لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 14 صفحه
قسمتی از متن .doc :
بسم الله الرحمن الرحیم
پیشگفتار
پیشرفت عظیم علم و صنعت در قرون گذشته تا حد زیادی مرهون گسترش ریاضیات است. این گسترش را می توان به سه دوره تاریخی تقسیم نمود که هر دوره به نقطه اوجی رسیده ،سپس توقفی طولانی پیش آمده و نگاه حرکت و اوجگیری مجددا شروع شده است.
ریاضیات مدون در حدود دو هزار سال قبل از میلاد مسیح به وجود امد . لیکن ریاضیات به عنوان دانش به مفهومی که امروز برای آن قائل هستیم ، در سرزمین یونان و در قرن های پنجم و چهارم قبل از میلاد مسیح ایجاد گردید. یونانیان طی لشگرکشی های متعدد با اکتشافات ریاضی و نجومی بابلی ،آشنایی یافتند و به زودی ریاضیات در شهرهای مختلف یونان موضوع بحث های فلسفی قرار گرفت و هندسه اقلیدسی نتیجه بزرگ و اساسی این دوره است که سلطه خود را در جهان دانش بشری تا قرن ها بعد حفظ نمود . با سقوط اسکندریه توقف و رکود ریاضیات در این دوره طلایی را می توان در تاریخ به وضوح ملاحظه نمود .
قرن ها بعد ، کوشش عظیم مسلمانان شروع شد. به این کوشش و نتایج حاصل از آن متاسفانه کمتر توجه شده است ، به خصوص که این دوره همزمان با دوران بربریت غرب است . پس از استقرار اسلام در شبه جزیره عربستان و پذیرش آسان آن از طرف همسایگان و گسترش سریع آن طی قرن های اولیه ، کوشش علمی مسلمانان با ترجمه کتب علمی شروع شد . دانشمندان خارجی در سال های اخیر در مورد دستاورد های علمی مسلمین به اشارات کوچکی بسنده کرده اند . جورج سارتن در کتاب تاریخ علم خود ، قرون گذشته را در نظر گرفته و هر قرنی را به نام دانشمندی نام گذاری کرده است . در سال های اوج تمدن اسلامی و با ملاحظه رکورد علمی غرب در این سال ها چنین می گوید : (( اگر به دوره اول قرن یازدهم میلادی بنگریم ، این دوره نشانه اوج فکر قرون وسطی است .
رهبران بزرگ – مانند ابن یونس ، ابن هیثم ، بیرونی ، ابن سینا ، علی بن عیسی ، کرخی ، لبن جبرول ( همه مسلمانند و آخری یهودی ) – چندان فراوان بودند که دست کم برای لحظه ای مورخ را مبهوت می سازد . گرچه همه اینان مردانی ممتاز به شمار می رفتند ، دو تن از همه برتر بودند ، بیرونی و ابن سینا و به خاطر اینان بود که این عصر چنین درخشان و برجسته می نمود . این دو تن به طریقی با هم فرق بسیار داشتند ، بیرونی مبین روحی پرتکاپو و نقاد بود و ابن سینا دارای روحی ترکیبی . بیرونی بیشتر کاشف بود و از این لحاظ به آرمان علمی جدید نزدیکتر شد. ابن سینا ذاتا یک سازمان دهنده جامع العلوم و فیلسوف محسوب می شد . و هر دو در وهله اول به یک اندازه اهل علم بودند. ..... نخستین اثر بزرگ بیرونی مقارن سال 1000 میلادی پدیدار شد و تا سال 1048 زندگی کرد و ما در نامیدن این فصل به نام عصر بیرونی کاملا محق هستیم .))
مسلمانان در این دوران پرچم دانش بشری را به دوش کشیده و در ریاضیات و سایر زمینه ها دست به ابداعات فراوانی زدند . در هر زمینه می توان نشانه هایی را بیان نمود که با اختلاف چندین قرن بعد اروپاییان با توجه به منابع اسلامی یا مستقلا ، بدان دست یافتند .
برای مثال در علم نجوم و مثلثات مسلمین پیشرفت شایانی داشتند و این موضوع در قرون 17 و 18 و 19 نادیده گرفته می شد . مثلا رابطه معروف سینوس ها در مثلثات و مثلثات کروی به کپر نسبت می دادند . در سال 1270 هجری شمسی (1891 میلادی ) کتاب کشف القناع عن اسرار شکل القطاع تالیف خواجه نصیر الدین طوسی (672- 597 هجری ، قمری ، 1274- 1201 میلادی ) در قسطنطنیه چاپ و منتشر شد . انتشار این کتاب به زبان فرانسوی و آشنایی دانشمندان وقت با آن موجب شهرت جهانی برای این کتاب گردید . اروپاییان دریافتند که بسیاری از قضایای مثلثات را مسلمانان چهار صد سال جلوتر از آنها کشف کرده و مورد استفاده قرار داده اند ، از این رو در این موضوع متحدالقول شدند که کتاب کشف القناع خواجه نصیر الدین طوسی نخستین کتاب است که منحصرا در علم مثلثات جدا از سایر کتب نجوم نگاشته شده است . اروپاییان بسیاری از قظایا را که در این کتاب دیدند ، به خواجه نسبت دادند . چند سال پیش نسخه منحصر به فردی از کتاب مقالید علم الهیئه مایحدث فی سطح بسیط الکره تالیف ابوریحان بیرونی (440- 360 هجری قمری ) در کتابخانه مدرسه شهید مطهری به دست آمد که اروپاییان اطلاع کافی از آن ندارند ، تنها دکتر کندی با ترجمه مقدمه آن و فهرست خلاصه ای در مجله " journal of near Eeastern studies , vol.30,1971 " آن را به جهانیان معرفی کرد . استاد ابولقاسم قربانی در فصل هفتم کتاب وزین بیرونی نامه خود این کتاب 44 صفحه ای را که می توان اولین کتاب مثلثاث مستقل موجود دانست ، معرفی می نمایند . در این کتاب ابوریحان اشاره می کند که استادش ابونصر عراقی رابطه سینوس ها در مثلثات کروی را به صورت
Sina = sin b =sin c
Sin c sin b sin a
بیان می کند . ابوریحان می پرسد که آیا می توان این رابطه را برای مثلثات در صفحه ، نیز ثابت نمود ؟ چند روز بعد ابونصر ، اثبات این را در مثلثات مسطحه بیان می کند . ابوریحان این طریقه اثبات را در این کتاب آورده و خودش نیز برای اثبات این رابطه روشی را بیان می نماید . حال ملاحظه می شود که تاریخ نویسان اروپایی می بایست تاریخ اثبات این رابطه را به 600 سال جلوتر از کپلر یعنی به ابونصر عراقی استاد ابوریحان نسبت دهند .
زمینه های علمی فراوان دیگری می توان نشان داد که مسلمین در این دوران به آن نائل آمده ،
غربیان چندین قرن بعد بدان دست یافتند . این دوره نیز دوره ای مشخص از تاریخ دانش بشری است . پس از شکست مسیحیان در جنگ های صلیبی و آشنایی اروپاییان در این جنگ ها با دانش کشورهای اسلامی ، دوره رنسانس کم کم در غرب شروع گردید . بسیاری از کتب یونانی که قبلا به وسیله مسلمین به عربی ترجمه شده بود و همچنین کتب دانشمندان اسلامی ، به سرعت از عربی به زبان های اروپایی ترجمه می شد . برخی از این کتب سالیان دراز کتاب های درسی دانشگاه های غرب بودند . نمونه های فراوانی وجود دارند که دانشمندان غربی اطلاعات به دست آمده توسط مسلمانان را به نام خود ثبت نمودند . در این دوره نیز اروپاییان با یک تاخیر پانصد ساله نسبت به مسلمین ، وبا عنادی خاص نسبت به اسلام و اصولا دین ، دانش را گسترش دادند . طی قرن شانزدهم میلادی تغییری کند اما انقلابی در نمادهای ریاضی آغاز شد. دستگاه پرزحمت اعداد رومی به تدریج جای خود را به نمادهای اسلامی دادند . علامت های + و – را به کار برده ، مزایای سیستم اعشاری را که قبلا توسط مسلمین ابداع شده بود کم کم شناختند . در این دوره موفقیت های چشمگیر ریاضی دانان ایتالیایی ، تارتاگلیا ، کاردانو و فراری در بیان جواب های معادلات درجه دوم و سوم که تقریبا چهارصد سال جلوتر توسط خیام ابداع شده بود . موجب گسترش ریاضیات شد . و در قرن هفدهم هندسه تحلیلی و حساب دیفرانسیل و انتگرال به وجود آمد ، در حالی که هندسه اقلیدسی هنوز مقام مهمی را برای خود حفظ کرده بود . در این تاریخ اروپاییان از اشکالاتی که توسط مسلمین به اصول هندسی اقلیدسی گرفته شده بود خبر نداشتند و اصولا در این دوره عقیده یونانیان برای اتکا به اصول در علوم و استنتاج منطقی یکباره طی قرن های هفدهم و هیجدهم تا اندازه زیادی نادیده گرفته شد . در قرن نوزدهم احتیاج ضروری با استحکام نتایج حاصل ، ومیل وافر به تجدید نظر در مبانی ریاضیات پیش آمد . به خصوص در این دوره مبانی ریاضیات حساب دیفرانسیل و انتگرال و مفهوم حد که اساس دانش مذکور است مورد تجدید نظر کلی قرار گرفت . بنابر این ،
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .DOC ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 21 صفحه
قسمتی از متن .DOC :
فلسفه ریاضی
مقدمه :
امروزه فلسفه ریاضی یا فلسفه علم ریاضیات بعنوان یکی از شاخه های فلسفی دامنه و عمق قابل توجهی برخوردار شده است و مکاتب و دیدگاههای متعددی در حوزه این دانش فلسفی شکل گرفته است. در این میان این نکته روشن است که دست یافتن به دیدگاهی که پاسخگوی تمام مسائل و مباحث مطرح شده در فلسفه ریاضی باشد آن هم بصورت مستدل و مقبول همه فلسفی اندیشان امری ممکن به نظر نمیرسدویاآنکه بسیارصعب و دشوار است. اما متفکران بر اساس اصول و مبادی و علایق ویژه خود به مباحث فلسفی در باب ریاضیات پرداخته و هر یک به اندازه وسع علمی و حوزه مطالعاتی و پژوهشی خود گامهایی را برای تقریب به ماهیت و حقیقت ریاضیات برداشته اند. در این میان متفکران و فلاسفه متفدم و معاصر مسلمان نیز از این قاعده مستثنی نیستند و در لابلای آثار خود سعی در تفسیر و تبیین ریاضیات داشته اند.
این کتاب شامل دو بخش است: بخش نخست این تحقیق در صدد آن است تا بعنوان گامی آغازین و بطور عمده، در حال و هوای تفکر فلاسفه و متفکران معاصر ایران - و نه متفکران پیشین - تاملاتی را در حوزه فلسفه ریاضی صورتبندی نماید. البته این تبیین و تحلیل الزاماً در تمامم موارد حاصل دیدگاه صریح و بی واسطه آنان نخواهد بود بلکه در مواردی، نتیجه استتنتاج و استنباط بوده و افزوده هایی به همراه دارد.
چکیده :
فلسفه علم ریاضیات یا فلسفه ریاضی دانشی است انتزاعی، تحلیلی و فلسفی درباره مفاهیم پایه و اصول اساسی و بنیادی ریاضیات، ماهیت گزارههای ریاضی، روش ریاضی، ریاضیات و واقعیت، رابطه ریاضیات با علوم دیگر مانند فیزیک، منطق، متافیزیک و...، تحولات دانش ریاضی و علل، جایگاه ریاضیات در دستهبندی علوم، ریاضیات و ایدئولوژی و مباحث متعدد دیگر ."کتاب حاضر از دو بخش تشکیل شده است .در بخش اول آرای متفکران معاصر ایران در مباحث فلسفه ریاضی تشریح میشود .و در بخش دوم آرای تحلیلی و فلسفی دیگر متفکران در باب ریاضیات درج گردیده است
حاصل آنکه در این بخش سعی بر آن است تا حد امکان به تحلیل و بسط ایده هایی که در اندیشه متفکران معاصر ایران آمده است، پرداخته شود.
بخش دوم این نوشتار گزارشی است از آرای فلسفی و نظری دیگر فلاسفه و متفکران، از دوره یونان تا دوره معاصر، در باب مباحث ریاضی، که در قالب یک بخش گردآوری و تنظیم شده است. امید آن است که ارائه این گزارش اسباب آشنایی با دیدگاههای متعدد و متنوع را در باب ماهیت ریاضیات و مباحث فلسفه ریاضی فرآهم آورده و فضایی پرسش خیز و مساله انگیز برای خواننده ایجاد نماید.
نظراتی درباره فلاسفه :
فلسفه معمولا بعنوان یک فعالیت و نیز بعنوان موضوعی ذهنی تعریف میشود. فلاسفه پیرو "رواقیون" آن را به فیزیک ، اخلاق و منطق تقسیم میکردند، برخی دیگر از فلاسفه در سالهای اخیر برای آن تقسیمبندی ما بعدالطبیعه یا متافیزیک معرفتشناسی ، منطق و ارزششناسی پیشنهاد کردهاند.
علاوه بر تقسیمبندی فوقالذکر از مسائل فلسفی ، معمولا بررسی مبانی یا انگاشتهای اصولی و مقاصد هر رشته علمی نیز فلسفه نامیده میشود. بر این اساس ما طبقهبندیهایی چون فلسفه فیزیک ، فلسفه هنر ، فلسفه تاریخ و البته فلسفه ریاضی و حتی فلسفه را داریم اچ ، گوردون هولفیش بیان میدارد که:
"فلسفه ماموریت دارد به انسان در تفکر عمیقتر به نتایج اعمال روزانهاش کمک کند تا انسان بتواند با حکمتی بیشتر ، آن نتایجی را برگزیند که به همه انسانها کمک میکند تا تفکرشان را عمیقتر سازند."
یک فلسفه را میتوان توضیحی دانست که در آن کوشش میشود تا از مجموعهای طبعا پراکنده از تجربیات یک معنی استخراج کند. کار یک فلسفه مشتمل بر تنظیم تجربیات و ارزشها است. فلسفه در جستجوی روابط در میان اشیایی است که معمولا منفک از هم بشمار میآیند.
در اینجا به فلسفههای معاصر ریاضی پرداخته شده است. فلسفههایی که پیشرفتهای اخیر ریاضی را بشمار آورده و متاثر از بحرانهای جاری این علوم میباشند. سه فلسفه اصلی معاصر از ریاضیات وجود دارد که هر یک از گروه متنابهی از ریاضیدانان و فلاسفه را جذب و هر یک دانش عظیمی از فرهنگ خاص خود را توسعه و گسترش داده است. این فلسفهها عبارتند از: فلسفه منطقگرایی که راسل و وایتهد ارائهدهندگان اصلی آن هستند. فلسفه شهودگرایی که توسط براور رهنمون میشود؛ و فلسفه صورتگرایی که توسط هیلبرت رشد و گسترش یافته است.
فلسفه منطق گرایی :
سخن اصلی این فلسفه این است که ریاضیات شاخهای از منطق است در این فلسفه به جای آنکه منطق فقط وسیلهای برای ریاضیات باشد. تبدیل به کل ریاضیات میشود. همه مفاهیم ریاضیات باید بر حسب مفاهیم منطقی فرمولبندی شوند، همچنین قضیههای ریاضی باید به عنوان قضایایی از منطق بیان اثبات شوند. در این دیدگاه تمایز بین منطق در ریاضیات صرفا به مناسبت جنبه عملی و آموزشی آن است. این نظریه برای نخستین بار توسط فرگه و بعدا توسط برترا اندراسل ، بیآنکه با فرگه ارتباطی یافته باشد عنوان گردید. وایتهد و راسل در کتاب عظیمی که بنام "اصول ریاضیات" تدوین کردند به دفاع از این نظریه پرداختهاند.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .DOC ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 22 صفحه
قسمتی از متن .DOC :
فلسفه ریاضی
مقدمه :
امروزه فلسفه ریاضی یا فلسفه علم ریاضیات بعنوان یکی از شاخه های فلسفی دامنه و عمق قابل توجهی برخوردار شده است و مکاتب و دیدگاههای متعددی در حوزه این دانش فلسفی شکل گرفته است. در این میان این نکته روشن است که دست یافتن به دیدگاهی که پاسخگوی تمام مسائل و مباحث مطرح شده در فلسفه ریاضی باشد آن هم بصورت مستدل و مقبول همه فلسفی اندیشان امری ممکن به نظر نمیرسدویاآنکه بسیارصعب و دشوار است. اما متفکران بر اساس اصول و مبادی و علایق ویژه خود به مباحث فلسفی در باب ریاضیات پرداخته و هر یک به اندازه وسع علمی و حوزه مطالعاتی و پژوهشی خود گامهایی را برای تقریب به ماهیت و حقیقت ریاضیات برداشته اند. در این میان متفکران و فلاسفه متفدم و معاصر مسلمان نیز از این قاعده مستثنی نیستند و در لابلای آثار خود سعی در تفسیر و تبیین ریاضیات داشته اند.
این کتاب شامل دو بخش است: بخش نخست این تحقیق در صدد آن است تا بعنوان گامی آغازین و بطور عمده، در حال و هوای تفکر فلاسفه و متفکران معاصر ایران - و نه متفکران پیشین - تاملاتی را در حوزه فلسفه ریاضی صورتبندی نماید. البته این تبیین و تحلیل الزاماً در تمامم موارد حاصل دیدگاه صریح و بی واسطه آنان نخواهد بود بلکه در مواردی، نتیجه استتنتاج و استنباط بوده و افزوده هایی به همراه دارد.
چکیده
"فلسفه علم ریاضیات یا فلسفه ریاضی دانشی است انتزاعی، تحلیلی و فلسفی درباره مفاهیم پایه و اصول اساسی و بنیادی ریاضیات، ماهیت گزارههای ریاضی، روش ریاضی، ریاضیات و واقعیت، رابطه ریاضیات با علوم دیگر مانند فیزیک، منطق، متافیزیک و...، تحولات دانش ریاضی و علل، جایگاه ریاضیات در دستهبندی علوم، ریاضیات و ایدئولوژی و مباحث متعدد دیگر ."کتاب حاضر از دو بخش تشکیل شده است .در بخش اول آرای متفکران معاصر ایران در مباحث فلسفه ریاضی تشریح میشود .و در بخش دوم آرای تحلیلی و فلسفی دیگر متفکران در باب ریاضیات درج گردیده است
حاصل آنکه در این بخش سعی بر آن است تا حد امکان به تحلیل و بسط ایده هایی که در اندیشه متفکران معاصر ایران آمده است، پرداخته شود.
بخش دوم این نوشتار گزارشی است از آرای فلسفی و نظری دیگر فلاسفه و متفکران، از دوره یونان تا دوره معاصر، در باب مباحث ریاضی، که در قالب یک بخش گردآوری و تنظیم شده است. امید آن است که ارائه این گزارش اسباب آشنایی با دیدگاههای متعدد و متنوع را در باب ماهیت ریاضیات و مباحث فلسفه ریاضی فرآهم آورده و فضایی پرسش خیز و مساله انگیز برای خواننده ایجاد نماید.
نظراتی درباره فلاسفه :
فلسفه معمولا بعنوان یک فعالیت و نیز بعنوان موضوعی ذهنی تعریف میشود. فلاسفه پیرو "رواقیون" آن را به فیزیک ، اخلاق و منطق تقسیم میکردند، برخی دیگر از فلاسفه در سالهای اخیر برای آن تقسیمبندی ما بعدالطبیعه یا متافیزیک معرفتشناسی ، منطق و ارزششناسی پیشنهاد کردهاند.
علاوه بر تقسیمبندی فوقالذکر از مسائل فلسفی ، معمولا بررسی مبانی یا انگاشتهای اصولی و مقاصد هر رشته علمی نیز فلسفه نامیده میشود. بر این اساس ما طبقهبندیهایی چون فلسفه فیزیک ، فلسفه هنر ، فلسفه تاریخ و البته فلسفه ریاضی و حتی فلسفه را داریم اچ ، گوردون هولفیش بیان میدارد که:
"فلسفه ماموریت دارد به انسان در تفکر عمیقتر به نتایج اعمال روزانهاش کمک کند تا انسان بتواند با حکمتی بیشتر ، آن نتایجی را برگزیند که به همه انسانها کمک میکند تا تفکرشان را عمیقتر سازند."
یک فلسفه را میتوان توضیحی دانست که در آن کوشش میشود تا از مجموعهای طبعا پراکنده از تجربیات یک معنی استخراج کند. کار یک فلسفه مشتمل بر تنظیم تجربیات و ارزشها است. فلسفه در جستجوی روابط در میان اشیایی است که معمولا منفک از هم بشمار میآیند.
در اینجا به فلسفههای معاصر ریاضی پرداخته شده است. فلسفههایی که پیشرفتهای اخیر ریاضی را بشمار آورده و متاثر از بحرانهای جاری این علوم میباشند. سه فلسفه اصلی معاصر از ریاضیات وجود دارد که هر یک از گروه متنابهی از ریاضیدانان و فلاسفه را جذب و هر یک دانش عظیمی از فرهنگ خاص خود را توسعه و گسترش داده است. این فلسفهها عبارتند از: فلسفه منطقگرایی که راسل و وایتهد ارائهدهندگان اصلی آن هستند. فلسفه شهودگرایی که توسط براور رهنمون میشود؛ و فلسفه صورتگرایی که توسط هیلبرت رشد و گسترش یافته است.
فلسفه منطق گرایی
سخن اصلی این فلسفه این است که ریاضیات شاخهای از منطق است در این فلسفه به جای آنکه منطق فقط وسیلهای برای ریاضیات باشد. تبدیل به کل ریاضیات میشود. همه مفاهیم ریاضیات باید بر حسب مفاهیم منطقی فرمولبندی شوند، همچنین قضیههای ریاضی باید به عنوان قضایایی از منطق بیان اثبات شوند. در این دیدگاه تمایز بین منطق در ریاضیات صرفا به مناسبت جنبه عملی و آموزشی آن است. این نظریه برای نخستین بار توسط فرگه و بعدا توسط برترا اندراسل ، بیآنکه با فرگه ارتباطی یافته باشد عنوان گردید. وایتهد و راسل در کتاب عظیمی که بنام "اصول ریاضیات" تدوین کردند به دفاع از این نظریه پرداختهاند.
فلسفه شهودگرایان :
از شهودگرایان این است که اشیا و برهانهای ریاضیات را فقط باید با طی گامهای متوالی و متناهی ساخت، گامهایی که شهودا قابل اطلاق بر اعداد طبیعیاند. بر طبق نظریه ، پایه ریاضیات غایتا بر شهود اولیه قرار دارد که بدون شک بر حس و درک ما از "قبل و بعد" میباشد که به ما اجازه میدهد که تا یک شی مشخص و منفرد را درک کنیم، و پس ادراکهای بعدی متوالیا و بیپایان انجام میگیرد. در این روند ما رشتهای بیپایان بدست میآوریم که بهترین مثال آن رشته اعداد طبیعی است. سابقه شهودگرایی در فلسفه به زمان کانت ، فیلسوف آلمانی ، بر میگردد. ظاهرا درک کانت از اینکه حساب بر مبنای نیروی ذهنی شمارش قرار دارد این است که اعداد وقتی ، و فقط وقتی وجود دارند که به وسیه شمارش در دسترس باشند .اگر کانت با مجموعهها آشنا بود شاید هم میگفت مجموعهها وقتی و فقط وقتی وجود دارند که عضوهای آنها را بتوان شمرد. لذا عددهای اصلی نامتناهی وجود نمیتوانند داشت زیرا که به عقیده کانت عدد نامتناهی را شمردن نامقدور است. به دلیل مشابه کانت معتقد بود که در هندسه حداکثر طول وجود پیدا نمیکند، زیرا ، که هر چند میتوان خط را از دو طرف امتداد داد اما آن را بطور نامتناهی نمیتوان امتداد داد (زیرا که این عمل نیازمند وقت نامتناهی است) به این ترتیب هم در مورد اعداد هم در مورد خطوط ، کانت بجای پیروی از عقیده بیکران بالفعل به نظریه بیکران بالقوه یا کلیات نامعین معتقد بوده است. ارسطو هم در بحث در مسائل فلسفی از قبیل پارادوکس معروف زنون مفهوم نظریه کبیران بالقوه کانت را بکار برده است. در
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 16 صفحه
قسمتی از متن .doc :
سرگذشت ریاضی 1
انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیا اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجه هایش را می داند انجام میداد . اما بزودی مجبور شد وسیله شمارش دقیقتری بوجود آورد . لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده می باشد قدیمی ترین دستگاه شماری است که آثاری از آن در کهن ترین مدارک موجود یعنی نوشته های سومری مشاهده می شود.
سومری ها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین النهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند.
در این موقع مصریها نیز در سواحل سفلای رود نیل تمدنی درخشان پدید آورده بودند. طغیان رود نیل هر سال حدود و ثغور زمین های زراعتی این قوم را محو می کرد. احتیاج به تقسیم مجدد این اراضی موجب رهبری آنها به اولین احکام ساده هندسی گردید. همچنین مبادلات تجارتی و تعیین مقدار باج و خراج سالیانه آنها را وادار به توسعه علم حساب نمود این اطلاعات همگی از روی پاپیروسها و الواحی است که در نتیجه حفاریها بدست آمده و به خط هیروگلیفی مشهور می باشد. قدیمی ترین آنها که مربوط به 1800 سال قبل از میلاد است شامل چند رساله درباره علم حساب و مسائل حساب مقدماتی می باشد، از آن جمله رساله پاپیروس آهس است که در سال 1868 توسط ایسنلر مصرشان مشهور ترجمه شد. سایر تمدن های شرقی نظیر چینی و هندی در ترویج دانش نقش مؤثری نداشته اند و جز برخی نتایج پراکنده که در زیر فشار مفاهیم ماوراءالطبیعه خرد شده است چیزی از آنان در دست نیست.
قریب هزار سال پس از نابودی فرهنگ قدیم مصر و محو تمدن آشور، یونانیان از روی مقدمات پراکنده و بی شکل آنها علمی پدید آوردند که در واقع به عالیترین وجه مرتب و منظم گردیده و عقل و منطق را کاملاً اقناع می نمود.
نخستین دانشمند معروف یونانی طالس ملطلی (639- 548ق.م) است که در پیداش علوم نقش مهمی بعهده داشته و می توان وی را موجد علوم فیزیک، نجوم و هندسه «تشابه» به او کاملا بی اساس است.
در اوایل قرن ششم ق.م فیثاغورث (572-500قبل از میلاد) از اهالی ساموس یونان کم کم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت. فیثاغورث عدد را به خاطر هم آهنگی و نظمی که دارد اساس و مبدأ همه چیز می پنداشتند و بر این عقیده بودند که تمام مفاهیم را به کمک آن می توان بیان نمود.
پس از فیثاغورث باید از زنون فیلسوف و ریاضیادان یونانی که در 490ق.م در ایلیا متولد شده است نام ببریم.
کاربرد ریاضی در مکانیک:
کاربرد ریاضی در علوم مختلف انکارناپذیر است. برای مثال مبحث آنالیز تابعی در مکانیک کوانتومی، کاربرد بسیاری زیادی دارد و یا در بیشتر رشتههای مهندسی معادله «لاپ لاسی» که یک معادله ریاضی است، مورد استفاده قرار میگیرد. در جامعهشناسی نیز نظریه احتمال و نظریه گروهها نقش بسیار مهمی ایفا میکند. در کل باید گفت که همه صنایع ،زیر ساخت ریاضی دارند و به همین دلیل در همه مراکز صنعتی و تحقیقاتی دنیا، ریاضیدانها در کنار مهندسان و دانشمندان سایر علوم حضوری فعال دارند و آنچه در نهایت ارائه میشود، نتیجه کار تیمی آنهاست.»
دکتر ریاضی از اساتید دانشگاه در مورد فرصتهای شغلی موجود در ایران میگوید:
اگر در جامعه ما مشاغل جنبه علمی داشته باشند، قطعا به تعداد قابل توجهی ریاضیدان نیاز خواهیم داشت چون یک ریاضیدان میتواند مشکلات را به روش علمی حل کند. البته این به آن معنا نیست که در حال حاضر هیچ فرصت شغلی برای یک ریاضیدان وجود ندارد اما باید حضور ریاضیدانها در مراکز تحقیقاتی و صنعتی پررنگتر باشد.»
هرچقدر که شغل یک فرد تخصصیتر شود، میزان ریاضیاتی که لازم دارد، بیشتر میگردد.
برای مثال یک مهندس الکترونیک از آنالیز تابعی و فرآیندهای تصادفی استفاده میکند و یا یک برنامهریز پروژههای اقتصادی از مطالب پیشرفته آماری مانند سریهای زمانی ، به عنوان ابزار کار یاری میگیرد. به همین دلیل امروزه تربیت متخصصان علم ریاضی، یعنی افرادی که قادر هستند ریاضیات مورد نیاز را آموزش داده و یا تولید کنند، اهمیت بسیار زیادی دارد. چرا که لازمه پیشرفت در تکنولوژی ، توجه به دانش ریاضی میباشد.
کاربرد دیگری از ریاضی :
راز مکانیک تکثیر میکروب ها کشف شد
دانشمندان آمریکایی مدل ریاضی جدیدی را برای حل مسئله مکانیک تکثیر میکروب ها ارائه کرده اند که براساس آن می توان توضیح داد که باکتری ها چگونه خود را به دو تکه تکثیر می کنند.
به گزارش خبرگزاری مهر، محققان دانشگاه جان هاپکینز بالتیمر با بررسی باکتری "اشیروشیراکولا" که در دستگاه گوارش انسان زندگی می کند و در دسته باکتری های مفید است، توانستند معمای چگونگی تکثیر میکروب ها را در یک مدل جدید ریاضی شرح دهند.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 14 صفحه
قسمتی از متن .doc :
الف) تاریخچهایده ی نمایش یک تابع برحسب مجموعه ی کاملی از توابع اولین بار توسط ژوزف فوریه، ریاضیدان و فیزیکدان بین سال های ۱۸۰۶-۱۸۰۲ طی رساله ای در آکادمی علوم راجع به انتشار حرارت، برای نمایش توابع بکار گرفته شد. در واقع برای آنکه یک تابعf(x) به شیوه ای ساده و فشرده نمایش داده شود فوریه اساسا ثابت کرد که می توان از محور هایی استفاده کرد که بکمک مجموعه ایی نامتناهی از توابع سینوس وار ساخته می شوند. بعبارت دیگر فوریه نشان داد که یک تابع f(x) را می توان بوسیله ی حاصل جمع بی نهایت تابع سینوسی و کسینوسی به شکل sin(ax) و cos(ax) نمایش داد. پایه های فوریه بصورت ابزار هایی اساسی، با کاربردهای فوق العاده متواتر در علوم، در آمده اند، زیرا برای نمایش انواع متعددی از توابع و در نتیجه کمین های فیزیکی فراوان بکار می روند. با گذشت زمان ضعف پایه های فوریه نمایان شد مثلا دانشمندان پی بردند پایه های فوریه و نمایش توابع سینوس وار در مورد سیگنال های پیچیده نظری تصاویر، نه تنها ایده آل نیستند بلکه از شرایط مطلوب دورند، بعنوان مثال به شکل کارآمدی قادر به نمایش ساختارهای گذرا نظیر مرزهای موجود در تصاویر نیستند. همچین آنها متوجه شدند تبدیل فوریه فقط برای توابع پایه مورد استفاده قرار می گیرد و برای توابع غیر پایه کار آمد نیست.(البته در سال ۱۹۴۶ با استفاده از توابع پنجره ای، که منجر به تبدیل فوریه ی پنجره ای شداین مشکل حل شد.. در سال ۱۹۰۹ هار اولین کسی بود که به موجک ها اشاره کرد. در سال های ۱۹۳۰ ریاضیدانان به قصد تحلیل ساختارهای تکین موضوعی به فکر اصلاح پایه های فوریه افتادند. و بعد از آن در سال ۱۹۷۰ یک ژئوفیزیکدان فرانسوی به نام ژان مورله متوجه شد که پایه های فوریه بهترین ابزار ممکن در اکتشافات زیر زمین نیستند، این موضوع در آزمایشگاهی متعلق به الف آکیلن منجر به یکی از اکتشافات تبدیل به موجک ها گردید.در سال ۱۹۸۰ ایومیر ریاضیدان فرانسوی، نخستین پایه های موجکی متعامد را کشف کرد(تعامد نوعی از ویژگی ها را بیان می کند که موجب تسهیلات فراوانی در استدلال و محاسبه می شود، پایه های فوریه نیز متعامدند.) در همین سال ها مورله مفهوم موجک و تبدیل موجک را بعنوان یک ابزار برای آنالیز سیگنال زمین لزره وارد کرد و گراسمن فیزیکدان نظری فرانسه نیز فرمول وارونی را برای تبدیل موجک بدست آورد.در سال ۱۹۷۶ میرو و مالت از پایه های موجک متعامد توانسنتد آنالیز چند تفکیکی را بسازند و مالت تجزیه موجک ها و الگوریتم های بازسازی را با بکار بردن آنالیز چند تفکیکی بوجود آورد. در سال ۱۹۹۰ مورنزی همراه با آنتوان موجک ها را به دو بعد و سپس به فضاهایی با ابعد دیگر گسترش دادند و بدین ترتیب بود که آنالیز موجکی پایه گذاری گردید.ب) آشناییآنالیز موجک (Wavelet Analysis) یکی از دستاوردهای نسبتا جدید و هیجان انگیز ریاضیات محض که مبتنی بر چندین دهه پژوهش در آنالیز همساز است، امروزه کاربردهای مهمی در بسیاری از رشته های علوم و مهندسی یافته و امکانات جدیدی برای درک جنبه های ریاضی آن و نیز افزایش کاربردهایش فراهم شده است.در آنالیز موجک هم مانند آنالیز فوریه با بسط تابع ها سروکار داریم ولی این بسط برحسب «موجک ها» انجام می شود.موجک تابع مشخص مفروضی با میانگین صفر است و بسط برحسب انتقالها و اتساعهای این تابع انجام می گیرد، بر خلاف چند جمله ای های مثلثاتی، موجک ها در فضا بصورت موضعی بررسی می شوند و به این ترتیب ارتباط نزدیکتری بین بعضی توابع و ضرایب آن ها امکان پذیر می شود و پایداری عددی بیشتری در باز سازی و محاسبات فراهم می گردد. هر کاربردی را که مبتنی بر تبدیل سریع فوریه است می توان با استفاده از موجک ها فومول بندی کرد و اطلاعات فضایی (یا زمانی) موضعی بیشتری بدست آورد. بطور کلی، این موضوع بر پردازش سیگنال و تصویر و الگوریتم های عددی سریع برای محاسبه ی عملگرهای انتگرالی اثر می گذارد.آنالیز موجک حاصل ۵۰ سال کار ریاضی (نظریه ی لیتلوود – پیلی و کالدرون – زیگموند) است که طی آن، با توجه به مشکلاتی که در پاسخ دادن به ساده ترین پرسش های مربوط به تبدیل فوریه وجود داشت، جانشینهای انعطاف پذیر ساده تری از طریق آنالیز همساز ارائه شدند. مستقل از این نظریه که درون ریاضیات محض جای دارد، صورتهای مختلفی از این رهیافت چند مقیاسی (multi Scale) را در طی دهه ی گذشته در پردازش تصویر، آکوستیک، کدگذاری(به شکل فیلترهای آیینه ای متعامد و الگوریتمهای هرمی)، و استخراج نفت دیده ایم.ج) کاربردهاآنالیز موجک همراه با تبدیل سریع فوریه در تحلیل سیگنالهای گذرایی که سریعا تغییر می کنند، صدا و سیگنالهای صوتی، جریان های الکتریکی در مغز، صداهای زیر آبی ضربه ای و داده های طیف نمایی NMR، و در کنترل نیروگاههای برق از طریق صفحه ی نمایش کامپیوتر بکار رفته است. و نیز بعنوان ابزاری علمی، برای روشن ساختن ساختارهای پیچیده ای که در تلاطم ظاهر می شوند، جریان های جوی، و در بررسی ساختارهای ستاره ای از آن استفاده شده است. این آنالیز به عنوان یک ابزار عددی می تواند مانند تبدیل سریع فوریه تا حد زیادی از پیچیدگی محاسبات بزرگ مقیاس بکاهد، بدین ترتیب که با تغییر هموار ضریب، ماتریس های متراکم را به شکل تنکی که به سرعت قابل محاسبه باشد در آورد. راحتی و سادگی این آنالیز باعث ساختن تراشه هایی شده است که قادر به کدگذاری به نحوی بسیار کارا، و فشرده سازی سیگنالها و تصاویرند.آنالیز موجک امروزه کاربردهای فراوانی پیدا کرده است که از آن جمله می توان به کاربرد آن در تصویر برداری پزشکی (MRI) و سی تی اسکن (CAT)، جداسازی بافت های مغزی از تصاویر تشدید مغناطیس، تشخیص خودکار خوشه های میکروکلسیفیکاسیون، تحلیل تصاویر طیفی تشدید مغناطیسی (MR Spectrorscopy) و عملکردهای تشدید مغناطیسی (F MRI) اشاره نمود.
ریاضیات علم نظم است و موضوع آن یافتن، توصیف و درک نظمی است که در وضعیتهای ظاهرا پیچیده نهفته است و ابزارهای اصولی این علم ، مفاهیمی هستند که ما را قادر میسازند تا این نظم را توصیف کنیم» .
دکتر ریاضی استاد ریاضی و رییس دانشگاه صنعتی امیرکبیر نیز در معرفی این علم میگوید: «ریاضیات علم مدلدهی به سایر علوم است. یعنی زبان مشترک نظریات علمی سایر علوم ، علم ریاضی میباشد و امروزه اگر علمی را نتوان به زبان ریاضی بیان کرد، علم نمیباشد.»
اهداف گرایشهای مختلف این رشته عبارتنداز:
۱- ریاضی کاربردی: هدف از این شاخه تربیت کارشناسی است که با اندوخته کافی از دانش ریاضی، توانایی تحلیل کمی از مسایل صنعتی، اقتصادی و برنامهریزی را کسب نموده، توان ادامه تحصیل در سطوح بالاتر را داشته باشد.
۲- ریاضی محض: هدف از این شاخه ریاضی، تربیت متخصصان جامع در علوم ریاضی است که آمادگی لازم برای ادامه تحصیل در جهت اشتغال به پژوهش و نیز انتقال علم ریاضی در سطوح دانشگاهی را داشته باشند. آشنایی با تجزیه و تحلیل مسایل در قالب ریاضی و مدلسازی ریاضی نیز از اهداف دیگر شاخه ریاضی محض است.
۳- ریاضی دبیری: هدف از شاخه دبیری تربیت دبیران و کارشناسان متخصص آموزش ریاضی است که پاسخگوی نیازهای آموزش و پرورش کشور در سطوح پیشدانشگاهی باشند.
ماهیت :
« ریاضیات بر خلاف تصور بعضی از افراد یکسری فرمول و قواعد نیست که همیشه و در همهجا بتوان از آن استفاده کرد بلکه ریاضیات درست فهمیدن صورت مساله و درست فکر کردن برای رسیدن به جواب است و برای به دست آوردن این توانایی ، دانشجو باید صبر و پشتکار لازم را داشته باشد تا بتواند حتی به مدت چندین ساعت در مورد یک مساله ریاضی فکر کرده و در نهایت با ابتکار و خلاقیت آن را حل کند»
فارغالتحصیلان این رشته میتوانند پس از پایان تحصیلات، در ادارات دولتی برای مسوولیتهایی که به نوعی با تجزیه و تحلیل مسایل سروکار دارند، در بخش خصوصی در اموری همانند طراحی سیستمها در امر بهینهسازی و بهرهوری ، در بخش صنعت برای اموری همانند مدلسازیهای ریاضی و در آموزش و پرورش و … ، مسوولیتهای متفاوتی را به عهده گیرند.
گرایشهای مقطع لیسانس:
«رییس اتحادیه بینالمللی ریاضیدانان جهان در یازدهمین اجلاس آکادمی جهان سوم که اخیرا در تهران برگزار شد، عنوان کرد که بهتر است بگوییم ریاضیات و کاربردهای آن، نه اینکه ریاضیات را به محض و کاربردی تفکیک کنیم چرا که به اعتقاد ریاضیدانها هیچ مقوله ریاضی نیست که روزی کاربردی برای آن پیدا نشود.»
«ریاضیات محض بیشتر به قضایا و استدلالها ، منطق موجود در آنها و چگونگی اثباتشان میپردازد اما در ریاضیات کاربردی چگونه استفاده کردن و به کارگرفتن قضایا، آموزش داده میشود، به عبارت دیگر در این شاخه، کاربرد ریاضیات در مسایل موجود در جامعه بیان میگردد»