتن مقادیر ثابت جدول بندی شده به دقت محاسبه کرد .

ما در سالهای اخیر روش جدیدی را برای ساخت ابزاری جهت مدل سازی پرتوها و منابع تولدی اشعه ایکس وبا سرهم کردن برنامه های کوچک متفرقه از برنامه نویسهای مختلف ابداع کرد و یک data base واحد برای اشعه ایکس ارائه داد و این همه را در یک محیط برای استفاده درست از اطلاعات جمع کرده ایم که نتیجه آن کد Xop است که درحال حاضر در بسیاری از تجهیزات سنکروتورن از آن استفاده می شود.

علاوه بر محاسبات درجه یک موجود در Xop موارد اشتراکمان با کد معروف SHA DOW که امکان شبیه سازی کامل پرتو را فراهم کرده و مقادیر دقیق اندازه پرتوها ، واگرایی آنها ،تغییرات دائم و تفکیک انرژی آنها را نشان می دهد نیز در آن گنجانده ایم .

من در اینجا ابتدا به یادآوری شرایط فعلی برنامه Xop و SHA DOW می پردازیم . سپس طرحهای مربوط به نسخه جدید در دست تهیه را ارائه خواهیم داد و پس از آن بهبررسی نظریه های جدید و موادد لازم احتمالی برای شبیه سازی اجزاء نوری اشعه ایکس آتی برای چهارمین نسل از منابع تولید کننده اشعه ایکس فراهم پرداخت .

کلمات کلیدی :

اجزاء نوری اشعه ایکس ، انتشار منبع اشعه ایکس ، data base اشعه ایکس ، مدل سازی ، ردیابی اشعه ، بهینه سازی

مقدمه

اقدام اولیه پیش از ساخت هرگونه سیستم اشعه ایکس ، مثلا یک پرتو سنکروتورن یا یک دیفراکتومتر برای استفاده با یک لوله اشعه ایکس سنتی ،ایجاد یک طرح دقیق فرضی از اجزاء لوزی است . اشعه را باید به یک image Plane نمونه منتقل کرد ( که اغلب وضعتی نمونه است ) و مشخصات آنرا باید مطابق با آنچه آزمایش می طلبد هماهنگ کرد ( یعنی شار Monochromatijaction ، کانونی کردن وساختار زمان ) . هدف طراح علاوه بر به حداقل رساندن این موارد مورد نیاز ، بهینه سازی منبع و اجزاء نوری برای بدست آوردن بهترین آرایش ممکن نیز می باشد . اولین قدم انتخاب نوع منبع ( منبع سنکروترون ، منبع پلاسمایی ، منبع سنتی یا لیزر الکترون آزاد ) می باشد . در بسیاری از موارد نه محدودیت استفاده از منابع موجود یا محدودیت بودجه بلکه سایر محدودیتهاست که در این انتخاب نقش دارند.

در صورت استفاده از منبع سنکروترون باید نقش ابزار تزریق و پارامترها ی آنرا نیز تعیین کرد تکیه ما بر مشکل طراحی نوری و بهینه سازی آن است اجزاء نوری باید با مشخصات منبع هماهنگ شوند تا بتوان بیشترین تست شار موجود را به کار برد . خواص اشعه خوب را حفظ کرد ( خواصی نظیر انتشار ، انسجام ، تابش و غیره ) و موارد لازم تجربا را به دست آورد که اغلب بصورت اندازه شعاع تابش مقدار انرژی و شار مفید ( تعداد فوتون ها ) بیان شود . طرح یک سیستم نوری را می توان به سه مرحله متفاوت تقسیم کرد :

تهیه طرح مقدماتی سیستم های نوری ممکن و شاید شکل منبع

انتخاب بهترین سیستم نوری پس از مدل سازی دقیق از عملکردهای آن

بهینه سازی سیستم

گرچه یک دانشمند یامهندس باتجربه تمام مراحل بالا را می تواند با استفاده از الف ) تجربه اش ب) مطالعه سیستم های موجود با مشهصات مشابه ج) باکمی محاسبات تحلیلی ساده انجام دهد به اصرار توصیه می شود که از ابزارهای کامپیوتری مدرن استقاده کنید. با استفاده از کدهای نرم افزاری می توان پیش بینی هایی را که با مشاهدات چشمی صورت گرفته تایید کرد و مهمتر از آن به اینکه دیگر کمتر دانشمند یا مهندس با تجربه ای می تواند با اطمینان به اینکه در هر مرحله نتایج صحیح را بدست آورده در طرح پیش رود و اطمینان داشته باشد که سیستم کار خواهد کرد .

به عبارت دیگر نرم افزارهای مدل سازی زمنیه ای مناسب و عالی برای آزمایشات اشعه ایکس ( سریع و ارزان ) فراهم می آورد . لذا این نرم افزارها پیش از آنکه ابزارهای اشعه ایکس در دنیای واقعی ساخته شوند بسیار مفدید خواهد بود. از نقطه نظر شبیه سازی سه مرحله طراحی پیشنهادی می تواند مراحل ذیل باشد که در پاراگرافهای بعدی توضیح داده شده اند :

محاسبات اولیه

ردیابی اشعه یک ترکیب انتخابی

ردیابی اشعه بصورت فشرده ، کاوش سیستماتیک

محاسبات اولیه

اولین مرحله در طرح یک سیستم اشعه ایکس عبارت است از انتخاب یک مجموعه ترکیب است ( منبع و اجزاء نوری ) که نیازهای مورد نظر را برآورده کند . اولین قدم انتخاب یک منبع مناسب است برای پرتوهای سنکروترون می توان یک نوع منبع خاص ( آهنربای حماشو، نوسان گر و تکان دهنده ) و پارمترهای اصلی آن یعنی ( طول ، میدان مغناطیسی وغیره ) را می توان تعریف کرد . اکثر این پارامترها در بسیاری موارد ثابت اند مثل انرژی و جریان الکترون . بقیه پارامترها را یا مسائل تکنولوژیکی یا محدودیت جا ( مثل طول ابزار تزریق ) تعیین می کنند . در حالت دستگاهی که از یک ژنراتور اشعه ایکس سنتی استفاده می شود باید لوله مناسب ( با آند دوار یا ثابت )



خرید و دانلود  جدیدترین نرم افزار برای مدس سازی در مطالعات پرتوشناسی اشعه ا