لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 15
اگر انحراف اشعه از محوری در سطح کانونی باشد ما از انحراف کروی عرضی و متقاطع صحبت میکنیم. دسته شعاعی از اشعهها موازی با محوری است که پس از شکست دوباره نور و مجموعهای از مخروطها شکل میگیرد و روی محور عدسیها قرار دارد (شکل 82).
سطحی که این مجموعه از مخروطها را در بر گرفته است سطح خورنده نام دارد. و برش عرضی این سطح توسط هر سطح صافی که از این اشعه میگذرد منحنی خورنده نام دارد. شکل 82 نشان دهنده این منحنی در انحراف گوی است. اگر برش عرضی توسط سطوح صاف عمود بر محور دوائری از پرتو مختلف باشند موج موازیشکلی از اشعهها توسط نقطه درخشندهای روی محور به وجود میآید که از سطح عدسی دور است. در اینجا دائرههای روشن نقش مهمی را در عکسهای آن نقطه در سطوح مختلف ایفا میکنند. کانون F در تقریب نسبی تعیین میشود و نقش کانون فقط برای اشعهها است. به عنوان مثال اشعههایی که از طریق عدسیهای نزدیک محور میگذرند اینطور هستند. کوچکترین و روشنترین تصویر از آن نقطه توسط عدسیهایی در سطح m به وجود میآید که از کانون F نمیگذرد.
بنابراین برای کاهش انحراف عرضی کروی یا گوی مانند در عدسیها، ما باید کانون مناسبی از این عدسیها را تعیین کنیم که به عنوان مثال توسط در نظر گرفتن کانون در نه در F عکس به وجود میآید. عدسیهای همگرا دارای انحراف طولی منحنی گوی مانند است. به عنوان مثال اشعههای غیر paraxial در محور در نقطهای نزدیک عدسی از کانون paraxial همدیگر را قطع میکنند. عدسیهای واگرا دارای انحراف گوی مانند در جهت مخالف هستند. انحراف گوی مانند از لحاظ عملی توسط انتخاب مناسب سطوح و دستگاههایی از عدسی حذف میشوند. و همان برای انحراف گوی مانند آینهها هم صحت دارد.
Coma
اگر یک لکه روشن روی امواج گستردهای که روی محور نوری سیستم قرار ندارند تشکیل شود عکس آن دایره روشن نیست همان طوریکه در مرحله قبل هم بیان شد و شکل آنان نامتقارن فرض میشود. برخی اوقات این شکل، یادآور ذوزنب است گرچه نام این انحراف میباشد. coma به طور قابل توجهی توسط انحنای درست مشخصههای سیستم ضعیف میشود.
انحرافی که توسط اشعه های مایل محور فرعی به وجود میآیند
این سطوح از طریق محور سیستم نوری میگذرد که سطوح جنوبی نام دارد. اگر امواج استوانهای شکل اشعه در این سطح صاف در یک زاویه کاملاً بزرگ با محور وجود داشته باشند آنگاه پس از پرتو دوباره برای طولانی مدت باقی نمیمانند. اشعههایی که در سطح جنوبی قرار دارند به روشی که متفاوت از شکست نور اشعههایی است که موازی با آنها هستند شکسته میشوند. بدین ترتیب اشعههای موج پس از شکست نور موازی نیستند. بنابراین موج برش عرضی متفاوت از فاصلهای از عدسیها پس از انکسار نور است. در همان فاصله مشخص از عدسیها، برش عرضی بخشی از مسیری (خطی) است که بر سطح جنوبی عمود و قائم است.
پس از این، این خط به یک قرینه تبدیل میشود که پارامترها با فاصله از عدسی تغییر میکنند. در یک فاصله مشخص از عدسیها، برش عرضی دائرهای شکل است دوباره بیضی شکل میشود و در نهایت بخشی از خط در سطح جنوبی قرار دارد. یک اینچنین انحرافی آستیگماتیسم امواج متمایل نام دارد. ابتدا اجازه دهید تا نمونهای از انکسار نور موج را که در بالا بدان اشاره شد تفسیر کنیم. پس از عبور از طریق یک عدسی، موج در سطح جنوبی و در سطحی عمود بر سطح جنوبی و موازی محورها قرار میگیرد که به عبارت دیگر سطح SAGITTAL است. کانون برای این سطوح متفاوت است.
در شکل 80، کانون جنوبی روی سطح I و کانون SAGITTAL روی سطح III قرار دارد. در سطح II اشعهها نیمه بالایی موج استوانهای شکل درنیمه پائین موج دائره شکل قرار دارند. در حالی که این متعلق به نیمه پائینی موجی است که در نیمه بالایی دائره قرار دارد. اشعههایی که از نیمه راست به موج استوانهای شکل میرسند روی نیمه راست دائره در سطح II قرار دارند. در حالی که اشعههایی که از نیمه چپ موج میآیند روی نیمه چپ دائره قرار میگیرند. مکان سطوح درکانون جنوبی و sagittal بستگی به زاویه انحراف موج در محور نوری دارد. بنابراین سطوحی که شامل کانون هستند توسط کانون جنوبی و sagittal شکل میگیرند و بر هم منطبق نیستند. واضح است که این سطوح فقط در نقطه F روی محور نوری به هم میرسند در این نقطه متعامد نیستند (شکل 83). این نوع انحراف انحنای سطح عکس (تصویر) نام دارد. این کجراهی (انحراف) زمانی از بین میرود که وضعیتpetzval ارضا کننده باشد و ما در این کتاب راجع به آن بحث نمیکنیم.
میزان بزرگنمایی سیستم معمولاً به زاویه انحراف اشعه در محور نوری بستگی دارد. در زوایای بزرگتر، این مشهودتر است و تصویر تشابهش را با جسم از دست میدهد. در نتیجه یک شبکه (توری) توسط خطوط راست شکل میگیرد که به داخل شبکه توری مانند با خطوط قوس دار انتقال مییابد. (شکل 84). این نوع انحراف و کجراهی کجی نام دارد. انحراف هندسی توسط انتخاب درست عدسیها، مشخصات آنها و غیره کاهش مییابد. در حال حاضر، این امکان وجود دارد که همه انحرافات و کجراهی را حداقل برای ترسیم آنها در یک سطح قابل قبول از بین ببریم.
انحراف رنگی
این انحراف با انتخاب ترکیبی از عدسیهایی که عدم انطباق تصاویر در طول موجهای مختلف کاهش میدهد از بین میروند. ولی ممکن است که توان انطباق دقیقی از تصویر را برای همه طول موجهای طیف به دست آوریم. معمولاً انطباق دقیق تصویر برای 2 طول موج مختلف در نظر گرفته شده است و انطباق برای طول موجهای باقی مانده دارای میزان خاصی از صحت و درستی است، این فرایند تابرنگسازی سیستم نوری نام دارد. تصاویری با 2 طول موج متفاوت بر هم منطبق هستند اگر سیستم دارای عناصر یکسانی برای این طولهای موج باشد. و این به مقدار یکسانی از 3 مقدار ثابت حدسی میرسد. به عبارت دیگر، حداقل دارای پارامترهای مستقلی به منظور رسیدن به رنگسازی هستیم.
مقادیر این پارامترها به عنوان راه حلی برای 3 معادله بیان شده از عضوهای مهم برای هر دو طول موج در نظر گرفته شدهاند و همیشه این امکان وجود دارد که یک سیستم نوری انتخاب کنیم که نیاز به 3 پارامتر جداگانه دارد. این مسئله توسط این حقیقت که فقط کافی است تا به رنگسازی نسبی در اهداف عملی برسیم حل میشود. واضح است که رنگ سازی می تواند در اصل برای 3 یا طول موجهای بیشتری درنظر گرفته شود. برای همین منظور، ما باید سیستمی را به وجود آوریم که به طور کافی دارای تعداد زیادی پارامتر است و این پارامترها به درستی انتخاب شدهاند. رنگ سازی شامل بیشتر از 2 طول موج است که در نورشناسی استفاده شده است.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 12
بیان مسئله
کشور ایران با جمعیت دانش آموزی 18 میلیون نفر، یکی از جوانترین جوامع معاصر میباشد و لذا در جامعه ای با این ساختار جمعیتی، بهداشت آموزش دو موضوع مهم پیش روی برنامه ریزان و سیاستگذاران خواهد بود. از سویی کودکان، سرمایه های اصلی کشور هستند و پرورش آن ها از هدف های اصلی برنامه های توسعه اجتماعی، اقتصادی میباشد. برای دستیابی به اهداف توسعه باید تامین بالاترین سطح سلامت جسمی، روانی، اجتماعی ومعنوی کودکان به عنوان ضرورت و اولویت برنامه های توسعه ای مورد توجه قرار گیرد. بعد از خانواده، مدرسه مهمترین نقش را در سلامت کودک دارد. دانش آموز در مدرسه علاوه بر یادگیری مهارت خواندن و نوشتن دانش ها، نگرش ها و رفتارهای جدید را میآموزد این رفتارها علاوه بر تاثیر بر سلامت فردی، نقش تعیین کننده در سلامت خانواده و جامعه دارد. برای توسعه سلامت دانش آموزان و کارکنان مدرسه، خانواده ها و افراد جامعه مدرسه جایگاه ویژه ای است. کودک ساعات زیادی را در مدرسه بسر میبرد، در آنجا رشد مییابد و تکامل پیدا میکند. بنابراین آشنا ساختن کارکنان رده های مختلف بهداشتی با بهداشت مدارس امری ضروری است. تا ضمن کسب توانایی لازم برای اجرای مطلوب برنامه های بهداشت مدارس، قادر باشند با انجام وظایف خود در جنبه آموزش معلمین و خانواده ها در باره موضوعات بهداشتی مدارس و دانش آموزان، رسالت خویش را در تحقق اهداف بهداشتی محقق سازند. این بخش به گونه ای تدوین شده است که فراگیر پس از مطالعه با برخی مفاهیم و اصول کلی بهداشت مدارس آشنا شده و قادر به ارائه آن ها به گروه هدف باشد.
1 ـ سیر تاریخی بهداشت مدارس در کشورهای مختلف و ایران
الف ـ تاریخچه بهداشت مدارس در کشورهای مختلف
توجه به اهمیت و پرورش بهداشت مدارس در کشورهای مختلف جهان همزمان نبوده است و از نظر تاریخی کیفیت عمل و برنامه ریزی و فعالیت های بهداشت مدارس در کشورهای مختلف متفاوت میباشد. شاید اولین اقدام در زمینه بهداشت مدارس مربوط به کشور فرانسه باشد، این کشور همراه طرح آموزش علمی خود در سال 1793 میلادی ماده ای را در رابطه با بهداشت مدارس و انتخاب یک نفر پزشک به عنوان مسئول بهداشت مدارس به تصویب رساند (1).
در ایالات متحده آمریکا ویلیام الکوت (Alcott) اولین اقدام در زمینه بهداشت مدرسه را در سال 1837 و در باره نحوه ساختمان و محیط مدرسه نمود (2).
در کشور هلند بهداری آموزشگاه ها در سال 1868 با استخدام دو نفر پزشک پایه گذاری شد، و سپس در سال 1942 اولین قانون مربوط به بهداشت مدارس به تصویب رسید.
در انگلستان آغاز کار بهداشت مدارس از سال 1907 و تحت نظارت ادارات آموزش محلی درآمد، در سال 1919 ریاست پزشکان وزرات بهداری با حفظ سمت به ریاست بهداشت مدارس نیز مصوب شد و در بیشتر مدارس محل خاصی هم برای کادر بهداشتی در نظر گرفته شد (3).
ب ـ تاریخچه بهداشت مدارس و تحولات سازمانی آن در ایران
در سال 1290 شمسی مدارس جدید در ایران تاسیس گردید در سال 1293 هیاتی از پزشکان ایرانی و اروپایی مقیم تهران تشکیلاتی به نام مجلس حفظالصحه برای مراقبت بهداشت عمومی بوجود آوردند. در اواخر همین سال دکتر علی اکبر خان (اعتمادالسلطنه) به سمت مفتش صحی مدارس منصوب شد.
در سال 1314 سازمانی بنام "صحیه مدارس" در وزارت معارف و اوقاف و صنایع مستظرفه آنزمان بوجود آمد. این اداره در سال 1318 ضمیمه دانشکده پزشکی تهران گردید. آیین نامه بهداری مدارس در سال 1315 در دو فصل و بیست و یک ماده تصویب گردید. در سال 1320 دو باره به عنوان دفتر کل بهداری آموزشگاه ها به تشکیلات وزارت معارف پیوست و پس از آن به اداره کل بهداری آموزشگاه ها تغییر نام داد.
در سال 1326 صحیه مدارس، مجددا ضمیمه وزارت فرهنگ شد. در سال 1348 سازمان اداره بهداری آموزشگاه های کل کشور به اداره کل بهداری آموزشگاه های کشور تغییر نام یافت و در سال 1350 به منظور تربیت نیروی انسانی برای اولین بار دوره دو ساله آموزش مراقبین بهداشت برقرار گردید. در اسفند ماه سال 1375 اداره کل بهداری آموزشگاه ها با تغییر نام به اداره کل بهداشت مدارس، از وزارت آموزش و پرورش جدا و ضمیمه وزارت بهداری شد. پس از مدتی این اداره کل منحل و بهداشت مدارس بخشی از فعالیت های اداره کل بهداشت خانواده را تشکیل داد. در سال 1373 بعد از انتقال مراقبین بهداشت به آموزش و پرورش، بهداشت مدارس از اداره کل بهداشت خانواده منتزع گردید و به صورت اداره مستقل در وزارت بهداشت و درمان فعالیت نمود. در سال 1379 با تصمیم معاون بهداشتی وقت بهداشت مدارس ضمیمه دفتر بهداشت دهان و دندان گردید. در حال حاضر با تصویب ساختار تشکیلاتی جدید وزارت بهداشت درمان و آموزش پزشکی وظیفه بهداشت مدارس قانونا به عهده دفتر سلامت جوانان و مدارس میباشد.
2 ـ اهمیت، اهداف و راهبردهای اساسی بهداشت مدارس
1ـ2ـ اهمیت بهداشت مدارس
مدرسه به عنوان یک ساختار اجتماعی، برای آموزش، محیطی را فراهم مینماید که کودک در آن سال های حساس زندگی خود را سپری میکند. هنگامی که کودک، دبستان را آغاز میکند شش سال از عمرش گذشته است و از محیط خانه به واحد اجتماعی مدرسه وارد و با محیط و با خطرات تهدید کننده سلامتی، تماس بیشتری پیدا میکند. کودک در مدرسه، فردی از افراد جامعه کوچک مدرسه است، به علاوه عضوی از اعضاء یک خانواده نیز میباشد که مجموع آن ها جامعه واجتماع را تشکیل میدهد لذا با ارائه خدمات در مدارس خدمات بهداشتی به جامعه نیز گسترش مییابد. بهداشت مدارس در سیاست بهداشتی و راهبرد کلی سرمایه گذاری های بهداشتی درمانی کشور و مجموعه برنامه های توسعه و رفاه اجتماعی جایگاه و اهمیت ویژه دارد زیرا:
· مدرسه بعد از خانواده مهمترین نقش را در سلامت کودک دارد. دانش آموز در مدرسه علاوه بر یادگیری مهارت خواندن و نوشتن، اطلاعات، نگرش ها و رفتارهای جدید را میآموزد.
· بیش از 18 میلیون دانش آموز در 9700 آموزشگاه سراسر کشور در کنار900000 معلم به تحصیل اشتغال دارند، به علاوه نزدیک به دو سوم از مدارس به ویژه مدارس ابتدایی در نقاط روستایی کشور استقرار دارند. کثرت جمعیت دانش آموزان و وضعیت پراکندگی و استقرار مدارس بیانگر اهمیت بهداشت مدارس میباشد.
· علی رغم تلاش ها و موفقیت های سال های اخیر، هنوز تعدادی از مدارس کشور فاقد امکانات و تسهیلات بهداشتی میباشند و فضاهای آموزشی از استانداردهای لازم برخوردار نمیباشند همچنین هنوز بیماری های واگیردار، بیماری های مختلف چشم، دهان و دندان، اختلالات شنوایی، قلبی و عروقی، بیماری های انگلی، کمبودهای تغذیه ای و بالاخره اختلالات رفتاری، سلامت دانش آموزان را تهدید میکند و موجب مشکلاتی در فراگیری و افت تحصیلی آن ها میشود و این در حالیست که شناخت به موقع و رفع مشکلات دانش آموزان، اقدامی موثر و سنجیده در بهبود سلامت و پیشرفت آموزش آنها خواهد بود.
اگر در هر یک از مراحل اولیه زندگی نیازهای روانی، اجتماعی، فیزیولوژیک و یا آموزشی دانش آموزان به موقع تامین نشود در دوره های بعدی زندگی جبران عوارض ایجاد شده امکان پذیر نیست و یا به دشواری جبران میشود برای رشد و توسعه یک نسل و بهبود و تکامل نسل بعد، راهکار اصولی آنست که برای بهداشت مدارس سرمایه گذاری شود.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 14
مقدمه
هدف از انجام این پروژه بررسی سطح نمرات فیزیک دو کلاس تجربی در یک دبیرستان است می خواهیم بدانیم سطح نمرات کدام کلاس بالاتر بوده برای این کار ابتدا لیست نمرات فیزیک را از دبیر مربوطه تهیه کرده و بعد از انجام عملیات آماری لازم شامل :
الف – کشیدن جدول فراوانی :
ب- رسم نمودارها (میله ای – مستطیلی – چند بر – دایره ای – ساقه وبرگ و جعبه ای )
ج- شاخص های مرکزی (مد ،میانه ، میانگین وزن دار، میانگین جدول فراوانی ، واریانس ، انحراف معیار و ضریب تغییرات)
به بررسی سطح نمرات دو کلاس پرداختیم.
در اینجا، جا دارد از استاد فیزیک سرکار خانم الهامی کمال تشکر را داشته باشیم که بدون همکاری ایشان به پایان رساندن این پروژه میسر نبود.
الف- جدول فراوانی :
برای کشیدن جدول فراوانی جمعاً 24 نفر را از هر دو کلاس به طور تصادفی انتخاب کرده و آن را در سه دسته طبقه بندی نموده و عملیات آماری لازم را انجام دادیم :
دادهای کلاس سوم تجربی (1)
11-14-14-14-16-17-17-17-18-18-18-19
داده های کلاس سوم تجربی (2)
9-9-10-11-12-15-16-16-16-17-18-18
جدول فراوانی 1=
به پایین جدول مراجعه شده
فراوانی تجمعی
درصد فراوانی نسبی
فراوانی نسبی
مرکز دسته
فراوانی مطلق
خط ونشان
دسته ها
1
1
1
4
3
111
12
8
1111
111
12
جمع کل
لطفاً این مورد را به بالای جدول اضافه کنید
کوچکترین
دامنه تغییرات
بزرگترین داده ها
تعداد طبقات
طول دسته
دسته ما :
برای چگونگی دسته بندی باید ابتدا از فرمول استفاده کرده و دامنه تغییرات را بدست آوریم بعد از بدست آوردن دامنه ی تغییرات باید بفهمیم که داده ها یمان را در چند دسته طبقه بندی کرده و طول طبقات را چگونه بدست آوریم برای پیدا کردن طول طبقات از فرمول استفاده کرد طول طبقات به ما نشان می دهد که هر دسته باید چند تا چند تا بالا رود . تعداد دسته ها را هم همان طور که قبلاً ذکر شده در نظر گرفتیم .
خط و نشان :
خط و نشان در جدول فراوانی نشان دهنده میزان داده های آن دسته در کل داده هاست که با خطوطی مشخص می شود در کشیدن خط و نشان برای هر عدد یک خط گذاشته می شود تنها موردی که قابل تذکر است در عدد پنج خط پنجم چهار خط اولیه را قطع می کند (1111) این علامت عدد 5 را نشان می دهد)
فراوانی مطلق : فراوانی مطلق در واقع همان خط و نشان است که میزان فراوانی داده های دسته ی مورد نظر را در کل داده ها به ما نشان می دهد با این تفاوت که در فراوانی مطلق میزان با عدد مشخص می شود.
مرکز دسته :
برای بدست آوردن مرکز دسته از فرمول استفاده می کنیم طریقه ی استفاده کرده به این صورتی است که کران بالایی و پایینی هر دسته را باهم جمع و بر دو تقسیم می کنیم .
فراوانی نسبی و درصد آن برای بدست آوردن فراوانی نسبی از فرمول استفاده می کنیم همان طور که فرمول نشان می دهد باید فراوانی مطلق را به کل فراوانی ها ( جمع همه فراوانی یا میزان کل داده ها) تقسیم نموده و برای بدست آوردن درصد آن کافی است عدد به دست آمده از فراوانی نسبی × 100 کنیم
فراونی تجمعی :
فراوانی تجمعی
درصد فراوانی نسبی
فراوانی نسبی
مرکز دسته
فراوانی مطلق
خط ونشان
دسته ها
4
4
1111
5
1
1
12
7
1111
11
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 15
اگر انحراف اشعه از محوری در سطح کانونی باشد ما از انحراف کروی عرضی و متقاطع صحبت میکنیم. دسته شعاعی از اشعهها موازی با محوری است که پس از شکست دوباره نور و مجموعهای از مخروطها شکل میگیرد و روی محور عدسیها قرار دارد (شکل 82).
سطحی که این مجموعه از مخروطها را در بر گرفته است سطح خورنده نام دارد. و برش عرضی این سطح توسط هر سطح صافی که از این اشعه میگذرد منحنی خورنده نام دارد. شکل 82 نشان دهنده این منحنی در انحراف گوی است. اگر برش عرضی توسط سطوح صاف عمود بر محور دوائری از پرتو مختلف باشند موج موازیشکلی از اشعهها توسط نقطه درخشندهای روی محور به وجود میآید که از سطح عدسی دور است. در اینجا دائرههای روشن نقش مهمی را در عکسهای آن نقطه در سطوح مختلف ایفا میکنند. کانون F در تقریب نسبی تعیین میشود و نقش کانون فقط برای اشعهها است. به عنوان مثال اشعههایی که از طریق عدسیهای نزدیک محور میگذرند اینطور هستند. کوچکترین و روشنترین تصویر از آن نقطه توسط عدسیهایی در سطح m به وجود میآید که از کانون F نمیگذرد.
بنابراین برای کاهش انحراف عرضی کروی یا گوی مانند در عدسیها، ما باید کانون مناسبی از این عدسیها را تعیین کنیم که به عنوان مثال توسط در نظر گرفتن کانون در نه در F عکس به وجود میآید. عدسیهای همگرا دارای انحراف طولی منحنی گوی مانند است. به عنوان مثال اشعههای غیر paraxial در محور در نقطهای نزدیک عدسی از کانون paraxial همدیگر را قطع میکنند. عدسیهای واگرا دارای انحراف گوی مانند در جهت مخالف هستند. انحراف گوی مانند از لحاظ عملی توسط انتخاب مناسب سطوح و دستگاههایی از عدسی حذف میشوند. و همان برای انحراف گوی مانند آینهها هم صحت دارد.
Coma
اگر یک لکه روشن روی امواج گستردهای که روی محور نوری سیستم قرار ندارند تشکیل شود عکس آن دایره روشن نیست همان طوریکه در مرحله قبل هم بیان شد و شکل آنان نامتقارن فرض میشود. برخی اوقات این شکل، یادآور ذوزنب است گرچه نام این انحراف میباشد. coma به طور قابل توجهی توسط انحنای درست مشخصههای سیستم ضعیف میشود.
انحرافی که توسط اشعه های مایل محور فرعی به وجود میآیند
این سطوح از طریق محور سیستم نوری میگذرد که سطوح جنوبی نام دارد. اگر امواج استوانهای شکل اشعه در این سطح صاف در یک زاویه کاملاً بزرگ با محور وجود داشته باشند آنگاه پس از پرتو دوباره برای طولانی مدت باقی نمیمانند. اشعههایی که در سطح جنوبی قرار دارند به روشی که متفاوت از شکست نور اشعههایی است که موازی با آنها هستند شکسته میشوند. بدین ترتیب اشعههای موج پس از شکست نور موازی نیستند. بنابراین موج برش عرضی متفاوت از فاصلهای از عدسیها پس از انکسار نور است. در همان فاصله مشخص از عدسیها، برش عرضی بخشی از مسیری (خطی) است که بر سطح جنوبی عمود و قائم است.
پس از این، این خط به یک قرینه تبدیل میشود که پارامترها با فاصله از عدسی تغییر میکنند. در یک فاصله مشخص از عدسیها، برش عرضی دائرهای شکل است دوباره بیضی شکل میشود و در نهایت بخشی از خط در سطح جنوبی قرار دارد. یک اینچنین انحرافی آستیگماتیسم امواج متمایل نام دارد. ابتدا اجازه دهید تا نمونهای از انکسار نور موج را که در بالا بدان اشاره شد تفسیر کنیم. پس از عبور از طریق یک عدسی، موج در سطح جنوبی و در سطحی عمود بر سطح جنوبی و موازی محورها قرار میگیرد که به عبارت دیگر سطح SAGITTAL است. کانون برای این سطوح متفاوت است.
در شکل 80، کانون جنوبی روی سطح I و کانون SAGITTAL روی سطح III قرار دارد. در سطح II اشعهها نیمه بالایی موج استوانهای شکل درنیمه پائین موج دائره شکل قرار دارند. در حالی که این متعلق به نیمه پائینی موجی است که در نیمه بالایی دائره قرار دارد. اشعههایی که از نیمه راست به موج استوانهای شکل میرسند روی نیمه راست دائره در سطح II قرار دارند. در حالی که اشعههایی که از نیمه چپ موج میآیند روی نیمه چپ دائره قرار میگیرند. مکان سطوح درکانون جنوبی و sagittal بستگی به زاویه انحراف موج در محور نوری دارد. بنابراین سطوحی که شامل کانون هستند توسط کانون جنوبی و sagittal شکل میگیرند و بر هم منطبق نیستند. واضح است که این سطوح فقط در نقطه F روی محور نوری به هم میرسند در این نقطه متعامد نیستند (شکل 83). این نوع انحراف انحنای سطح عکس (تصویر) نام دارد. این کجراهی (انحراف) زمانی از بین میرود که وضعیتpetzval ارضا کننده باشد و ما در این کتاب راجع به آن بحث نمیکنیم.
میزان بزرگنمایی سیستم معمولاً به زاویه انحراف اشعه در محور نوری بستگی دارد. در زوایای بزرگتر، این مشهودتر است و تصویر تشابهش را با جسم از دست میدهد. در نتیجه یک شبکه (توری) توسط خطوط راست شکل میگیرد که به داخل شبکه توری مانند با خطوط قوس دار انتقال مییابد. (شکل 84). این نوع انحراف و کجراهی کجی نام دارد. انحراف هندسی توسط انتخاب درست عدسیها، مشخصات آنها و غیره کاهش مییابد. در حال حاضر، این امکان وجود دارد که همه انحرافات و کجراهی را حداقل برای ترسیم آنها در یک سطح قابل قبول از بین ببریم.
انحراف رنگی
این انحراف با انتخاب ترکیبی از عدسیهایی که عدم انطباق تصاویر در طول موجهای مختلف کاهش میدهد از بین میروند. ولی ممکن است که توان انطباق دقیقی از تصویر را برای همه طول موجهای طیف به دست آوریم. معمولاً انطباق دقیق تصویر برای 2 طول موج مختلف در نظر گرفته شده است و انطباق برای طول موجهای باقی مانده دارای میزان خاصی از صحت و درستی است، این فرایند تابرنگسازی سیستم نوری نام دارد. تصاویری با 2 طول موج متفاوت بر هم منطبق هستند اگر سیستم دارای عناصر یکسانی برای این طولهای موج باشد. و این به مقدار یکسانی از 3 مقدار ثابت حدسی میرسد. به عبارت دیگر، حداقل دارای پارامترهای مستقلی به منظور رسیدن به رنگسازی هستیم.
مقادیر این پارامترها به عنوان راه حلی برای 3 معادله بیان شده از عضوهای مهم برای هر دو طول موج در نظر گرفته شدهاند و همیشه این امکان وجود دارد که یک سیستم نوری انتخاب کنیم که نیاز به 3 پارامتر جداگانه دارد. این مسئله توسط این حقیقت که فقط کافی است تا به رنگسازی نسبی در اهداف عملی برسیم حل میشود. واضح است که رنگ سازی می تواند در اصل برای 3 یا طول موجهای بیشتری درنظر گرفته شود. برای همین منظور، ما باید سیستمی را به وجود آوریم که به طور کافی دارای تعداد زیادی پارامتر است و این پارامترها به درستی انتخاب شدهاند. رنگ سازی شامل بیشتر از 2 طول موج است که در نورشناسی استفاده شده است.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 56
پهنای باند، سطح نویز، حساسیت محوری، drift، خطی بودن، محدوده دینامیک، قابلیت ابقا شوک و مصرف توان می باشد. فرکانس رزونانس نیز مهم است زیرا محدوده مفید فرکانس بالای سنسور معمولاً کسری از فرکانس رزونانس است، در حالی که حساسیت و جابجایی به ازای هر g شتاب را تعیین می کند.
به طوری که :
dg : جابجایی به ازای هر g
M و Ksp: جرم و ثابت فنر قطعه
g : 9.8
Wo : فرکانس رزونانس زاویه ای
عموماً جابجایی عنصر حسگر بخش ضروری فرآیند حس کردن می باشد و dg بخش بهره حلقه باز سنسور است، بنابراین منجر به رابطه شدیداً معکوس بین حساسیت و پهنای باند برای هر کلاسی از سنسورها می شود.
نویز در شتاب سنج ها مشکلاتی بوجود می آورد. برای خود سنسور، برای خروجی الکترونیکی اش، برای damping مکانیکی و همه مقاومت های الکتریکی، سنسورهای MEMS خیلی کوچک هستند بنابراین نویز جانسون مقاومتهای مکانیکی باید در نظر گرفته شوند، در حالی که در سنسورهای بزرگتر این مشکل وجود ندارد.
تنها یک باکتری یا گرده خاک می تواند نیروی بزرگی را روی اجزا MEMS ایجاد کند. نیروی Brownian عبارتست از :
F B =
که باعث حرکت Brownian می شود ( X B ) :
= X B
در حالی که :
D = ضریب Damping جرم مرجع که به وسیله ثابت فنر تأمین می شود. پاسخ به شتابی که حرکت یکسانی را تولید می کند، X B :
Q
W0 =
g =
نویز شتابی معادل Brownian را می دهد.
g n,B
از معادله بالا می بینیم که یک جرم بزرگ و Q بزرگ (damping کم ) در به دست آوردن سطح نویز کم کمک می کند. برای دستیابی به جرم بزرگی در یک سنسور میکروماشین شده نوعاً به یک ویفری که یک جرم مرجع ضخیمی بیرون آن تراشیده شده است، نیاز است. برای نویز خیلی کم، ثابت damping باید وسیله معلق کردن جرم مرجع در یک خلا از فنرهای الاستیک خالص کاهش یابد. فیدبک از دور زدن در حوالی فرکانس رزونانس جلوگیری می کند.
میکرو سنسور شتاب
میکرو شتاب سنج ها یکی دیگر از ادوات مهم MEMS هستند. همه سنسورهای شتاب دارای یک جسم سنگین هستند که تقریباً معلق است و از یک یا چند طرف با میله هایی به یک قاب وصل شده است. تحت تأثیر شتاب، اینرسی جسم باعث می شود که نیرویی به آن وارد شود و کمی جابجا شود. شتاب با خواندن تنش وارده شده به میله ها که روی آنها piezo-resistor ها هستند، اندازه گیری می شود، اولین میکرو شتاب سنج ها 1970 ساخته شدند و از همان آغاز برای اندازه گیری استرس وارد شده به پایه های جسم معلق، از مقاومت پیزو استفاده شد. برای جلوگیری از انحراف بیش از حد جسم معلق می توان صفحات محفظه را با فاصله کمی از جسم ساخت یا این که جسم معلق را در محفظه ای پر از روغن قرار داد.
شکل 3 – 6
شتاب سنج ها دو دسته هستند. یک دسته حساسیت کمی دارند و شتاب های زیاد را اندازه می گیرند. از این شتاب سنج ها در سیتم ترمز ( Antilok Brake System )، سیستم تعلیق ( Automatic Balance Control ) و سیستم کیسه هوایی خودروها می توان استفاده کرد. نوع دیگر حساسیت زیادی دارند و می توان از آنها در ربات ها، سیستم هدایت اتومبیل و نیز ناوبری هواپیما و فضا پیما و زیر دریایی ها استفاده کرد. لازم به ذکر است که هر شتاب سنج، شتاب را فقط در یک جهت اندازه می گیرد و برای اندازه گیری شتاب در دستگاه مختصات سه بعدی باید از سه شتاب سنج عمود بر هم استفاده کرد.
علاوه بر شتاب سنج های ساخته شده با میکروماشینینگ توده ای که در دهه 1980 به بازار آمدند ( از طرف IC Sensor, Lucas Nova Sensor )، شتاب سنج های ساخته شده با میکروماشینینگ سطحی نیز اخیراً برای کاربرد سیستم کیسه هوایی خودروها وارده بازار شده اند. ( ADXL50 از Analog Devices، MMAS40G از Motorolla ) سیستم باز کردن کیسه هوایی، یکی از کاربردهای نسبتاً جدید میکرو شتاب سنج ها ست. در این سیستم ها هنگامی که خودرو، شتاب منفی زیادی پیدا می کند، به کیسه هوایی فرمان باز شدن داده می شود. سنسورهای بکار رفته در این سیستم ها باید دارای اندازه کوچک، کیفیت بالا و قیمیت کم باشند. قیمت هر یک از این سنسورها در سال 97 حدود 4 دلار بوده که در سال 2000 به 2 دلار رسید.
این نسل های جدید شتاب سنج ها برای کارایی بیشتر، شامل یک مدار مجتمع پیچیده نیز هستند. سنسورهای بر مبنای اینرسی شامل سنسورهای شتاب و ژیروسکوپ های ناوبری در سال 2000 بازاری حدود 7/2 میلیارد دلار داشتند.
3 – 2 – 1 – سنسور شتاب مبتنی بر مقاومت پیزو
طرز کار این سنسورها قبلاً توضیح داده شد و ساختار و روش ساخت آن نیز شبیه سنسورهای فشار مبتنی بر مقاومت پیزو است. طرح ساده یک نمونه آن که دارای 4 پایه است در شکل زیر دیده می شود.
شکل 3 – 7
3- 2 – 2 – سنسور شتاب خازنی
طرز کار و ساختار این سنسور ها شبیه فشار سنج های خازنی است. به این ترتیب که یکی از صفحات خازن در نقش جسم معلق است و در اثر شتاب، حرکت می کند. در شکل زیر، یک نمونه از این سنسورها دیده می شود که دارای توانایی تفکیک ( Resolution ) 1µg در فرکانس 1HZ است و برای ناوبری بکار می رود.
شکل 3- 8
موتورلا نیز یک سنسور شتاب خازنی ساخته است که محدوده عمل آن تا 50g و حساسیت آن 40mv/g در محدوده فرکانس 0.6Hz – 1KHz است. این شتاب سنج برای کاربرد در سیستم کیسه هوایی طراحی شده است.
این سنسورها با هر دو فرآیند میکروماشینینگ توده ای و سطحی قابل ساخت هستند. البته با فرآیند دوم اندازه آن کوچکتر می شود و مدار جانبی نیز به طور یکپارچه روی آن قابل ساخت است. در حالی که در میکرو شتاب سنج خازنی که با فرآیند میکروماشینینگ توده ای ساخته شده، مدار روی یک چیپ دیگر ساخته شده و با چیپ سنسور بسته در یک بسته ( Package ) قرار می گیرد.