لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 14
ارائه یک سیستم خبره جهت کاریابی برای افراد بیکار
چکیده :
این مقاله یک ES را برای ارزیابی افراد بیکار در خصوص پستهای معین نشان می دهد این خبره از تکنیکهای Neuro –Fuzry برای تجزیه و تحلیل یک پایگاه داده ها از افرادبیکار و بنگاهههای کاریابی استفاده می کنند فرآیند انطباق یک فرد بیکار با یک کار پیشنهاد شده انجام می شود از طریق یک ...........از سیستم Neuro –Fuzry مجموعه های ازمایشات گسترده تاریخچه ای از داده های افراد بیکار (که متعلق به یک کلاس اجتماعی هستند) پستهای متعددی را می پذیرند یا رد می کنند.
{ آزمایشات گسترده نشان می دهند که مجموعه های افراد بیکار (که به یک کلاس اجتماعی تعلق دارند) پستهای متعددی را می پذیرند یا رد می کنند.} که در این پروژه استفاده می شود جهت تعیین اوزان پارامتر های سیستم.
مثالهای جدید از Case هایی رسیده از قبول یا رد یک موقعیت بعنوان یک بخش از مجموعه آموزشی در نظر گرفته می شوند. آزمایشات مجدد بعد از دستیابی به یک میزان استاندارد از حالتهای از حالتهای جدید موجود بدست می آید .
خروجی سیستم یک میزانی از مناسب بودن هر فرد بیکار جهت یک کار معین می باشد.
معرفی :
یکپارچه سازی شبکه های عصبی و فازی منطقی سبب بوجود آمدن یکسری از سیستم ها تصمیم گیری خبره بسیار قوی شده است. در سالهای اخیر، دامنه مورد مطالعه از فرآیند شبکه های عصبی بصورت گسترده و قابل توجه ای در حال افزایش می باشد. بعلاوه یک میزان موفقیت در استفاده از سیستم های خبره تلفیق بصورت قابل ملاحظه ای افزایش یافته است در بسیاری از زمینه ها مانند طرح ها، درک زبان عصبی، روباتیک ، تشخیص ها بیماری، تشخیص عیب یابی ابزار آلات صنعتی، آموزش، توصیه یابی و بازیابی اطلاعات. بهر حال در مورد کاریابی خبره ادبیات موضوعی مشخصی در گذشته وجود ندارد. فرآیند انطباق یک فرد بیکار با یک شغل مشخص بندرت احتیاج به مطالعات ساختاری بسیار عمیق و هدف یابی کامل نسبت به یک روش Boolean matchin metchal که استفاده می کنند از یک صفحه web مانند A beater tast Europ's career market on the ) انتخاب جداگانه افراد واجد شرایط برای پستهای مختلف یک کار بسیار مشکل می باشد چه در شرکتهای بزرگ چه در شرکت های کوچک و نیاز به سیستمهای تصمیم گیری خبره دارد. نرم افزارSkills Analyzer tod (labate & Meds keys 1993) طراحی شده است برای حل مسائل مدیریتی که کلاس بندی کارمندان به گروههای مختلف را محور کار خود قرار می دهد و ترکیبی از شبکه های عصبی و آنالیزهایی برمبنای قانون را به منظور تقسیم کارمندان شرکت به گروههای کاری مختلف مورد استفاده قرار می دهد.
سیستم فوق یک سیستم خبره است هر چند تکنیک های تلفیقی مورد استفاده آن قدیمی تر می باشند.
تکنیکهای collaboration filtering در نرم افزار Casper (1) جهت بوجود آمدن موتور جستجوی مبتنی بر هوش مصنوعی بوجود آمد. سیستم Casper بر روی زیر سیستمهایی که ذیلا آورده می شوند تمرکز می نماید
1- یک سیستم مشخصه کاربر که یک پایگاه داده از مشخصات رفتاری فرد را بوجود می آورد درون سایت کاریابی که شامل یک موتور فیلترینگ مکانیزه توصیه سرویس ها و یک موتور برای جستجوی فردی می باشد.
2- تکنولوژی سرویس متحرک (2) که بعنوان EMA شناخته می شود یک سرویس توصیه فعال شمرده می شود و در جهت بوجودآوری اطلاعات بر اساس نیاز یا جایی که توجه به کارهای مرتبط می شود برای یک کاربر خاص استفاده می گردد.
متدهایی که بوسیله Casper و EMA استفاده شده است در زمینه توصیه و پدیدآوری اطلاعات می تواند بسیار با موفقیت زیادی در پدیدآوری اطلاعات استفاده شود.
هر چند چنین سیستم هایی خبره نیستند و هیچ مورد واقعی ای در زمینه کاریابی خبره به حساب نمی آیند. آموزش مجدد بر اساس رد نهایی و یا قبول نهایی استفاده کاربر بوسیله بنگاه ها یک نکته حساس می باشد و نمی بایست نادیده گرفته شود. کم نیستند موردهای توصیه شده که با درصدهای بالا یا متوسط توصیه شده اند ولی در یک مصاحبه معمولی رد شده اند توصیه گرهای خبره و سیستمهای پدید آوری آموزش را تضمین نمی کنند و باید بعنوان یک پایگاه داده اطلاعات کار در نظر گرفته شوند نه به عنوان یک کاریابی واقعی ساختار کنونی مقاله که در قسمت 2 آورده می شود معماری
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 69
مقدمه ای بر سیستمهای خبره
سیستم خبره چیست؟
اولین قدم در حل هر مسئله ای تعریف دامنه یا محدوده آن است. این نکته همانطور که در مورد روشهای برنامه نویسی متعارف صحت دارد، در مورد هوش مصنوعی نیز درست است. اما به خاطر اسراری که از قبل در مورد هوش مصنوعی ( AI ) وجود داشته، هنوز هم برخی مایلند این عقیده قدیمی را باور کنند که " هر مسئله ای که تا به حال حل نشده باشد یک مسئله هوش مصنوعی است". تعریف متداول دیگری به این صورت وجود دارد " هوش مصنوعی کامپیوترها را قادر می سازد که کارهایی شبیه به آنچه در فیلمها دیده می شود انجام دهند".چنین تفکراتی در دهه 1970 میلادی رواج داشت، یعنی درست زمانی که هوش مصنوعی در مرحله تحقیق بود ولی امروزه مسائل واقعی بسیاری وجود دارند که توسط هوش مصنوعی و کاربردهای تجاری آن قابل حلند.
اگرچه برای مسائل کلاسیک هوش مصنوعی از جمله ترجمه زبانهای طبیعی، فهم کلام و بینایی هنوز راه حل عمومی یافت نشده است، ولی محدود کردن دامنه مسئله می تواند به راه حل مفیدی منجر شود. به عنوان مثال، ایجاد یک « سیستم زبان طبیعی ساده » که ورودی آن جملاتی با ساختار اسم، فعل و مفعول باشد کار مشکلی نیست. در حال حاضر، چنین سیستمهایی به عنوان یک واسط در ایجاد ارتباط کاربر پسند با نرم افزارهای بانک اطلاعاتی و صفحه گسترده ها به خوبی عمل می کنند. در حقیقت (پاره) جملاتی که امروزه در برنامه های کامپیوتری مخصوص بازی و سرگرمی به کار می روند توان بالای کامپیوتر در فهم زبان طبیعی را به نمایش می گذارند.
همان طور که شکل 1-1 نشان میدهد، هوش مصنوعی شامل چندین زیر مجموعه است. زیر مجموعه سیستمهای خبره یکی از موفق ترین راه حلهای تقریبی برای مسائل کلاسیک هوش مصنوعی است. پروفسور فیگن بام از دانشگاه استانفورد یکی از پیشکسوتان تکنولوژی سیستم های خبره، تعریفی در مورد سیستمهای خبره دارد : « ... یک برنامه کامپیوتری هوشمند که از دانش و روشهای استنتاج برای حل مسائلی استفاده می کند که به دلیل مشکل بودن، نیاز به تجربه و مهارت انسان » (Feigenbaum 82 ). بنابراین سیستم خبره یک سیستم کامپیوتری است که از قابلیت تصمیم گیری افراد خبره، تقلید می نماید. لغت تقلید به این معناست که سیستم خبره سعی دارد در تمام جنبه ها شبیه فرد خبره عمل کند. عمل تقلید از شبیه سازی قوی تر است چون در شبیه سازی تنها در بعضی موارد شبیه چیزهای واقعی عمل می شود.
اگرچه هنوز یک برنامه چند منظوره برای حل مسائل ایجاد نشده است، ولی سیستمهای خبره در محدوده های خاص به خوبی عمل می کنند. برای اثبات موفقیت سیستمهای خبره فقط کافی است که کاربردهای متعدد سیستمهای خبره را در تجارت، پزشکی، علوم مهندسی ملاحظه نمود و یا کتابها، مجلات، سمینارها و محصولات نرم افزاری اختصاص یافته به سیستمهای خبره را مشاهده کرد.
سیستمهای خبره یکی از شاخه های هوش مصنوعی است که همچون یک فرد خبره با استفاده وسیع از دانش تخصصی به حل مسائل می پردازد. فرد خبره کسی است که در یک زمینه خاص دارای تجربه و مهارت و در یک کلام خبرگی است. بنابراین فرد خبره دارای دانش یا مهارت خاصی است که برای بیشتر مردم ناشناخته و یا غیر قابل دسترسی است. فرد خبره مسایلی را حل می کند که یا توسط دیگران قابل حل نیست و یا او مؤثرترین ( و البته نه ارزانترین) راه حل را برای آن مسئله ارائه می دهد. وقتی سیستمهای خبره اولین بار در دهه 1970 توسعه یافتند، فقط دارای دانش خبرگی بودند. ولی لغت سیستم خبره امروزه اغلب به هر سیستمی اطلاق می شود که از تکنولوژی سیستم خبره استفاده می کند. این تکنولوژی می تواند شامل زبانهای خاص سیستمهای خبره، برنامه ها و سخت افزارهای طراحی شده برای کمک به توسعه و اجرای سیستمهای خبره باشد.
دانش موجود در سیستمهای خبره می تواند شامل تجربه و یا دانشی باشد که از طریق کتب، مجلات و افراد دانشمند قابل دسترسی است. اصطلاحات سیستم خبره، سیستم مبتنی بر دانش و یا سیستم خبره مبتنی بر دانش، به طور مترادف به کار می روند. بیشتر مردم از اصطلاح سیستم خبره به دلیل کوتاه بودنش استفاده می کنند. این در حالی است که ممکن است حتی در آن سیستم خبره هیچ تجربه و مهارتی وجود نداشته و فقط شامل دانش عمومی باشد.
شکل 2-1 مفهوم بنیانی یک سیستم خبره مبتنی بر دانش را نشان می دهد. کاربر حقایق (یا وقایع) و یا سایر اطلاعات را به سیستم خبره داده و در پاسخ، تجربه، تخصص و توصیه های عالمانه و در یک کلام خبرگی دریافت می کند. از نظر ساختار داخلی، سیستم خبره از دو بخش اصلی تشکیل می شود. بخش اول پایگاه دانش است. این پایگاه حاوی دانشی است که بخش
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 14
ارائه یک سیستم خبره جهت کاریابی برای افراد بیکار
چکیده :
این مقاله یک ES را برای ارزیابی افراد بیکار در خصوص پستهای معین نشان می دهد این خبره از تکنیکهای Neuro –Fuzry برای تجزیه و تحلیل یک پایگاه داده ها از افرادبیکار و بنگاهههای کاریابی استفاده می کنند فرآیند انطباق یک فرد بیکار با یک کار پیشنهاد شده انجام می شود از طریق یک ...........از سیستم Neuro –Fuzry مجموعه های ازمایشات گسترده تاریخچه ای از داده های افراد بیکار (که متعلق به یک کلاس اجتماعی هستند) پستهای متعددی را می پذیرند یا رد می کنند.
{ آزمایشات گسترده نشان می دهند که مجموعه های افراد بیکار (که به یک کلاس اجتماعی تعلق دارند) پستهای متعددی را می پذیرند یا رد می کنند.} که در این پروژه استفاده می شود جهت تعیین اوزان پارامتر های سیستم.
مثالهای جدید از Case هایی رسیده از قبول یا رد یک موقعیت بعنوان یک بخش از مجموعه آموزشی در نظر گرفته می شوند. آزمایشات مجدد بعد از دستیابی به یک میزان استاندارد از حالتهای از حالتهای جدید موجود بدست می آید .
خروجی سیستم یک میزانی از مناسب بودن هر فرد بیکار جهت یک کار معین می باشد.
معرفی :
یکپارچه سازی شبکه های عصبی و فازی منطقی سبب بوجود آمدن یکسری از سیستم ها تصمیم گیری خبره بسیار قوی شده است. در سالهای اخیر، دامنه مورد مطالعه از فرآیند شبکه های عصبی بصورت گسترده و قابل توجه ای در حال افزایش می باشد. بعلاوه یک میزان موفقیت در استفاده از سیستم های خبره تلفیق بصورت قابل ملاحظه ای افزایش یافته است در بسیاری از زمینه ها مانند طرح ها، درک زبان عصبی، روباتیک ، تشخیص ها بیماری، تشخیص عیب یابی ابزار آلات صنعتی، آموزش، توصیه یابی و بازیابی اطلاعات. بهر حال در مورد کاریابی خبره ادبیات موضوعی مشخصی در گذشته وجود ندارد. فرآیند انطباق یک فرد بیکار با یک شغل مشخص بندرت احتیاج به مطالعات ساختاری بسیار عمیق و هدف یابی کامل نسبت به یک روش Boolean matchin metchal که استفاده می کنند از یک صفحه web مانند A beater tast Europ's career market on the ) انتخاب جداگانه افراد واجد شرایط برای پستهای مختلف یک کار بسیار مشکل می باشد چه در شرکتهای بزرگ چه در شرکت های کوچک و نیاز به سیستمهای تصمیم گیری خبره دارد. نرم افزارSkills Analyzer tod (labate & Meds keys 1993) طراحی شده است برای حل مسائل مدیریتی که کلاس بندی کارمندان به گروههای مختلف را محور کار خود قرار می دهد و ترکیبی از شبکه های عصبی و آنالیزهایی برمبنای قانون را به منظور تقسیم کارمندان شرکت به گروههای کاری مختلف مورد استفاده قرار می دهد.
سیستم فوق یک سیستم خبره است هر چند تکنیک های تلفیقی مورد استفاده آن قدیمی تر می باشند.
تکنیکهای collaboration filtering در نرم افزار Casper (1) جهت بوجود آمدن موتور جستجوی مبتنی بر هوش مصنوعی بوجود آمد. سیستم Casper بر روی زیر سیستمهایی که ذیلا آورده می شوند تمرکز می نماید
1- یک سیستم مشخصه کاربر که یک پایگاه داده از مشخصات رفتاری فرد را بوجود می آورد درون سایت کاریابی که شامل یک موتور فیلترینگ مکانیزه توصیه سرویس ها و یک موتور برای جستجوی فردی می باشد.
2- تکنولوژی سرویس متحرک (2) که بعنوان EMA شناخته می شود یک سرویس توصیه فعال شمرده می شود و در جهت بوجودآوری اطلاعات بر اساس نیاز یا جایی که توجه به کارهای مرتبط می شود برای یک کاربر خاص استفاده می گردد.
متدهایی که بوسیله Casper و EMA استفاده شده است در زمینه توصیه و پدیدآوری اطلاعات می تواند بسیار با موفقیت زیادی در پدیدآوری اطلاعات استفاده شود.
هر چند چنین سیستم هایی خبره نیستند و هیچ مورد واقعی ای در زمینه کاریابی خبره به حساب نمی آیند. آموزش مجدد بر اساس رد نهایی و یا قبول نهایی استفاده کاربر بوسیله بنگاه ها یک نکته حساس می باشد و نمی بایست نادیده گرفته شود. کم نیستند موردهای توصیه شده که با درصدهای بالا یا متوسط توصیه شده اند ولی در یک مصاحبه معمولی رد شده اند توصیه گرهای خبره و سیستمهای پدید آوری آموزش را تضمین نمی کنند و باید بعنوان یک پایگاه داده اطلاعات کار در نظر گرفته شوند نه به عنوان یک کاریابی واقعی ساختار کنونی مقاله که در قسمت 2 آورده می شود معماری
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 14 صفحه
قسمتی از متن .doc :
ارائه یک سیستم خبره جهت کاریابی برای افراد بیکار
چکیده :
این مقاله یک ES را برای ارزیابی افراد بیکار در خصوص پستهای معین نشان می دهد این خبره از تکنیکهای Neuro –Fuzry برای تجزیه و تحلیل یک پایگاه داده ها از افرادبیکار و بنگاهههای کاریابی استفاده می کنند فرآیند انطباق یک فرد بیکار با یک کار پیشنهاد شده انجام می شود از طریق یک ...........از سیستم Neuro –Fuzry مجموعه های ازمایشات گسترده تاریخچه ای از داده های افراد بیکار (که متعلق به یک کلاس اجتماعی هستند) پستهای متعددی را می پذیرند یا رد می کنند.
{ آزمایشات گسترده نشان می دهند که مجموعه های افراد بیکار (که به یک کلاس اجتماعی تعلق دارند) پستهای متعددی را می پذیرند یا رد می کنند.} که در این پروژه استفاده می شود جهت تعیین اوزان پارامتر های سیستم.
مثالهای جدید از Case هایی رسیده از قبول یا رد یک موقعیت بعنوان یک بخش از مجموعه آموزشی در نظر گرفته می شوند. آزمایشات مجدد بعد از دستیابی به یک میزان استاندارد از حالتهای از حالتهای جدید موجود بدست می آید .
خروجی سیستم یک میزانی از مناسب بودن هر فرد بیکار جهت یک کار معین می باشد.
معرفی :
یکپارچه سازی شبکه های عصبی و فازی منطقی سبب بوجود آمدن یکسری از سیستم ها تصمیم گیری خبره بسیار قوی شده است. در سالهای اخیر، دامنه مورد مطالعه از فرآیند شبکه های عصبی بصورت گسترده و قابل توجه ای در حال افزایش می باشد. بعلاوه یک میزان موفقیت در استفاده از سیستم های خبره تلفیق بصورت قابل ملاحظه ای افزایش یافته است در بسیاری از زمینه ها مانند طرح ها، درک زبان عصبی، روباتیک ، تشخیص ها بیماری، تشخیص عیب یابی ابزار آلات صنعتی، آموزش، توصیه یابی و بازیابی اطلاعات. بهر حال در مورد کاریابی خبره ادبیات موضوعی مشخصی در گذشته وجود ندارد. فرآیند انطباق یک فرد بیکار با یک شغل مشخص بندرت احتیاج به مطالعات ساختاری بسیار عمیق و هدف یابی کامل نسبت به یک روش Boolean matchin metchal که استفاده می کنند از یک صفحه web مانند A beater tast Europ's career market on the ) انتخاب جداگانه افراد واجد شرایط برای پستهای مختلف یک کار بسیار مشکل می باشد چه در شرکتهای بزرگ چه در شرکت های کوچک و نیاز به سیستمهای تصمیم گیری خبره دارد. نرم افزارSkills Analyzer tod (labate & Meds keys 1993) طراحی شده است برای حل مسائل مدیریتی که کلاس بندی کارمندان به گروههای مختلف را محور کار خود قرار می دهد و ترکیبی از شبکه های عصبی و آنالیزهایی برمبنای قانون را به منظور تقسیم کارمندان شرکت به گروههای کاری مختلف مورد استفاده قرار می دهد.
سیستم فوق یک سیستم خبره است هر چند تکنیک های تلفیقی مورد استفاده آن قدیمی تر می باشند.
تکنیکهای collaboration filtering در نرم افزار Casper (1) جهت بوجود آمدن موتور جستجوی مبتنی بر هوش مصنوعی بوجود آمد. سیستم Casper بر روی زیر سیستمهایی که ذیلا آورده می شوند تمرکز می نماید
1- یک سیستم مشخصه کاربر که یک پایگاه داده از مشخصات رفتاری فرد را بوجود می آورد درون سایت کاریابی که شامل یک موتور فیلترینگ مکانیزه توصیه سرویس ها و یک موتور برای جستجوی فردی می باشد.
2- تکنولوژی سرویس متحرک (2) که بعنوان EMA شناخته می شود یک سرویس توصیه فعال شمرده می شود و در جهت بوجودآوری اطلاعات بر اساس نیاز یا جایی که توجه به کارهای مرتبط می شود برای یک کاربر خاص استفاده می گردد.
متدهایی که بوسیله Casper و EMA استفاده شده است در زمینه توصیه و پدیدآوری اطلاعات می تواند بسیار با موفقیت زیادی در پدیدآوری اطلاعات استفاده شود.
هر چند چنین سیستم هایی خبره نیستند و هیچ مورد واقعی ای در زمینه کاریابی خبره به حساب نمی آیند. آموزش مجدد بر اساس رد نهایی و یا قبول نهایی استفاده کاربر بوسیله بنگاه ها یک نکته حساس می باشد و نمی بایست نادیده گرفته شود. کم نیستند موردهای توصیه شده که با درصدهای بالا یا متوسط توصیه شده اند ولی در یک مصاحبه معمولی رد شده اند توصیه گرهای خبره و سیستمهای پدید آوری آموزش را تضمین نمی کنند و باید بعنوان یک پایگاه داده اطلاعات کار در نظر گرفته شوند نه به عنوان یک کاریابی واقعی ساختار کنونی مقاله که در قسمت 2 آورده می شود معماری