انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

دانلود مقاله هندسه

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 13

 

مقدمه

هندسه هم مانند حساب، یکی از کهن ترین بخش های دانش ریاضیات است.تاریخ پیدایش آن در ژرفای سده های گذشته است.هندسه در دنیای کهن،بیشتر جنبه کاربردی داشته است و این دوران خود را، که طولانی ترین دوران تکامل آن است، در ایلام، بابل،مصر،چین و در واقع در همه سرزمین های گذرانده است و همه ملت ها در ارتباط بااندازه گیری، به ویژه اندازه گیری زمین های کشاورزی، در ساختن مفهوم های هندسی دخالت داشته اند.

مفهوم اصل،قضیه ودیدگاه اقلیدس:

«اصل» در هندسه، به حکمی گفته می شود که بدون اثبات پذیرفته شود؛ در واقع درستی آن با تجربه سده های متوالی تایید می شود.حکم هایی که به یاری اصل ها ثابت می شوند،« قضیه » نام گرفته اند. اثبات،عبارت از استدلالی است که به یاری آن و به یاری اصل ها، می توان قضیه را ثابت کرد.قضیه،ترجمه ای از واژه یونانی «ته ئورم» که به معنای «اندیشیدن» است.

اصل ها و قضیه ها را برای نخستین بار،دانشمندان یونانی وارد دانش کردند. ارشمیدس(سده سوم پیش از میلاد) در کتاب های خود،بارها از اصل وقضیه استفاده کرده است. تاسرانجام اقلیدس(سده سوم پیش از میلاد) در«مقدمات» خود در سیزده کتاب اصل هاو قضیه های هندسی را منظم کرده است.

«مقدمات اقلیدس» تنها کتابی است که در طول نزدیک دو هزار سال پس از او، هندسه را به دیگران آموخته است.حتی امروز هم، هندسه دبیرستانی بر اساس مقدمات اقلیدس است.

برخی از اصل ها را ،اقلیدس «پوستولا» (خواست)نامیده است. برای نمونه،نخستین پوسترلا در «مقدمات» اقلیدس، به این ترتیب تنظیم شده است: «دو نقطه را میتوان به وسیله خط راست به هم وصل کرد.»

به ظاهر، پوستولاهای اقلیدس،ویژه هندسه است. او اصل هایی را که عمومی ترند ودر دانش های دیگر هم به کار می روند «آکسیوم» می نامد. امروز همه اصل ها(آکسیوم ها وپوستولاها) را «آکسیوم» می نامند که در زبان فارسی، به «اصل موضوع» معروف اند.

معمای اصل پنجم اقلیدس

در طول بیش از دو هزارسال، دانشمندان گمان می کردند که هندسه ای جز هندسه اقلیدسی وجود ندارد. براساس این تصور، ریاضیدانان تلاش می کردند پوستولاهای اقلیدس را از دیگر اصل های موضوع نتیجه بگیرند. تغییر یافته پوستولای پنجم اقلیدس به وسیله «پولی فر» چنین می گوید: از یک نقطه بیرون از یک خط راست، نمی توان دو خط راست موازی با خط راست مفروض رسم کرد.ولی همه تلاش ها برای اثبات این اصل موضوع ناکام ماند.

ریاضیدانان ایرانی از جمله فضل حاتم نیریزی وعمر خیام، در این راه کوشیدند؛ ولی نتیجه این شد که اصل موضوع دیگری را به جای اصل موضوع اقلیدس قرا دادند. خیام در کتاب خود که به این موضوع اختصاص دارد، چهارضلعی های دو قائمه متساوی الساقین را مطرح می کند. او از چهارضلعی هایی صحبت می کند که دو ضلع رو به رو با هم برابر وبر قاعده عمود باشند.بعد ابتدا ثابت می کند، دو زاویه دیگر این چهارضلعی باهم برابرند وبا جانشین کردن اصل دیگری به جای پوستولای پنجم اقلیدس،حاده یامنفرجه بدون دو زاویه دیگر را رد می کند. طرح خیام به وسیله نصیرطوسی به کشورهای اروپایی می رود. از جمله ساکری ریاضیدان ایتالیایی، با طرح همان چهارضلعی ها تلاش می کند اصل موضوع اقلیدس را ثابت کند؛ ولی به نتیجه ای نمی رسد.

نیکلای ایوانوویچ لوباچفسکی (1792-1856)

او را در روسیه متولد شد، پدرش کارمند دولت و مساح زمین بود، وی خیلی زود پدرش را از دست داد.

مادرش وی را ابتدا به دبیرستان قازان و وقتی دبیرستان را تمام کرد، به دانشگاه قازان فرستاد، موفقیت های درخشان او در ریاضیات، خیلی زود نظر استادان را به خود جلب کرد.

بازرسی دانشگاهی را لوباچفسکی دوست نداشت؛ زیرا با خصلت مستقل او نمی ساخت و در چارچوب اخلاق آن زمان جا نمی گرفت. حتی مساله اخراج لوباچفسکی از دانشگاه مطرح شد و اگراستادش در این کار دخالت نمی کرد، او را از دانشگاه اخراج کرده بودند. بجز این ، پافشاری استادان ریاضی درباره استعداد لوباچفسکی و پافشاریی که در دفاع از لوباچفسکی در برابر ریاست دانشگاه کردند،موجب شد او در دانشگاه برای فعالیت های علمی و تربیتی بماند.

لوباچفسکی مرحله های دانشگاهی را با موفقیت گذراند. در هجده سالگی در رشته فیزیک –ریاضی لیسانس گرفت. برای این که بتواند فوق لیسانس خود را بگذارند، لازم بود از ازمایشی سخت در زمینه ریاضیات بگذرد.

در 23 سالگی، لوباچفسکی به استادی دانشگاه انتخاب شد. در سال 1827 به ریاست دانشگاه قازان برگزیده شد و در این سمت نوزده سال باقی ماند.

هندسه نااقلیدسی



خرید و دانلود دانلود مقاله هندسه


مقاله هندسه

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 32 صفحه

 قسمتی از متن .doc : 

 

مقدمه :

هندسه شاخه از ریاضیات است که اشکال و اندازه ها را مورد سر و کار دارد. هندسه ممکن است به عنوان علم فضا نیز انگاشته شود. همانطور که یک حسابگر مورد سر و کار دارد. با مسائلی را که شامل محاسبه(شمارش)است، هندسه نیز مسائلی را که در برگیرندۀ فضا است توضیح و ربط می دهد. هندسه پایۀ به ما این امکان را می دهد تا خصوصیاتی را مانند مساحت و محیط اشکال دو بعدی و سطوح صاف و حجم های اشکالی سه بعدی را تعیین کنیم.

افراد از فرمول های مشتق شده از هندسه را در زندگی روزمره برای کارهایی مانند مقدار رنگ لازمه برای رنگ آمیزی دیوارهای یک خانه یا برای محاسبۀ مقدار آب یک آکواریوم استفاده می کنند.

متدلوژی (روش شناسی)

هندسه قطعات مستقل ادراکی ساده را برای ایجاد با ساختارهای منطقی پیچنده ترکیب می کند. این قطعات مستقل شامل موارد تعریف نشده، اصطلاحات تعریف شده و قضیه ما می باشند. ترکیب این اجزاء زنجیره هایی از برهان ها را بوجود می آورد که نتایج موسوم به قضیه ها را حمایت (تأیید) می کند.

اصطلاحات تعریف نشده :

بعضی از مفاهیم اصلی در هندسه به صورت مفاهیم ساده تری بیان نشده اند. معروفترین آنها نقطه، خط و صفحه است. این مفاهیم اساسی از تجربیات روزانه بوجود آمده است. بنابراین تجربه از مکانی که یک شیئی است منتهی به ایده ای از یک مکان ثابت و دقیق می شود.

آنچه که اصطلاح "نقطه" به آن اشاره دارد مفهوم شهودی و مبتنی بر درک است. اجسام فیزیکی زیادی مفهوم "نقطه" را ارائه می دهند. از جمله گوشۀ یک قطعه، نوک یک مداد و یا نقطه ای روی یک صفحه کاغذ.

این چیزها مذل، نحوۀ نمایش یا تصویر نقطه نامیده میشود. گرچه موارد فوق تقریباً فقط مفهومی در ذهن را ارائه می دهند. بطور مشابه، یک ردیف از نقطه های موجود در یک رشته محکم کشیده شده، لبۀ یک میز یا میلۀ پرچم که بصورت نامحدودی در دو جهت امتداد یافته اند خط نامیده میشود.

واژۀ "صفحه" یک سطح مسطح را توصیف می کند. مانند کف اطاق، صفحۀ نمایش یا تخته سیاه. اما با این فرض که در همۀ جهات بصورت نامحدودی امتداد یافته است. و این بدین معنی است که صفحه هم مانند یک خط که انتها ندارد، لبه ندارد. سایر اصطلاحات تعریف نشده ارتباط بین نقطه ها، خطوط و صفحات را توضیح می دهد مانند ارتباط بیان شده بوسیلۀ این عبارت نقطه ای که روی یک خط قرار می گیرد."

اصطلاحات تعریف شده :

اصطلاحات تعریف نشده می توانند برای تعریف سایر اصطلاحات ترکیب شوند مثلاً نقاطی در یک خط مستقیم قرار نگرفته اند، همان نقاطی هستند که روی همان خط قرار نمی گیرند. پاره خط بخشی از یک خط است که شامل دو نقطۀ خاص است و همۀ نقطه ها بین آن دو نقطه خاص قرار می گیرد.

در حالیکه (ray) بخشی از یک خط است که شامل نقطۀ خاص موسوم به نقطۀ انتهایی و همۀ نقاطی است که بطور نامحدودی در یک طرف نقطۀ انتهائی امتداد یافته اند.

اصطلاحات تعریف شده می توانند با یکدیگر و با اصطلاحات تعریف نشده به منظور تعریف اصطلاحات بیشتر ترکیب شوند.

به عنوان مثال، یک زاویه ترکیبی از دو خط یا دو پرتو مختلفی است که در یک نقطه پایانی مشترک هستند. همینطور یک مثلث از سه نقطۀ غیر واقع در یک امتداد پاره خطهایی که بین آنها قرار دارد تشکیل شده است.

قضیه ها:

قضیه ها، یا اصل ها، ثابت نشده اند اما فرضیه هایی هستند که پذیرفته شدۀ جهانی هستند. مثلاً "فقط و فقط یک خط وجود دارد که از دو نقطۀ معین می گذرد". سیستم متشکل از یک سری قضیه های نامتناقض اصول کلی راجع به اصطلاحات تعریف نشدۀ نقطه، خط و صفحه را با قضیه های استنباط شده از این اصول کلی را هندسه گویند .

مجموعه های متفاوت قضیه ها کل سیستمهای متفاوت هندسه را تعیین می کنند. اگر قصیه های انتخاب شده بوسیلۀ تجربۀ فضای فیزیکی ارائه شوند، بنابراین بطور منطقی انتظار می رود تا نتایج بدقت با تجربیات مربوط به فضا ارتباط نزدیکی داشته باشد. اما چون هر سری از قضیه ها حتماً باید بر اساس مشاهدۀ ناقص و تقریبی انتخاب شوند بنابراین آنها به احتمال زیاد برای فضای واقعی بطور تقریبی قابل اعمال هستند.

بنابراین تعجب آور نیست که هر هندسه خاصی برای مسائل فضای واقعی غیر کاربردی یا فقط تا حدی کاربردی از کار درآید.

برهان ها:

برهان بطور منطقی از قضیه ها نتیجه گیری میوند. این فرآیند نتیجه گیری و قیاس یک دلیل (ثبات) نامیده میشود. هر مرحله از یک برهان باید بوسیلۀ یکی از قضیه ها یا بوسیلۀ



خرید و دانلود مقاله هندسه