لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 66 صفحه
قسمتی از متن .doc :
مرگ ستارگان کوچک : کوتوله سفید
مرز جداسازی بین ستارگان کوچک وبزرگ حدود چهاربرابر جرم خورشید می باشد . ستاره ای با جرم کمتر از Mo4 را در نظر بگیرید که از شاخة غول قرمز در نمودار H-R برای دومین بار بالا می رود . دو حرکت قبلی ستاره به طرف ناحیة غول قرمز ، صعودش با شروع جرقه هلیوم به پایان می رسد . انتظار داریم که دومین صعود نیز به روش مشابهی با شروع جرقه کربن خاتمه یابد، یعنی سوختن انفجارآمیز وسریع کربن پایان این مرحله باشد . به هر صورت ، به علت کافی نبودن جرم جهت نگه داشتن دمای لازم برای سوختن کربن در این ستاره ، جرقه کربن نمی تواند به وقوع به پیوندد . براساس آزمایشات سیکلوترون ، کربن در هسته برای اینکه بتواند به سوزد ، بایستی قبلاً به دمای 600 میلیون درجه کلوین رسیده باشد . محاسبات نشان می دهند که اگر جرم ستاره کمتر از Mo4 باشد ، تراکم گرانی در مرکز جهت بالا بردن دما به 600 میلیون درجه کلوین ، گرمای کافی تولید نمی کند . بنابراین ، کربن نمی تواند بسوزد . در عوض ، ستاره بالا رفتن خود را به قسمت فوقانی شاخه غول قرمز ادامه می دهد ، در نتیجه قطرش زیاد شده ، دمای سطحی آن کاهش یافته ورنگ ستاره به قرمزی می گراید .
سرانجام ، لایه های خارجی ستاره خیلی قرمز – یعنی خیلی سرد – می شوند ، که هسته ها در چنین لایه هائی شروع به جذب الکترون نموده تا به اتمهای خنثی تبدیل شوند . شکل گیری اتمهای خنثی آنقدر ادامه می یابد تا قسمت قابل ملاحظه ای از جرم ستاره عوض الکترونها وهسته های جدا به شکل اتمهای خنثی درآید .
سحابی سیاره ای
هنگامی که یک اتم خنثی با ترکیب مجدد یک الکترون ویک هسته شکل می گیرد ، چه اتفاقی رخ خواهد داد ؟ مهمترین نتیجه این است ، که فوتون منتشره همراه خود انرژی حمل می کند . معمولاً فوتون قبل از فرار از ستاره توسط اتم یا ذره دیگری جذب می شود . با شکل گیری اتمهای خنثی فوتونهای بی شماری تولید می شوند ، که اندکی بعد در راه خروج از ستاره جذب می شوند . جذب آنها سبب گرم شدن لایه خارجی می گردد .
گرمای تولیدی در لایه های خارجی ستاره در اثر جذب فوتونها در مقایسه با گرمای آزاد شده توسط واکنش هسته ای در مرکز ستاره ، بسیار کم می باشد . براساس یک نظریه ، این گرما تغییراتی اساسی در ظاهر ستاره ایجاد می کند . لفاف گرم شده توسط جذب فوتونها منبسط می گردد . انبساط ، دمای لفاف را پائین می آورد . در دمای پائین تر ، اتمهای خنثی بیشتری از الکترونها وهسته های جدا در لفاف شکل می گیرند ، در نتیجه ، انرژی بیشتری به صورت فوتون آزاد می شود . مجدداً ، بیشتر فوتونها توسط اتمهای نزدیک ستاره جذب می گردند . آنها لایة خارجی ستاره را گرم کرده وسبب انبساط بیشتر آن می شوند .
به بیان دیگر ، این نظریه فرایند عقب رانی را طوری پیش بینی می کند که هسته ها با جذب الکترونها لفاف را گرم کرده واین عمل سبب جذب الکترون بیشتر وبالنتیجه انبساط بیشتر می شود. لفاف ستاره به سرعت به طرف خارج منبسط می شود تا اینکه ستاره را کاملاً ترک نماید . در حقیقت ، لفاف ستاره در فضا تخلیه شده وبه یک پوستة تقریباً رقیق وشفاف از اتمها تبدیل می شود ، که سریعاً به حرکت خود ادامه می دهد .
هسته ، که قبلاً توسط لفاف پنهان شده بود ، اکنون قابل رؤیت می گردد . اگر شخصی در طول این فرایند ستاره را مشاهده کند ، تغییر شگف انگیزی در ظاهر آن رؤیت خواهد نمود . درآغاز ، ستاره عادی به نظر می رسد . سپس ، موقعی که لفاف انبساط را شروع می کند ، هنوز برای پنهان کردن هسته به اندازه کافی چگال می باشد ، در نتیجه ناظر سطح لفاف نسبتاً سرد را به صورت یک شیء قرمز بزرگ نورانی می بیند . هنگامی که لفاف به اندازه کافی منبسط وکم وبیش شفاف شود ، هسته نمایان شده وناظر شیء سفید داغ وکوچکی – هسته – را که توسط یک پوستة گاز تخلیه شده در فضا – لفاف تخلیه شده – احاطه شده است ، مشاهده می کند .
چنین اجرام مشاهده شده ای را سحابی های سیاره ای نامیده اند . نام «سحابی سیاره ای » از این رو به کار رفته است که اولین بار ستاره شناسان به هنگام عکسبرداری از این سحابی ها توسط تلسکوپهای کوچک دریافتند که تصاویر شبیه به سیارات می باشند . اکنون می دانیم که سحابیهای سیاره ای ارتباطی با سیارات منظومه شمسی ندارند ، اما نام آنها پابرجا مانده است .
شکل (8-1) ساختار یک سحابی سیاره ای را به طور واضح نشان می دهد . این عکس توسط تلسکوپ 5/2 متری رصدخانة مونت ویلسون برداشته شده است .
بعداز تخلیه لفاف چه اتفاقی برای هسته رخ می دهد ؟ با عزیمت لفاف، هسته کم وبیش بدون تغییر باقی می ماند وبه سوختن هلیوم در پوستة هلیوم سوزی به همان میزان ادامه می دهد . بنابراین ، تابندگی ستاره که کاملاً توسط سوختن هلیوم در پوستة کنترل می شود ، ثابت می ماند .
به هر صورت ، موضع ستاره در نمودار H-R به طور برجسته ای به هنگام تخلیه لفاف تغییر می کند ، زیرا ابتدا موضع لفاف سرد – حدود K◦3500 – وبعد از تخلیه لفاف هستة داغ – حدود K◦50000 – را رسم کرده ایم . بنابراین ، روی محور دما انتقالی از K◦3500 تا K◦50000 صورت می گیرد . به علت عدم تغییر تابندگی در طول افزایش دمای سطحی ، مسیر تحولی ستاره در نمودار H-R به طور افقی وبه طرف چپ ادامه می یابد .
این تغییرات در نمودار H-R در شکل (8-2) رسم شده اند . لفاف ستاره در نقطه (10) شروع به انبساط می کند . در نقطة (11) هستة داغ ستاره کاملاً نمایان می شود . در این نقطه ، اگر عکسی از ستاره گرفته شود ، شبیه سحابی حلقوی در صورت فلکی شلیاق دیده خواهد شد .
کوتوله سفید
در شروع نقطه (11) از نمودار H-R عبور ستاره از هستة سحابی سیاره ای به یک کوتوله سفید شروع می شود . اکنون ستاره از یک هستة کربن – اکسیژن با پوشش پوستة هلیوم سوزان تشکیل شده است (شکل8-3) . در این نقطه ، دمای هسته هنوز برای هم جوشی کافی نیست ، بنابراین ، هیچ منبع انرژی هسته ای درمرکز ستاره برای جلوگیری از فروریزش ستاره در اثر جاذبه گرانی وجود ندارد . هسته ستاره به آهستگی به انقباض ادامه می دهد .
لینک دانلود و خرید پایین توضیحات
دسته بندی : پاورپوینت
نوع فایل : .PPT ( قابل ویرایش و آماده پرینت )
قسمتی از متن .PPT :
تعداد اسلاید : 36 اسلاید
مرگ ستارگان انسان ،طبیعت ،معماری
ارائه از:
محمد رضا تجددفر
مهسا تقی پور تفکر درباره مرگ ستارگان موجب تعجب و شگفتی است و بشر از کشف چگونگی این پدیده به خود افتخار می کند.
محاسبه جرم ستاره ها کاری دشوار بوده و پی بردن به ماده نامرئی بین ستاره ها نیاز به نبوغ دارد.اما بشر هر آنچه در مورد ستاره ها ،فیزیک ،انرژی و ماده می دانست به کاربرد تا یکی از ژرفترین معماهای طبیعت را حل کند.
او اکنون می داند ستاره ها چگونه می میرند
در این نمایه از مدارک مبنی برمشاهده جهت درک چگونگی این فرآیند به منظور درک آسانتر آن استفاده شده است.
این مطالب ما را به سمت آگاهی بیشتر از چگونگی شکل گیری کهکشانها ، سیارات ،منشأ جهان و منشأ حیات پیش می برد.
جهان ما از اتمهایی تشکیل شده است که از مرگ ستاره ها بوجود می آیند. مقدمه 1)ستاره ها:
-کوتوله های سرخ
-ستاره های خورشیدی
-کاهش جرم ستاره های خورشیدی
-سحابی سیاره نما
-کوتوله های سفید
2)تکامل ستاره های دوتایی:
-انتقال جرم
-تکامل مجدد ستاره ای
-دیسکهای رشد
-انفجارهای نوا
-پایان زمین
رئوس مطالب: 3)مرگ ستاره های غول پیکر:
-گداخت هسته ای در ستاره های غول پیکر
-هسته آهنی
-مرگ سوپر نوای ستاره های غول پیکر
-انواع سوپرنوا
-رصد سوپرنوا
-سوپرنوای بزرگ 1987
-سوپر نوای محلی و حیات در کره زمین
رئوس مطالب: پایان زندگی یک ستاره در ابتدا ستاره های با جرم زیاد با انفجاری
عظیم (سوپر نوا) از بین می روند. ستاره های کوچکتر طی رویدادی کم هیجان تر (نوا) می میرند. سراسر زندگی ستاره به یک میدان نبرد شبیه است. نیروی گرانش سعی دارد که ستاره را منقبض و خرد کند، ولی با مقاومت فشار رو به بیرون ماده ستاره روبرو میشود، اما سرانجام ستاره تحلیل میرود. زمانی که همه سوخت هسته ای ستاره ای به پایان می رسد ،جاذبه بر فشار غلبه یافته و ستاره می میرد. گرانش کنترل را بدست میگیرد و ستاره شکل کاملا متفاوتی با ستارهای معمولی و سالم مانند خورشید به خود میگیرد. حتی اگر جرم ستاره بسیار زیاد باشد، ممکن است با تبدیل به یک سیاهچاله در اعماق فضا ناپدید شود..
پایان زندگی یک ستاره یک ستاره بعد از چند میلیارد سال برای واکنشهای همجوشی هستهای هیدروژن کافی در هسته اش ندارد.در عوض هلیومهای باقیمانده از واکنشهای قبلی در هسته ستاره مانده اند، در لایه های بیرونی ستاره هنوز مقداری هیدروژن موجود است ولی به مقدار کافی گرم نیستند تا در واکنش هستهای شرکت کنند
بنابراین به دلیل عدم وجود سوخت ستاره شروع به سرد شدن و کوچک شدن میکند لایههای بیرونی ستاره بر اثر جاذبه به سمت هسته کشیده میشوند و همین طور گرم تر میشوند بخش بیرونی ستاره به قدر کافی گرم میشوند تا فرآیند همجوشی هستهای را شروع کند ستاره منبع انرژی جدیدی مییابد سپس پوسته ستاره شروع به سوختن میکند و گرمای تولید شده باعث منبسط شدن ستاره می شود.
غول سرخ یک ستاره بزرگ و درخشان است که در مرحله دوم عمرش به سر میبرد همجوشی هستهای در لایه بیرونی مرکز این ستاره اتفاق میافتد.
هسته این ستارگان بسیار فشرده از