لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 4
اورانیوم در جدول تناوبی
اورانیوم یکی از عنصرهای شمیایی است که عدد اتمی آن ۹۲ و نشانه آن U است و در جدول تناوبی جزو آکتنیدها قرار میگیرد. ایزوتوپ ۲۳۵U آن در نیروگاههای هستهای به عنوان سوخت و در سلاحهای هستهای به عنوان ماده منفجره استفاده میشود.
اورانیوم به طور طبیعی فلزی است سخت، سنگین، نقرهای رنگ و پرتوزا. این فلز کمی نرم تر از فولاد بوده و تقریبآ قابل انعطاف است. اورانیوم یکی از چگالترین فلزات پرتوزا است که در طبیعت یافت میشود. چگالی آن ۶۵٪ بیشتر از سرب و کمی کمتر از طلا است.
سالها از اورانیوم به عنوان رنگ دهنده لعاب سفال یا برای تهیه رنگهای اولیه در عکاسی استفاده میشد و خاصیت پرتوزایی (رادیواکتیو) آن تا سال ۱۸۶۶ ناشناخته ماند و قابلیت آن برای استفاده به عنوان منبع انرژی تا اواسط قرن بیستم مخفی بود.
huny ی == این عنصر از نظر فراوانی در میان عناصر طبیعی پوسته زمین در رده ۴۸ قراردارد.
اورانیوم در طبیعت بصورت اکسید و یا نمکهای مخلوط در مواد معدنی (مانند اورانیت یا کارونیت) یافت میشود. این نوع مواد اغلب از فوران آتشفشانها بوجود میآیند و نسبت وجود آنها در زمین برابر دو در میلیون نسبت به سایر سنگها و مواد کانی است. اورانیوم طبیعی شامل ۹۹/۳٪ از ایزوتوپ ۲۳۸U و ۰/۷٪ ۲۳۵U است.
این فلز در بسیاری از قسمتهای دنیا در صخرهها، خاک و حتی اعماق دریا و اقیانوسها وجود دارد. میزان وجود و پراکندگی آن از طلا، نقره یا جیوه بسیار بیشتر است.
ده کشوری که ۹۴٪ از استخراج اورانیوم جهان در آنها انجام میگیرد.
تاریخچه
اورانیوم در سال ۱۷۸۹ توسط مارتین کلاپروت (Martin Klaproth) شیمی دان آلمانی از نوعی اورانیت بنام پیچبلند (Pitchblende) کشف شد. این نام اشاره به سیاره اورانوس دارد که هشت سال قبل از آن، ستاره شناسان آن را کشف کرده بودند.
اورانیوم یکی از اصلیترین منابع گرمایشی در مرکز زمین است و بیش از ۴۰ سال است که بشر برای تولید انرژی از آن استفاده میکند.
دانشمندان معتقد هستند که اورانیوم بیش از ۶/۶ بیلیون سال پیش در اثر انفجار یک ستاره بزرگ بوجود آمده و در منظومه خورشیدی پراکنده شدهاست.
ویژگیهای اورانیوم
اورانیوم سنگینترین (به بیان دقیقتر چگالترین) عنصری است که در طبیعت یافت میشود (هیدروژن سبکترین عنصر طبیعت است.)
اورانیوم خالص حدود ۱۸/۷ بار از آب چگالتر است و همانند بسیاری از دیگر مواد پرتوزا در طبیعت بصورت ایزوتوپ یافت میشود.
اورانیوم شانزده ایزوتوپ دارد. حدود ۹۹/۳ درصد از اورانیومی که در طبیعت یافت میشود ایزوتوپ ۲۳۸ (U-۲۳۸) است و حدود ۰/۷ درصد ایزوتوپ ۲۳۵ (U-۲۳۵). دیگر ایزوتوپهای اورانیم بسیار نادر هستند.
در این میان ایزوتوپ ۲۳۵ برای بدست آوردن انرژی از نوع ۲۳۸ آن بسیار مهمتر است چرا که U-۲۳۵ (با فراوانی تنها ۰/۷ درصد) آمادگی آن را دارد که در شرایط خاص شکافته شود و مقادیر زیادی انرژی آزاد کند. به این ایزوتوپ «اورانیوم شکافتنی» (Fissil Uranium) هم گفته میشود و برای شکافت هستهای استفاده میشود.
اورانیوم نیز همانند دیگر مواد پرتوزا دچار تباهی میشود. مواد رادیو اکتیو دارای این خاصیت هستند که از خود بطور دائم ذرات آلفا و بتا و یا اشعه گاما منتشر میکنند.
U-۲۳۸ باسرعت بسیار کمی تباه میشود و نیمه عمر آن در حدود ۴،۵۰۰ میلون سال (تقریبآ برابر عمر زمین) است.
این موضوع به این معنی است که با تباه شدن اورانیوم با همین سرعت کم انرژی برابر ۰/۱ وات برای هر یک تن اورانیوم تولید میشود و این برای گرم نگاه داشتن هسته زمین کافی است.
شکاف هستهای اورانیوم
U-۲۳۵ قابلیت شکاف هستهای دارد. این نوع از اتم اورانیوم دارای ۹۲ پروتون و ۱۴۳ نوترون است (بنابراین جمعآ ۲۳۵ ذره در هسته خود دارد و به همین دلیل U-۲۳۵ نامیده میشود)، کافی است یک نوترون دریافت کند تا بتواند به دو اتم دیگر تبدیل شود.
این عمل با بمباران نوترونی هسته انجام میگیرد، در این حالت یک اتم U-۲۳۵ به دو اتم دیگر تقسیم میشود و دو، سه و یا بیشتر نوترون آزاد میشود. نوترونهای آزاد شده خود با اتمهای دیگر U-۲۳۵ ترکیب میشوند و آنها را تقسیم کرده و به همین منوال یک واکنش زنجیرهای از تقسیم اتمهای U-۲۳۵ تشکیل میشود.
اتم U-۲۳۵ با دریافت یک نوترون به اورانیوم ۲۳۶ تبدیل میشود که ثبات و پایداری نداشته و تمایل دارد به دو اتم با ثبات تقسیم شود. انجام عمل تقسیم باعث آزاد شدن انرژی میشود بگونهای که جمع انرژی حاصل از تقسیم زنجیره اتمهای U-۲۳۵ بسیار قابل توجه میشود.
نمونهای از این واکنشها به اینصورت است:
U-۲۳۵ + n Ba-۱۴۱ + Kr-۹۲ + ۳n + ۱۷۰ Million electron Volts
U-۲۳۵ + n Te-۱۳۹ + Zr-۹۴ + ۳n + ۱۹۷ Million electron Volts
که در آن: electron Volt = ۱٫۶۰۲ x ۱۰-۱۹ joules
(یک ژول انرژی برابر توان یک وات برای مصرف در یک ثانیهاست.)
مجموع این عملیات ممکن است در محلی بنام رآکتور هستهای انجام گیرد. رآکتور هستهای میتواند از انرژی آزاد شده برای گرم کردن آب استفاده کند تا در نهایت از آن برای راه اندازی توربینهای بخار و تولید برق استفاده شود.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 4
اورانیوم در جدول تناوبی
اورانیوم یکی از عنصرهای شمیایی است که عدد اتمی آن ۹۲ و نشانه آن U است و در جدول تناوبی جزو آکتنیدها قرار میگیرد. ایزوتوپ ۲۳۵U آن در نیروگاههای هستهای به عنوان سوخت و در سلاحهای هستهای به عنوان ماده منفجره استفاده میشود.
اورانیوم به طور طبیعی فلزی است سخت، سنگین، نقرهای رنگ و پرتوزا. این فلز کمی نرم تر از فولاد بوده و تقریبآ قابل انعطاف است. اورانیوم یکی از چگالترین فلزات پرتوزا است که در طبیعت یافت میشود. چگالی آن ۶۵٪ بیشتر از سرب و کمی کمتر از طلا است.
سالها از اورانیوم به عنوان رنگ دهنده لعاب سفال یا برای تهیه رنگهای اولیه در عکاسی استفاده میشد و خاصیت پرتوزایی (رادیواکتیو) آن تا سال ۱۸۶۶ ناشناخته ماند و قابلیت آن برای استفاده به عنوان منبع انرژی تا اواسط قرن بیستم مخفی بود.
huny ی == این عنصر از نظر فراوانی در میان عناصر طبیعی پوسته زمین در رده ۴۸ قراردارد.
اورانیوم در طبیعت بصورت اکسید و یا نمکهای مخلوط در مواد معدنی (مانند اورانیت یا کارونیت) یافت میشود. این نوع مواد اغلب از فوران آتشفشانها بوجود میآیند و نسبت وجود آنها در زمین برابر دو در میلیون نسبت به سایر سنگها و مواد کانی است. اورانیوم طبیعی شامل ۹۹/۳٪ از ایزوتوپ ۲۳۸U و ۰/۷٪ ۲۳۵U است.
این فلز در بسیاری از قسمتهای دنیا در صخرهها، خاک و حتی اعماق دریا و اقیانوسها وجود دارد. میزان وجود و پراکندگی آن از طلا، نقره یا جیوه بسیار بیشتر است.
ده کشوری که ۹۴٪ از استخراج اورانیوم جهان در آنها انجام میگیرد.
تاریخچه
اورانیوم در سال ۱۷۸۹ توسط مارتین کلاپروت (Martin Klaproth) شیمی دان آلمانی از نوعی اورانیت بنام پیچبلند (Pitchblende) کشف شد. این نام اشاره به سیاره اورانوس دارد که هشت سال قبل از آن، ستاره شناسان آن را کشف کرده بودند.
اورانیوم یکی از اصلیترین منابع گرمایشی در مرکز زمین است و بیش از ۴۰ سال است که بشر برای تولید انرژی از آن استفاده میکند.
دانشمندان معتقد هستند که اورانیوم بیش از ۶/۶ بیلیون سال پیش در اثر انفجار یک ستاره بزرگ بوجود آمده و در منظومه خورشیدی پراکنده شدهاست.
ویژگیهای اورانیوم
اورانیوم سنگینترین (به بیان دقیقتر چگالترین) عنصری است که در طبیعت یافت میشود (هیدروژن سبکترین عنصر طبیعت است.)
اورانیوم خالص حدود ۱۸/۷ بار از آب چگالتر است و همانند بسیاری از دیگر مواد پرتوزا در طبیعت بصورت ایزوتوپ یافت میشود.
اورانیوم شانزده ایزوتوپ دارد. حدود ۹۹/۳ درصد از اورانیومی که در طبیعت یافت میشود ایزوتوپ ۲۳۸ (U-۲۳۸) است و حدود ۰/۷ درصد ایزوتوپ ۲۳۵ (U-۲۳۵). دیگر ایزوتوپهای اورانیم بسیار نادر هستند.
در این میان ایزوتوپ ۲۳۵ برای بدست آوردن انرژی از نوع ۲۳۸ آن بسیار مهمتر است چرا که U-۲۳۵ (با فراوانی تنها ۰/۷ درصد) آمادگی آن را دارد که در شرایط خاص شکافته شود و مقادیر زیادی انرژی آزاد کند. به این ایزوتوپ «اورانیوم شکافتنی» (Fissil Uranium) هم گفته میشود و برای شکافت هستهای استفاده میشود.
اورانیوم نیز همانند دیگر مواد پرتوزا دچار تباهی میشود. مواد رادیو اکتیو دارای این خاصیت هستند که از خود بطور دائم ذرات آلفا و بتا و یا اشعه گاما منتشر میکنند.
U-۲۳۸ باسرعت بسیار کمی تباه میشود و نیمه عمر آن در حدود ۴،۵۰۰ میلون سال (تقریبآ برابر عمر زمین) است.
این موضوع به این معنی است که با تباه شدن اورانیوم با همین سرعت کم انرژی برابر ۰/۱ وات برای هر یک تن اورانیوم تولید میشود و این برای گرم نگاه داشتن هسته زمین کافی است.
شکاف هستهای اورانیوم
U-۲۳۵ قابلیت شکاف هستهای دارد. این نوع از اتم اورانیوم دارای ۹۲ پروتون و ۱۴۳ نوترون است (بنابراین جمعآ ۲۳۵ ذره در هسته خود دارد و به همین دلیل U-۲۳۵ نامیده میشود)، کافی است یک نوترون دریافت کند تا بتواند به دو اتم دیگر تبدیل شود.
این عمل با بمباران نوترونی هسته انجام میگیرد، در این حالت یک اتم U-۲۳۵ به دو اتم دیگر تقسیم میشود و دو، سه و یا بیشتر نوترون آزاد میشود. نوترونهای آزاد شده خود با اتمهای دیگر U-۲۳۵ ترکیب میشوند و آنها را تقسیم کرده و به همین منوال یک واکنش زنجیرهای از تقسیم اتمهای U-۲۳۵ تشکیل میشود.
اتم U-۲۳۵ با دریافت یک نوترون به اورانیوم ۲۳۶ تبدیل میشود که ثبات و پایداری نداشته و تمایل دارد به دو اتم با ثبات تقسیم شود. انجام عمل تقسیم باعث آزاد شدن انرژی میشود بگونهای که جمع انرژی حاصل از تقسیم زنجیره اتمهای U-۲۳۵ بسیار قابل توجه میشود.
نمونهای از این واکنشها به اینصورت است:
U-۲۳۵ + n Ba-۱۴۱ + Kr-۹۲ + ۳n + ۱۷۰ Million electron Volts
U-۲۳۵ + n Te-۱۳۹ + Zr-۹۴ + ۳n + ۱۹۷ Million electron Volts
که در آن: electron Volt = ۱٫۶۰۲ x ۱۰-۱۹ joules
(یک ژول انرژی برابر توان یک وات برای مصرف در یک ثانیهاست.)
مجموع این عملیات ممکن است در محلی بنام رآکتور هستهای انجام گیرد. رآکتور هستهای میتواند از انرژی آزاد شده برای گرم کردن آب استفاده کند تا در نهایت از آن برای راه اندازی توربینهای بخار و تولید برق استفاده شود.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 3 صفحه
قسمتی از متن .doc :
خواص تناوبی عنصرها
مندلیف پس از سالها مطالعه متوجه شده که اگر عنصرها را بر حسب افزایش تدریجی جرم آنها در ردیفهای کنار یکدیگر بگذارد و آنهایی را که خواص فیزیکی و شیمیایی نسبتاً مشابه دارند در یک گروه زیر یکدیگر قرار دهد، عنصرها به ترتیبی سازماندهی می شوند که خواص آنها با نظم و ترتیب خاص تغییر می کند. اما در جدول مندلیف در چند مورد نیز بی نظمی هایی مشاهده می شد، زیرا او مجبور بود در مواردی در یک ستون قرار دادن عنصرهایی با خواص مشابه . ترتیب قرار گرفتن عنصرها بر اساس افزایش جرم نادیده بگیرد.
جدول تناوبی امروزی عنصرها
هنری موزلی عنصرها را براساس افزایش عدد اتمی مرتب کرد، به این جدول ، جدول تناوبی عنصرها می گویند. این جدول براساس قانون تناوبی عنصرها استوار است. بر طبق این قانون هر گاه عنصرها را بر حسب افزایش عدد اتمی در کنار یکدیگر قرار دهیم خواص شیمیایی و فیزیکی آنها بصورت تناوبی تکرار می شود. مهمترین نکته در جدول تناوبی تشابه آرایش الکترونی عنصرهای یک خانواده در بسیاری از گروههای این جدول است .
ویژگی های گروهی عنصرها
عنصرها به چهار دسته تقسیم می شوند.
فلزها: مانند عنصرهای قلیایی ، قلیایی خاکی ، واسطه و ... با خواص رسانایی برق و الکتریسته و چکش خواری و شکل پذیری و دارا بودن سطح براق
نافلزها :
بر خلاف فلزات رسانا نیستند و چکش خوار نیستند و شکننده اند مثل گوگرد.
برخی نافلزها مثل اکسیژن و نیتروژن در فشار atm ? و دمای اتاق به صورت گاز هستند.
شبه فلزها:
اگر یک عنصر را نتوان جزو فلزها یا نافلزها طبقه بندی کرد ، آن را جزو شبه فلزها قرار می دهیم مثل سیلیسیم.
گروهای عناصر
گروه اول – فلزهای قلیایی
این عنصرها همگی فلزهایی نرم و واکنش پذیر هستند. سطح آنها براق است و در مجاورت هوا به سرعت، با اکسیژن هوا ترکیب می شوند. این فلزها دارای خواص شیمیایی و فیزیکی مشابه هستند. آرایش الکترونی آنها، بعد از گاز نجیب ماقبلشان به صورت ? ns است و بشدت تمایل دارند که تنها الکترون لایه آخرشان را از دست بدهند تا به آرایش گاز نجیب ماقبلشان برسند
Li Na K Rb Cs Fr
گروه دوم – فلزهای قلیایی خاکی
این عنصرها نسبت به گروه فلزهای قلیایی سفت تر و چگالتر هستند و نقطه ذوب بالاتری دارند.
واکنش پذیری شیمیایی آنها نسبت به فلزهای قلیایی کمتر است. آرایش الکترونی آنها بعد از گاز نجیب ماقبلشان به صورت? ns است و تمایل دارند که دو الکترون لایه آخرشان را از دست بدهند تا به آرایش گاز نجیب ماقبلشان برسند.
Be Mg Ca Sr Ba Ra
گروههای سوم تا دوازدهم – عنصرهای واسطه
این عنصرها همگی فلز هستند. بجز جیوه ، این فلزها از فلزهای قلیایی و قلیایی خاکی سخت تر ،چگال تر و دیر ذوب تر هستند. اوربیتالهای زیر لایه ی d آنها در حال پرشدن است.
دو دسته دیگر از عنصرها که عنصرهای واسطه داخلی نامیده می شوند لانتانیدها و آکتینیدها هستند.
لانتانیدها فلزهایی براق با واکنش پذیری بالا هستند. اکتینیدها هسته ی ناپایدار دارند و به این علت از جمله عنصرهای پرتوزا بشمار می روند. مشهورترین اکتنیدها اورانیم است.
گروههای سیزدهم تا هجدهم
این عنصرها برخی فلزها، نافلزها، شبه فلزها و گازهای نجیب را شامل می شود. اوربیتال P در حال پرشدن است. از میان آنها گروه هفدهم و هجدهم نامهای اختصاصی هالوژنها و گازهای نجیب را دارند.
هالوژن ها واکنش پذیرترین نافلزها هستند. آرایش الکترونی آنها به صورت ? np است و به شدت تمایل دارند که یک الکترون گرفته و به آرایش گاز نجیب بعد از خودشان برسند. هالوژن در زبان لاتین به معنای نمک ساز است.
F Cl Br I As
گازهای نجیب یا گازهای بی اثر معمولاً در واکنشهای شیمیایی شرکت نمی کنند. همه اوربیتالهای S و P آنها در لایه ظرفیت پرهستند.
He Ne Ar Kr Xe Rn
به این ترتیب مشاهده می شود که در هر تناوب از چپ به راست خواص فلزی کاهش یافته و خواص نافلزی افزایش می یابد. در انتهای هر تناوب نیز یک گاز نجیب وجود دارد.
روند تغییر شعاع اتمی در جدول تناوبی عنصرها
با حرکت از بالا به پائین در یک گروه جدول به ازای هر تناوب یک لایه الکترونی جدید به تعداد لایه های الکترونی عنصرها افزوده می شود. بنابر این شعاع اتمی در یک گروه از بالا به پائین افزایش می یابد.
در هر تناوب از چپ به راست شعاع اتمی کاهش پیدا می کند چون نیروی جاذبه ی هسته ( بار موثر هسته) بر الکترونهای لایه آخر افزایش می یابد. در حالیکه به دلیل ثابت بودن تعداد لایه های الکترونی اثر پوششی الکترون های درونی تقریباً ثابت است.
روند تناوبی تغییر انرژی یونش عنصرها
در یک گروه از بالا به پائین با افزایش اندازه اتم انرژی یونش کم می شود. در هر تناوب از چپ به راست انرژی یونش افزایش می یابد زیرا در این جهت بار موثر هسته رو به افزایش است.
روند تناوبی تغییر الکترو نگاتیوی عنصرها
الکترونگاتیوی یک اتم میزان تمایل نسبی آن اتم برای کشیدن الکترونهای یک پیوند کووالانسی به سمت هسته ی خود است. مقادیر الکترو نگاتیوی در یک گروه از بالا به پائین کاهش و در یک دوره از چپ به راست افزایش می یابد. بنابر این فلوئور بیشترین الکترونگاتیوی و سزیم کمترین الکترونگاتیوی را داراست. (در این بررسی گازهای نجیب را در نظر نمی گیریم زیرا این عنصرها به تعداد کافی ترکیبهای شیمیایی تشکیل نمی دهند)
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 10
درباره ی جدول تناوبی
جدول مندلیف در تنظیم و پایدار کردن جرم اتمی بسیاری از موارد مندلیفنادرست بودن جرم اتمی برخی از عناصر را ثابت و برخی دیگر را درست کرد .
مندلیف و لوتار میردر موردخواص عنصرهاو ارتباط انها بررسی های دقیق تری انجام دادندودر سال ۱۸۶۹م به این نتیجه رسیدند که خواص عنصرها تابعی تناوبی از جرم انهاست.به این معنا که اگر عنصرها را به ترتیب افزایش جرم اتمی مرتب شوند نوعی تناوب در انها اشکار میگرددوپس ازتعداد معینی از عنصرها عنصرهایی با خواص مشابه خواص پیشین تکرار می شوند .
مندلیف در سال ۱۸۶۹ بر پایه ی قانون تناوب جدولی از ۶۳عنصر شناخته شده ی زمان خود منتشر کرد .در فاصله ی بین سالهای ۱۸۶۹ تا ۱۸۷۱م مندلیف هم مانند لوتار میر با بررسی خواص عنصرها و ترکیب های انها متوجه شد که تغییرهای خواص شیمیایی عنصرها مانند خواص فیزیکی انها نسبت به جرم اتمی روند تناوبی دارد.از این رو جدول جدیدی در ۸ ستون و۱۲سطر تنظیم کرد.او با توجه به نارسایی های جدول نیو لندز ولوتار میر و حتی جدول قبلی خود جدولی تقریبابدون نقص ارایه دادکه فراگیر وماندنی شد.
● شاهکارهای مندلیف در ساخت شهرک عناصر :
▪ روابط همسایگی:
دانشمندان پیش از مندلیف در طبقه بندی عناصر هر یک را جداگانه و بدون وابستگی به سایر عناصر در نظر می گرفتند.اما مندلیف خاصیتی را کشف کرد که روابط بین عنصرها را به درستی نشان میدادو ان را پایه تنظیم عناصر قرار داد.
▪ وسواس وی:
او برخی از عناصر را دوباره بررسی کرد تا هر نوع ایرادی را که به نادرست بودن جرم اتمی از بین ببرد.در برخی موارد به حکم ضرورت اصل تشابه خواص در گروهها را بر قاعده افزایش جرم اتمی مقدم شمرد.
▪ واحدهای خالی:
در برخی موارد در جدول جای خالی منظور کردیعنی هر جا که بر حسب افزایش جرم اتمی عناصر باید در زیر عنصر دیگری جای می گرفت که در خواص به ان شباهتی نداشت ان مکان را خالی می گذاشتو ان عنصر را در جایی که تشابه خواص رعایت میشد جای داد.این خود به پیش بینی تعدادی ا زعنصرهای ناشناخته منتهی شد.
▪ استقبال از ساکنان بعدی:
مندلیف با توجه به موقعیت عنصرهای کشف نشده و با بهره گیری از طبقه بندی دوبرایزتوانستخواص انها را پیش بینی کند.برای نمونه مندلیف در جدولی که در سال ۱۸۶۹ تنظیم کرده بودمس و نقره وطلا را مانند فلزی قلیایی در ستون نخست جا داده بود اما کمی بعد عناصر این ستون را به دو گروه اصلی و فرعی تقسیم کرد.سپس دوره های نخست و دوم و سوم هر یک شامل یک سطر و هر یک از دوره های چهارم به بعد شامل دو سطر شده وبه ترتیب از دوره های چهارم به بعد دو خانه اول وشش خانه اخر از سطر دوم مربوط به عناصر اصلی ان دوره و هشت خانه باقی مانده ی سطر اول و دو خانه اول سطر دوم مربوط به عناصر فرعی بود
▪ ساخت واحد مسکونی هشتم:
مندلیف با توجه به این که عناصراهن وکبالت ونیکل وروتینیم ورودیم وپالادیم واسمیم وایریدیم وپلاتینخواص نسبتا با یکدیگر دارند این عناصر را در سه ردیف سه تایی و در ستون جداگانه ای جای دادو به جدول پیشین خود گروه هشتم ا هم افزود. در ان زمان گازهای نجیب شناخته نشده بوداز این رودر متن جدول اصلی مندلیف جایی برای این عناصر پیش بینی نشد. پس از ان رامسی و رایله در سال ۱۸۹۴ گاز ارگون را کشف کردند و تا سا ل ۱۹۰۸ م گازهای نجیب دیگرکشف شد و ظرفیت شیمیایی انها ۰ در نظر گرفته شدو به گازهای بی اثر شهرت یافتند.
▪ اسانسور مندلیفبه سوی اسمان شیمی :
جدول مندلیف در تنظیم و پایدار کردن جرم اتمی بسیاری از موارد مندلیفنادرست بودن جرم اتمی برخی از عناصر را ثابت و برخی دیگر را درست کرد .جدول تناوبی نه تنها به کشف عنصرهای ناشناخته کمک کرد بلکه در گسترش و کامل کردن نظریه ی اتمی نقش بزرگی بر عهده داشت و سبب اسان شدن بررسی عناصر و ترکیب های انها شد.
● مجتمع نیمه تمام:
جدول تناوبی با نارسایی هایی همراه بود که عبارتند از :
۱) جای هیدروژن در جدول بطور دقیق مشخص نبود .گاهی ان را بالا ی گروه فلزهای قلیایی و گاهی بالای گروه های گروه هالوژن ها جا میداد.
۲) در نیکل و کبالت که جرم اتمی نزدیک به هم دارند خواص شیمیایی متفاوت است و با پایه قانون تناوبی ناسازگاری دارد.
۳) کبالت را پیش از نیکل و همچنین تلور را پیش از ید جای داد که با ترتیب صعودی جرم اتمی هم خوانی نداشت .با پیش رفت پژوهش ها و با کشف پرتوایکس و عنصرهاو بررسی دقیق طیف انها عدد اتمی کشف و اشکار شد و عناصر بر حسب افزایش عدد اتمی مرتب و نار سایی های جزیی موجود در جدول مندلیف از بین رفت .زیرا تغییرات خواص عناصر نسبت به عدد اتمی از نظم بیشتری برخوردارست تا جرم اتمی انها .
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 19
جدول تناوبی
.جدول تناوبی عنصرهای شیمیایی، نمایشی از عنصرهای شیمیایی شناخته شدهاست که بر اساس ساختار الکترونی مرتب گردیدهاست بهگونهای که بسیاری از ویژگیهای شیمیایی عنصرها به صورت منظم در طول جدول تغییر میکنند.
جدول اولیه بدون اطلاع از ساختار داخلی اتمها ساخته شد: اگر عناصر را بر حسب جرم اتمی آنها مرتب نمائیم، و آنگاه نمودار خواص معین دیگر آنها را بر حسب جرم اتمی رسم نمائیم، میتوان نوسان یا تناوب این خواص را بصورت تابعی از جرم اتمی مشاهده نمود. نخستین کسی که توانست این نظم را مشاهده نماید، یک شیمیدان آلمانی به نام یوهان ولفگانگ دوبِرَینر (Johann Wolfgang Döbereiner) بود. او متوجه تعدادی تثلیث از عناصر مشابه شد:
نمونه تثلیثها
عنصر
جرم اتمی
چگالی
Cl
35.5
1.56 g/L
Br
79.9
3.12 g/L
I
126.9
4.95 g/L
Ca
40.1
1.55 g/cm3
Sr
87.6
2.6 g/cm3
Ba
137
3.5 g/cm3
و به دنبال او، شیمیدان انگلیسی جان نیولندز (John Alexander Reina Newlands) متوجه گردید که عناصر از نوع مشابه در فاصلههای هشت تایی یافت میشوند، که آنها را با نتهای هشتگانه موسیقی شبیه نمود، هرچند که قانون نتهای او مورد تمسخر معاصرین او قرار گرفت. سرانجام شیمیدان آلمانی لوتار مَیر (Lothar Meyer) و شیمیدان روسی دمیتری مندلیف (Dmitry Ivanovich Mendeleev) تقریباً بطور همزمان اولین جدول تناوبی را، با مرتب نمودن عناصر بر حسب جرمشان، توسعه دادند(ولی مندلیف تعداد کمی از عناصر را خارج از ترتیب صریح جرمی، برای تطابق بهتر با خواص همسایگانشان رسم نمود – این کار بعدها با کشف ساختار الکترونی عناصر در اواخر سده نوزدهم و آغاز سده بیستم توجیه گردید).
فهرست عناصر بر پایه نام، علامت اختصاری و عدد اتمی موجود است. شکل زیر جدول تناوبی عناصر شناخته شده را نمایش میدهد. هر عنصر با عدد اتمی و علامتهای شیمیایی. عناصر در یک ستون («گروه») از لحاظ شیمیایی مشابه میباشند.
گروه
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
دوره
1
1H
2He
2
3Li
4Be
5B
6C
7N
8O
9F
10Ne
3
11Na
12Mg
13Al
14Si
15P
16S
17Cl
18Ar
4
19K
20Ca
21Sc
22Ti
23V
24Cr
25Mn
26Fe
27Co
28Ni
29Cu
30Zn
31Ga
32Ge
33As
34Se
35Br
36Kr
5
37Rb
38Sr
39Y
40Zr
41Nb
42Mo
43Tc
44Ru
45Rh
46Pd
47Ag
48Cd
49In
50Sn
51Sb
52Te
53I
54Xe
6
55Cs
56Ba
*
71Lu
72Hf
73Ta
74W
75Re
76Os
77Ir
78Pt
79Au
80Hg
81Tl
82Pb
83Bi
84Po
85At
86Rn
7
87 Fr
88Ra
**
103Lr
104Rf
105Db
106Sg
107Bh
108Hs
109Mt
110Ds
111Uuu
112Uub
113Uut
114Uuq
115Uup
116Uuh
117Uus
118Uuo
* لانتانیدها
57La
58Ce
59Pr
60Nd
61Pm
62Sm
63Eu
64Gd
65Tb
66Dy
67Ho
68Er
69Tm
70Yb
** آکتینیدها
89Ac
90Th
91Pa
92U
93Np
94Pu
95Am
96Cm
97Bk
98Cf
99Es
100Fm
101Md
102No
کد رنگ برای اعداد اتمی:
عناصر شماره گذاری شده با رنگ آبی ، در دمای اتاق مایع هستند؛
عناصر شماره گذاری شده با رنگ سبز ، در دمای اتاق بصورت گاز میباشند؛
عناصر شماره گذاری شده با رنگ سیاه، در دمای اتاق جامد هستند.
عناصر شماره گذاری شده با رنگ قرمز ترکیبی بوده و بطور طبیعی یافت نمیشوند(همه در دمای اتاق جامد هستند.)
عناصر شماره گذاری شده با رنگ خاکستری ، هنوز کشف نشدهاند (و بصورت کم رنگ نشان داده شدهاند تا گروه شیمیایی را که در آن قرار میگیرند، مشخص نماید.)
و میتوانید دراین کلید واژه جدول تناوبی برای تشدید مغناطیسی را بیابید.
تعداد لایه الکترون در یک اتم تعیین کننده ردیفی است که در آن قرار میگیرد. هر لایه به زیرلایههای متفاوتی تقسیم میشود، که هر اندازه عدد اتمی افزایش مییابد، این لایهها به ترتیب زیر:
1s
1s
2s 2p
3s 3p