لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 6
تاریخچه ریاضیات:انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجه هایش را می داند انجام می داد اما به زودی مجبور شد وسیله شمارش دقیق تری بوجود آورد لذا به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده می باشد قدیمی ترین دستگاه شماری است که آثاری از آن در کهن ترین مدارک موجود یعنی نوشته های سومری مشاهده می شود. سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین النهرین یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند. نخستین دانشمند معروف یونانی طالس ملطلی (639- 548 ق. م.) است که در پیدایش علوم نقش مهمی به عهده داشت و می توان وی را موجد علوم فیزیک، نجوم و هندسه دانست. در اوایل قرن ششم ق. م. فیثاغورث (572-500 ق. م.) از اهالی ساموس یونان کم کم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت. پس از فیثاغورث باید از زنون فیلسوف و ریاضیدان یونانی که در 490 ق. م. در ایلیا متولد شده است نام ببریم. در اوایل نیمه دوم قرن پنجم بقراط از اهالی کیوس قضایای متفرق آن زمان را گردآوری کرد و در حقیقت همین قضایا است که مبانی هندسه جدید ما را تشکیل می دهند. در قرن چهارم قبل از میلاد افلاطون در باغ آکادموس در آتن مکتبی ایجاد کرد که نه قرن بعد از او نیز همچنان برپا ماند. این فیلسوف بزرگ به تکمیل منطق که رکن اساسی ریاضیات است همت گماشت و چندی بعد منجم و ریاضی دان معاصر وی ادوکس با ایجاد تئوری نسبتها نشان داد که کمیات اندازه نگرفتنی که تا آن زمان در مسیر علوم ریاضی گودالی حفر کرده بود هیچ چیز غیرعادی ندارد و می توان مانند سایر اعداد قواعد حساب را در مورد آنها به کار برد. در قرن دوم ق. م. نام تنها ریاضی دانی که بیش از همه تجلی داشت ابرخس یا هیپارک بود. این ریاضیدان و منجم بزرگ گامهای بلند و استادانه ای در علم نجوم برداشت و مثلثات را نیز اختراع کرد. بطلمیوس که به احتمال قوی با امپراطوران بطالسه هیچگونه ارتباطی ندارد در تعقیب افکار هیپارک بسیار کوشید. در سال 622 م. که حضرت محمد (ص) از مکه هجرت نمود در واقع آغاز شکفتگی تمدن اسلام بود. در زمان مأمون خلیفه عباسی تمدن اسلام به حد اعتلای خود رسید به طوری که از اواسط قرن هشتم تا اواخر قرن یازدهم زبان عربی زبان علمی بین المللی شد. از ریاضیدانان بزرگ اسلامی این دوره یکی خوارزمی می باشد که در سال 820 به هنگام خلافت مأمون در بغداد کتاب مشهور الجبر و المقابله را نوشت. دیگر ابوالوفا (998-938) است که جداول مثلثاتی ذیقیمتی پدید آورد و بالاخره محمد بن هیثم (1039-965) معروف به الحسن را باید نام برد که صاحب تألیفات بسیاری در ریاضیات و نجوم است. قرون وسطی از قرن پنجم تا قرن دوازدهم یکی از دردناکترین ادوار تاریخی اروپاست. عامه مردم در منتهای فلاکت و بدبختی به سر می بردند. برجسته ترین نامهایی که در این دوره ملاحظه می نماییم در مرحله اول لئونارد بوناکسی (1220-1170) ریاضیدان ایتالیایی است. دیگر نیکلاارسم فرانسوی می باشد که باید او را پیش قدم هندسه تحلیلی دانست. در قرون پانزدهم و شانزدهم دانشمندان ایتالیایی و شاگردان آلمانی آنها در حساب عددی جبر و مکانیک ترقیات شایان نمودند. در اواخر قرن شانزدهم در فرانسه شخصی به نام فرانسوا ویت (1603-1540م) به پیشرفت علوم ریاضی خدمات ارزندهای نمود. وی یکی از واضعین بزرگ علم جبر و مقابله جدید و در عین حال هندسه دان قابلی بود. کوپرنیک (1543-1473) منجم بزرگ لهستانی در اواسط قرن شانزدهم درکتاب مشهور خود به نام درباره دوران اجسام آسمانی منظومه شمسی را این چنین ارائه داد: 1- مرکز منظومه شمسی خورشید است نه زمین. 2- در حالیکه ماه به گرد زمین می چرخد سیارات دیگر همراه با خود زمین به گرد خورشید می چرخند. 3- زمین در هر 24 ساعت یکبار حول محور خود می چرخد، نه کره ستاره های ثابت. پس از مرگ کوپرنیک مردی به نام تیکوبراهه در کشور دانمارک متولد شد. وی نشان داد که حرکت سیارات کاملاً با نمایش و تصویر دایره های هم مرکز وفق نمی دهد. تجزیه و تحلیل نتایج نظریه تیکوبراهه به یوهان کپلر که در سال آخر زندگی براهه دستیار وی بود محول گشت. پس از سالها کار وی به نخستین کشف مهم خود رسید و چنین یافت که سیارات در حرکت خود به گرد خورشید یک مدار کاملاً دایره شکل را نمی پیمایند بلکه همه آنها بر روی مدار بیضی شکل حرکت می کنند که خورشید نیز در یکی از دو کانون آنها قرار دارد. قرن هفدهم در تاریخ ریاضیات قرنی عجیب و معجزه آساست. از فعالترین دانشمندان این قرن کشیشی پاریسی به نام مارن مرسن که می توان وی را گرانبها ترین قاصد علمی جهان دانست. در سال 1609 گالیله ریاضیات و نجوم را در دانشگاه پادوا در ایتالیا تدریس می کرد. وی یکی از واضعین مکتب تجربی است. وی قانون سقوط اجسام را به دست آورد و مفهوم شتاب را تعریف کرد. در همان اوقات که گالیله نخستین دوربین نجومی خود را به سوی آسمان متوجه کرد در 31 مارس 1596 در تورن فرانسه رنه دکارت به دنیا آمد. نام ریاضیدان بزرگ سوئیسی «پوب گولدن» را نیز باید با نهایت افتخار ذکر کرد. شهرت وی بواسطه قضایای مربوط به اجسام دوار است که نام او را دارا می باشد و در کتابی به نام مرکزثقل ذکر شده. دیگر از دانشمندان برجسته قرن هفدهم پی یر دوفرما ریاضیدان بزرگ فرانسوی است که یکی از برجسته ترین آثار او تئوری اعداد است که وی کاملاً بوجود آورنده آن می باشد. ریاضیدان بزرگ دیگری که در این قرن به خوبی درخشید ژیرارد زارک فرانسوی است که بیشتر به واسطه کارهای درخشانش در هنر معماری شهرت یافت و بالاخره ریاضی دان دیگر فرانسوی یعنی روبروال که بواسطه ترازوی مشهوری که نام او را همراه دارد همه جا معروف است. در اواسط قرن هفدهم کم کم مقدمات اولیه آنالیز عناصر بی نهایت کوچک در تاریکی و ابهام به وجود آمد و رفته رفته سر و صدای آن به گوش مردم رسید. بدون شک پاسکال همراه با دکارت و فرما یکی از سه ریاضیدان بزرگ نیمه اول قرن هفدهم بود و نیز می توان ارزش او را در علم فیزیک برابر گالیله دانست. در نیمه دوم قرن هفدهم ریاضی بطور دقیق دنبال شد. سه نابغه فنا ناپذیر این دوره یعنی نیوتن انگلیسی، لایب نیتس آلمانی و هویگنس هلندی جهان علم را روشن کرده بودند. لایب نیتس در سال 1684 با انتشار مقاله ای درباره حساب عناصر بی نهایت کوچک انقلابی برپا کرد. هوگنس نیز در تکمیل دینامیک و مکانیک استدلالی با نیوتن همکاری کرد و عملیات مختلف آنها باعث شد که ارزش واقعی حساب انتگرال در توسعه علوم دقیقه روشن شود.
دعای ریاضیدانان :
ریاضیدانی در حال مرگ بود؛ در آن حال با خود گفت : خداوندا تو که قُطر دایره ، نهایت اعداد و جذر اعدادی که جذر صحیح و کامل ندارند را می دانی ، مرا چون زاویه ی قائمه ای به درگاه خودت ببر و در خط مستقیم در روز قیامت برانگیز .
خنده و فلسفه :
روزهای آخری که سقراط حکیم ، از مهمترین فیلسوفان یونان باستان که به جرم حقیقت گویی به سر کشیدن جام شوکران محکوم شد ، در زندان در انتظار صدور حکم نهایی مرگش به سر می برد و هنوز تشریفا ت قانونی این حکم تمام نشده بود ، بنا کرده بود به یادگیری هندسه .
نگهبان که از این موضوع بو برده و با کمالتعجب از او پرسید : ای سقراط آیا به راستی حالا در چنین وضعیتی به وقت یادگیری هندسه است ؟ فردا حکم مرگ می آید اما داری هندسه می خوانی .
سقراط از سؤال مرد ، یکه خورده بود ، گفت : نکند باید بعد از مرگم هندسه بخوانم ! ها !
معما :
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 38 صفحه
قسمتی از متن .doc :
لگاریتم:
همچنانکه امروزه می دانیم قدرت لگاریتم به عنوان یک ابزار محاسباتی در این حقیقت نهفته است که ضرب و تقسیم به کمک آن به اعمال ساده تر جمع و تفریق تحویل می شوند.
نشانه ای از این ایده در فرمول که در زمان نپر کاملاً شناخته شده بوده پیدا شد و کاملاً محتمل است که خط فکری نپر با این فرمول شروع شده است چه در غیر این صورت تعیین محدود کردن لگاریتمها به لگاریتم سینوس زوایا توسط وی مشکل است. نپر حداقل به مدت 20 سال بر روی نظریة خودکار کار کرد و منشاء اندیشة هر چه باشد، تعریف نهایی او از لگاریتم چنین است پاره خطی مانند AB و نیمه خطی مانند DE، به صورتی که در شکل 1 نشان داده شده در نظر بگیرید.
فرض کنید که نقاط F,C همزمان بترتیب از نقاط B,A در امتداد این خطوط با سرعت ادامة واحدی شروع به حرکت نمایند. فرض کنید C با سرعتی که از نظر عدد برابر با فاصلة CB است حرکت کند و سرعت حرکت F یکنواخت باشد در این صورت نپر DF را به عنوان لگاریتم CB تعریف می کند یعنی، با قراردادن CB=y , DF=x.
شکل 1
X=Naplogy
برای احتراز از مزاحمت کسرها نپر طول AB را به اختیار کرد زیرا بهترین جداول سینوسی که در دسترس وی بود تا هفت رقم اعشار بسط پیدا می کردند. از تعریف نپر و از طریق استفاده از معلوماتی که در دسترس نپر نبود چنین نتیجه می شود که
لذا این بیان مکرر گفته شده که لگاریتمهای نپری لگاریتم های طبیعی هستند در واقع بی اساس است. مشاهده می شود که لگاریتم نپری با افزایش عدد، کاهش می یابد. بر خلاف آنچه در مورد لگاریتم های طبیعی اتفاق می افتد بعلاوه آشکار می شود که، در دوره های مساوی متوالی از زمان، y مطابق یک تصاعد هندسی کاهش پیدا می کند در حالی که x مطابق یک تصاعد حسابی افزایش می یابد.
بنابراین، اصل بینانی دستگاه لگاریتم ها یعنی ارتباط بن یک تصاعد هندسی و یک تصاعد حسابی را داریم حال، برای مثال نتیجه می شود که اگر آنگاه:
Naploga –Naplogb=Naplogc-Naplgd
که یکی از نتایج متعددی است که به وسیله ی نپر برقرار شده است.
نپر بحث خود درباری لگاریتم ها را رد 1413 در رساله ای تحت عنوان شرح قانون شگف انگیز لگاریتم ها منتشر کرد. این اثر حاوی جدولی است که لگاریتم سینوس زوایا را برای دقیقه های متوالی یک کمان می دهد رساله شرح علاقه فوری و گسترده ای را بر انگیخت و در سال بعد از انتشار آن هنری بریگز (1561-1631) استاده هندسه در کالج گرشام در لندن و بعداً استاد در آکسفورد به ادینبورو سفر کرد تا مراتب احترام خود را به مخترع کبیر لگاریتم ها ادامه کند. در ضمن این ملاقات بود که نپر و بریگنیر به این توافق رسیدند که جداوال در چنان تبدیل که لگاریتم 1 ماه و لگاریتم 10 هر توان مناسبی از 10 می شود مفیدتر خواهد بود بدین ترتیب لگاریتم امروزی بریگزی یا متعارفی تکوین یافت این گونه لگاریتم ها، که اساساً لگاریتم های در مبنای 10 می باشند کارآیی برتر خود را در محاسبات عددی مرهون این حقیقت هستند که دستگاه شمار مانیز در مبنای 10 است. برای دستگاه شماری که پایه دیگری مانند b داشته باشد، البته، به منظور محاسبات عددی مناسبتر خواهد بود که جداول لگاریتم نیز در مبنای b باشند.
بریگز همه ی توان خود را در راه ساختن جدولی بر پایة طرح جدید وقف کرد و در 1624 حساب لگاریتم خود را که شامل یک جدول 14 رقمی از اعداد از 1 تا 20000 و از 90000 تا 100000 بود منتشر کرد. مشکاف از 20000 تا 50000 بعداً به کمک آدریان ولاک (1600-1666) کتاب فروش و ناشر هلندی پر شد در 1620 ادمونه گانته (1581-1626) یکی از همکاران بریگز، یک جدول هفت رقمی از لگاریتم های متعارفی سینوس و تانژانت زوایا برای فواصل قوسی یک دقیقه منتشر نمود. گانته بود که واژه های کسینوس و کتانژانت را ابداع کرد، مهندسان وی را به خاطر «زنجیر گانته» شناختند.
بریگز و ولاک چهار جدول بنیادی لگاریتم ها را منتشر نمودند که تنها در همین اواخر وقتی، در بین 1924 و 1949 جداوال جامع 20 رقمی در انگلستان به عنوان جزئی از جشن سیصدمین سال کشف لگاریتم محاسبه شد کنار گذاشته شدند.
کلمة لگاریتم به معنی «عدد نسبت» است و توسط نپر، بعد از آنکه بدواً از اصطلاح عدد ساختگی استفاده کرد اتخاذ گردید. بریگز کلمه ی مانیتس را که کلمه لاتینی از ریشه اتروسکی است، معمول کرد که در اصل به معنی «جمع» یا «پارسنگ» بوده و در ولاک به کار افت عجیب است که در جدول اولیة لگاریتم های متعارفی رسم این بود که مانیتس را نیز مانند مفسر چاپ کنند، و از قرن هجدهم به بعد هم بود که رسم فعلی چاپ، مانتیسها به تنهایی، متداول گردید.
اختراع شگفت انگیز پز بگرمی در سرتاسر اروپا مورد استقبال واقع شد. در نجوم بویژه زبان برای چنان اکتشافی بسیار آماده بود بنابه اظهار لاپلاس، اختراع لگاریتم ها «با کوتاه کردن زحمات، عمر منجمین را دو برابر کرد» بونانتوراکاوالیری تلاش زیادی برای متداول نمودن لگاریتم ها در ایتالیا به عمل آورد. خدمت مشابهی را یوهان کپکر در آلمان و ادموند وینگبیت درفرانسه انجام دادند. وینگیبت، که سالها زیادی را در فرانسه گذارند به صورت برجسته ترین نویسنده انگلیسی کتابهای درسی در حساب مقدماتی درآمد.