لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 20
مروری بر مکانیک خاک
ترکیب و طبقهبندی خاک
خاک از سه بخش تشکیل شده است، آب، هوا و قسمت جامد، که مجموع آب و هوا، منافذ گویند. و روابط زیر بین آنها حاکم است:
خاکها از متلاشی شدن سنگها پدید میآیند و فضای خالی بین ذرات خاک از آب یا هوا (سیالات) پر شده است. پیوند ضعیف بین ذرات خاک معمولاً به علت رسوب کربناتها و یا اکسیدها و یا به سبب وجود مواد آلی و یا پیوندهای بین مولکولی است. اگر مواد حاصل از متلاشی شدن سنگها در محل اصلی خود باقی بمانند، خاک حاصل از نوع برجا و در صورتی که مواد متشکل به محل دیگری حمل و به جای گذاشته شوند، خاک از نوع انتقالی است. نیروی ثقل، باد، آب و یخچالهای طبیعی، عوامل جابجا شدن خاکها میباشند.
روند تخریبی تشکیل خاک از سنگ ممکن است فیزیکی و یا شیمیایی باشد. روند تخریب فیزیکی به صورت فرسایش حاصل از عمل باد، آب و یخچالها، جاذبه و سقوط و یا خرد شدن ناشی از تناوب ذوب و انجماد آب موجود در حفرهها و ترکهای داخل سنگ صورت میگیرد. در این حالت، ذرات خاک پدید آمده همان ترکیب شیمیایی سنگ مادر را دارا هستند. مانند ماسه که از تخریب فیزیکی ماسه سنگ یا کوارتز حاصل میشود. خاکهای بوجود آمده از این طریق دارای شکلهای گرد، تیز گوشه، ورقهای و یا سوزنی هستند که میتوان به خاکهای درشت دانه شنی و ماسهای در این مورد اشاره نمود.
در روند تخریب شیمیایی نوع کانی سنگ مادر بر اثر عواملی از قبیل آب (به ویژه اگر قدری اسیدی یا قلیایی باشد)، دی اکسید کربن، اکسیژن و سایر عوامل دستخوش تغییر میشود و ساختمان خاک حاصل به لحاظ ساختار شیمیایی متفاوت با سنگ مادر است. مثلاً کانی رسی کائولینیت، از تجزیه فلدسپات تحت اثر آب و دی اکسید کربن بوجود میآید. غالباً خاکهای ریزدانه تحت چنین فرآیندی بوجود میآیند و دارای بافت صحفهای با باندهای الکتریکیاند.
شناسایی و طبقهبندی خاک ها
در مهندسی پی و پیسازی، خاکها به دو دسته مهم، یعنی ریزدانه و درشت دانه تقسیم میشوند که میتوان تعبیر خاکهای چسبنده و غیرچسبنده (اصطکاکی) را نیز به ترتیب برای آنها بکار برد. خاکهای ریزدانه از تخریب شیمیایی سنگ پدید میآیند و ذرات آنها با چشم دیده نمیشوند. مقاومت برشی آنها عمدتاً از طریق پارامتر چسبندگی (C) حاصل میشود. تراکم آنها دشوار است و عمده نشست ناشی از بارگذاری در آنها وابسته به زمان است. این خاکها دارای قابلیت آبگذری و یا ضریب نفوذپذیری پایینی هستند و غالباً توان باربری و سختی کمتری نسبت به خاکهای درشت دانه دارند. رفتار خاکهای ریزدانه با جذب آب تغییر میکند. از طرف دیگر، خاکهای درشت دانه دارای نفوذپذیری و زهکشی قابل توجه میباشند و از مصالح مناسب جهت کاربرد در صنعت راهسازی، زهکشی و فیلتر، بتن و آسفالت به شمار میآیند. به استثنای ماسههای شل و غیرمتراکم. این خاکها معمولاً توان باربری و سختی مناسب با قابلیت تغییرات حجمی کم در بارگذاری استاتیکی دارند.
مقاومت برشی این خاکها از طریق اصطکاک داخلی بین ذرات () حاصل میشود. نشست این خاکها هنگام بارگذاری به صورت آنی و سریع است. تراکم اینگونه خاکها نیز به سهولت توسط کوبندههای ارتعاشی انجام میپذیرد. خاکها به دو روش صحرایی و آزمایشگاهی شناسایی و طبقهبندی میشوند. چگونگی روشهای متداول طبقهبندی خاکها به شرح زیر است:
شناسایی صحرایی خاکها
به عنوان بررسیهای محلی و شناساییهای اولیه گاهی لازم است که خاک در محل پروژه مورد ارزیابی قرار گیرد که در این زمینه روشهای زیر متداول هستند:
شناسایی چشمی
اگر نصف ذرات خاک با چشم دیده شوند، خاک درشت دانه و در غیراینصورت ریزدانه میباشند. اگر در خاک درشت دانه بیش از نیمی از ذرات از دانه عدس بزرگتر باشند، خاک درشت دانه از نوع شن و در اینصورت ماسه میباشد.
تکان دادن (ارتعاش)
اگر با افزودن آب به یک مشت خاک، گلولهای خمیری به قطر حدود 5 سانتیمتر درست کنیم و در کفدست چندین بار تکان دهیم. در صورتی که خاک موردنظر لای یا به اصطلاح سوئدی باشد «میتا» باشد، سطح خارجی آن با فیلم نازکی از آب شفاف میشود و در صورتی که رس باشد، پدیده قابل توجهی در سطح خارجی آن مشاهده نمیشود.
آزمایش مقاومت خشک
مقدار از خاک موردنظر را با آب مخلوط و خمیری میسازیم. خمیر حاصل را در گرمخانه (آون) خشک نموده، سپس به کمک انگشتان دست سعی میکنیم نمونه را بشکنیم. با افزایش خاصیت خمیری خاک، مقاومت خشک آن افزایش مییابد. رس با خاصیت خمیری بالا بیشترین مقاومت خشک را دارا میباشد. مقاومت رس با خاصیت خمیری کم و لای با خاصیت خمیری بالا، مقدار کمتر است. کمترین مقاومت را در این بین، خاکهای آلی و لای با خاصیت خمیری پایین دارند. ماسههای ریز، لایهای ریز و ماسه لایدار مقاومتی از خود نشان نمیدهند. این آزمایش را بر روی نمونههای خشک شده در محل نیز میتوان انجام داد.
آزمایش سفتی
نمونهای از خاک را با آب مخلوط و خمیرهای میسازیم. سپس همانند آزمایش حد خمیری در مکانیک خاک، فتیله کردن خمیر با کف دست روی یک سطح شیشهای انجام میشود تا کاهش قطر آن به 3 میلیمتر بالغ گردد. خاکهای آلی و لایدار در دفعات اولیه ترک برمیدارند، اما رسها چندین بار قابلیت گلوله و فتیله شدن حتی تا قطر کمتر از 3 میلیمتر را از خود نشان میدهند.
آزمایش ته نشینی
حدود 50 گرم (برای خاکهای شنی مقداری بیشتر) خاک را در یک ظرف یا لیوان شیشهای به عمق 15 سانتیمتر ریخته و آن را با آب پر میکنیم. سپس آن را هم میزنیم. اگر خاک مورد مطالعه، شن یا ماسه درشت دانه باشد، سریعاً تهنشین میشود. اگر ماسه ریزدانه باشد، در مدت زمان کمتر از 10 دقیقه و اگر لای باشد از 10 تا 60 دقیقه تهنشین خواهد شد. در مورد رسها زمان ممکن است چندین ساعت و حتی شبانهروز به طول انجامد.
رنگ، بو و احساس
رنگهای تیره مثل قهوهای، خاکستری و سیاه، نشانه وجود خاکهای آلی است. خاکهای آلی بوی بدی دارند. ذرات ماسهها و لایها به سادگی توسط دست از هم جدا میشود. لای زیر دندان تولید صدا نموده، ولی رس زیر دندان صدا نمیدهد.
طبقهبندی خاکها در آزمایشگاه
یک سیستم طبقهبندی خاک، نشان دهنده وجود یک فرهنگ و ادبیات فنی و استاندارد مشترک بین دستاندرکاران مهندسی عمران میباشد که علاوه بر تهیه یک روش سیستماتیک دستهبندی بر مبنای رفتار محتمل مهندسی خاکها، امکان دسترسی به مجموعه تجارب به دست آمده دیگران را نیز فراهم مینماید. یکی از رایجترین سیستمهای طبقهبندی آزمایشگاهی خاکها، سیستم طبقهبندی متحد یا یونیفاید میباشد که در سال 1948 توسط کاساگرانده ارائه شد و بعدها اصلاح گردید.
طبقهبندی متحد خاکها برای خاکهای درشت دانه بر اساس توزیع دانهبندی ذرات است، در حالی که رفتار خاکهای ریزدانه اساساً به پلاستیسیته (خمیری بودن) و درصد رطوبت آنها وابسته است. بنابراین در این سیستم، تعیین دانهبندی خاکها به کمک آنالیز الک و نیز تعیین حدود اتربرگ با استفاده از تعیین حدود خمیری و روانی خاکها صورت میگیرد. چهار دسته اساسی خاکها در سیستم طبقهبندی متحد عبارتند از:
خاکهای درشت دانه
خاکهای ریزدانه
خاکهای آلی
خاکهای نباتی
ذرات با قطر متوسط معادل بزرگتر از 750 میلیمتر به مصالح اندازه بزرگ یا تخته سنگ اطلاق میشود. در این میان به اندازههای بزرگتر از 300 میلیمتر، پارهسنگ و به اندازه 75 تا 300 میلیمتر، قوه سنگ گفته میشود. شنها از محدوده 76/4 تا 75 میلیمتر و ماسهها 75/4 تا 07/0 میلیمتر را دربر میگیرند. اندازه ذرات لای در محدوده اندازههای 07/0 تا 002/0 میلیمتر قرار دارند و رسها ذرات کوچکتر از 002/0 میلیمتر را شامل میشوند.
خاکهای درشت دانه از قبیل شن و ماسه، ذراتی هستند که بیش از 50 درصدشان روی الک شماره 200 باقی مانده و به عبارتی نصف ذراتشان دارای اندازه معادل بزرگتر از 075/0 میلیمتر است. اگر بیش از نصف مصالح درشت دانه روی الک شماره 4 (75/4میلیمتر) باقی بماند، خاک موردنظر شن و در غیراینصورت ماسه است. خاکهای درشت دانه به زیرگروههایی تقسیم میشوند که زیرگروهها بر اساس دانهبندی خوب یا پیوسته، دانهبندی بد یا گسسته و یا یکنواخت، لایدار و رسدار با پسوندهای W, P, M, C به ترتیب مشخص میشوند.
اگر خاکی بیش از 50% از الک 20 رد شده باشد، در محدوده خاکهای ریزدانه قرار گرفته که لایها و رسها را دربر داشته و بر اساس نمودار پلاستیسیته ارائه شده توسط کاساگرانده و انجام شدن آزمایشهای اتربرگ حدود روانی و خمیری و شاخص خمیری طبقهبندی میشوند. در چارت پلاستیسیته اگر نقطه بدست آمده حاصل از آزمایشهای حدود اتربرگ برای خاکهای رد شده از الک 40 در بالای خط A واقع شود، خاک مزبور رسی و اگر در زیر آن واقع شود، از نوع لای است. معادله خط A به صورت زیر تعریف میشود:
PI=0.73(LL-20)
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 40
مروری بر کنترل برداری و کنترل مستقیم گشتاور
در گذشته ، موتورهای جریان مستقیم (DC ) ، بیشترین کاربرد را در سیستمهای کنترل سرعت و موقعیت داشتند . دلیل اصلی مهندسان طراح محرکه های الکتریکی برای استفاده از این موتورها ، سادگی کنترل شار و گشتاور بوده است . به خصوص استفاده از موتورهای جریان مستقیم با تحریک جداگانه بسیار معمول بوده است چراکه با ثابت نگه داشتن شار و کنترل جریان آرمیچر به سادگی کنترل گشتاور امکان پذیر است .
بر خلاف ساده بودن کنترل ، این موتورها معایبی نیز دارند که از وجود کموتاتورها و جاروبکها در این موتورها ناشی می شود . به دلیل وجود جرقه جاروبکهای موتورهای جریان مستقیم هرچند مدت یک بار نیاز به بازبینی دارند ودر محیطهایی که احتمال انفجار وجود دارد قابل استفاده نمی باشند . علاوه بر این موتورهای جریان مستقیم در سرعتهای بالا نمی توانند کار کنند چرا که با بالا رفتن سرعت ، زمان کموتاسیون پیچکها کم شده و ولتاژ القایی درآنها بالا می رود ، در نتیجه جرقه های شدیدی درموتور ایجاد می شود .
استفاده از موتورهای جریان متناوب ،مسائل و مشکلات مذکور برای موتورهای جریان مستقیم را ندارند . ساختمان این موتورها نسبت به موتورهای DC ساده تر بوده و نگهداری آنها نیز راحت تر می باشد . بدلیل داشتن حجم کوچکتر در توان برابر در مقایسه با موتورهای DC ،موتورهای جریان متناوب می توانند در توانهای بالا با جرم کمتر استفاده شوند .
دو عامل هزینه انرژی و پیشرفت سریع ادوات الکترونیک قدرت باعث شده تا استفاده از موتورهای جریان متناوب روزافزون شود . موتورهای جریان متناوب بدلیل داشتن راندمان بالا ، تلفات انرژی را کاهش می دهند. از سوی دیگر پایین آمدن قیمت ادوات الکترونیک قدرت باعث شده تا استفاده از آنها در کنترل موتورهای جریان متناوب مقرون به صرفه باشد
علاوه بر اینها استفاده از میکروکنترلها و پروسسورهای بسیار سریع باعث شده تا در کاربردهایی که فقط موتورهای جریان مستقیم استفاده می شدند نیز بتوان از موتورهای جریان متناوب باعملکرد مطلوب استفاده کرد .در سالهای اخیر ،شرکتهای بزرگ سازنده محرکه های الکتریکی از کشورهای مختلف دنیا کمک های زیادی به توسعه محرکه های AC کرده و محصولات فراوان تا رنجهای توان بسیار زیاد برای انواع موتورهای AC ( سنکرون وآسنکرون) به بازار عرضه داشته اند .
دو روش اصلی برای کنترل موتورهای جریان متناوب وجود دارد که در کاربردهای با دقت زیاد وعملکرد سریع استفاده می شوند :
روش کنترل برداری (FOC )
روش کنترل مستقیم گشتاور(DTC )
محرکه هایی که بر اساس روش کنترل برداری کار می کنند نخستین بار در آلمان در سه دهه قبل توسط blashke,hasse,Leonard معرفی شدند .شکل (1-1) بلوک دیاگرام کنترل برداری با فرمان شارو گشتاور را نشان می دهد . محور d ماشین روی بردار شار روتور قرار داده می شود که خود این بردار با سرعتی برابر فرکانس استاتور می چرخد .مقادیر خطای شار و گشتاور به ترتیب فرمانهای را تولید می کنند که این مقادیر به صورت مجزا قادر به کنترل شار و گشتاور هستند .
همانطور که از بلوک دیاگرام مشخص است ،موقعیت بردار شار جهت تبدیل دستگاه چرخان سه فاز به دستگاه چرخان d-p موردنیاز است لذا از سنسور سرعت استفاده شده است .
روش کنترل مستقیم گشتاور که به طور خاص در این پایان نامه مورد بررسی قرار می گیرد ، حدودا 15 سال است که از ابداع آن می گذرد. این روش در ابتدا در ژاپن توسط آقای ناکاهاشی ودر آلمان توسط آقای دپنبرگ معرفی شد . هر چند که تا به حال شرکتهای صنعتی معدودی محصول تجاری این روش را به بازار عرضه کرده اند ولی پیش بینی می شود که شرکت های بیشتری در آینده محرکه های صنعتی را که بر اساس روش کنترل مستقیم گشتاور کار می کنند ، به بازار عرضه نمایند .
مهمترین مزایای روش کنترل مستقیم گشتاور را می توان به شرح ذیل بر شمرد :
عدم نیاز به تبدیل دستگاه سه فاز abc به دستگاه چرخان :
این خصوصیت درصورتیکه فقط کنترل گشتاور و شار مد نظر باشد منجر به حذف سنسور سرعت خواهد شد. این درحالی است که اکثر محرکه هایی که با روش کنترل برداری کار می کنند نیاز به سیگنال سرعت یا موقعیت دارند .
عدم نیاز به کنترلر PWM :
بر خلاف روش کنترل برداری ، این روش نیاز به کنترلر PWM ندارد و لذا از جهت سخت افزاری پیاده سازی آن ساده تر است .
عدم نیاز به کنترل کننده های PI :
در صورتیکه کنترل گشتاور و شار مدنظر باشد فقط به دو کنترل کننده هیسترزیس نیاز خواهیم داشت . این در حالیست که در کنترل برداری حداقل به دو کنترل کننده PI نیاز داریم که تنظیم کردن ضرائب آن خالی از مشکل نیست .
عدم نیاز به بلوک مجزا کننده ( دیکوپلینگ ) ولتاژهای q,d :
در کنترل برداری با اینوتر منبع ولتاژ نیاز داریم که ولتاژهای q,d ازهم مجزا شوند لیکن در DTC با مولفه های ولتاژ سرو کار نداریم لذا نیازی به بلوک دیکوپلینگ نمی باشد .
مقاوم بودن سیستم کنترل به تغییر پارامترهای ماشین به جز مقاومت استاتور :
تنها پارامتر مورد نیاز ماشین در این روش مقاومت استاتور است .
در بررسی انجام شده بر روی روش کنترل مستقیم گشتاور به معایب آن نیز اشاره شده است از جمله اینکه :
مشکل داشتن در سرعتهای پایین ودر هنگام راه اندازی :
به خاطر بالا بودن جریان راه اندازی و در نتیحه زیاد بودن افت ولتاژ روی مقاومت استاتور ،تخمین شار دقیق نخواهد بود .
تخمین شار و گشتاور : این مشکل در مورد کنترل برداری نیز وجود دارد .
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 40
مروری بر کنترل برداری و کنترل مستقیم گشتاور
در گذشته ، موتورهای جریان مستقیم (DC ) ، بیشترین کاربرد را در سیستمهای کنترل سرعت و موقعیت داشتند . دلیل اصلی مهندسان طراح محرکه های الکتریکی برای استفاده از این موتورها ، سادگی کنترل شار و گشتاور بوده است . به خصوص استفاده از موتورهای جریان مستقیم با تحریک جداگانه بسیار معمول بوده است چراکه با ثابت نگه داشتن شار و کنترل جریان آرمیچر به سادگی کنترل گشتاور امکان پذیر است .
بر خلاف ساده بودن کنترل ، این موتورها معایبی نیز دارند که از وجود کموتاتورها و جاروبکها در این موتورها ناشی می شود . به دلیل وجود جرقه جاروبکهای موتورهای جریان مستقیم هرچند مدت یک بار نیاز به بازبینی دارند ودر محیطهایی که احتمال انفجار وجود دارد قابل استفاده نمی باشند . علاوه بر این موتورهای جریان مستقیم در سرعتهای بالا نمی توانند کار کنند چرا که با بالا رفتن سرعت ، زمان کموتاسیون پیچکها کم شده و ولتاژ القایی درآنها بالا می رود ، در نتیجه جرقه های شدیدی درموتور ایجاد می شود .
استفاده از موتورهای جریان متناوب ،مسائل و مشکلات مذکور برای موتورهای جریان مستقیم را ندارند . ساختمان این موتورها نسبت به موتورهای DC ساده تر بوده و نگهداری آنها نیز راحت تر می باشد . بدلیل داشتن حجم کوچکتر در توان برابر در مقایسه با موتورهای DC ،موتورهای جریان متناوب می توانند در توانهای بالا با جرم کمتر استفاده شوند .
دو عامل هزینه انرژی و پیشرفت سریع ادوات الکترونیک قدرت باعث شده تا استفاده از موتورهای جریان متناوب روزافزون شود . موتورهای جریان متناوب بدلیل داشتن راندمان بالا ، تلفات انرژی را کاهش می دهند. از سوی دیگر پایین آمدن قیمت ادوات الکترونیک قدرت باعث شده تا استفاده از آنها در کنترل موتورهای جریان متناوب مقرون به صرفه باشد
علاوه بر اینها استفاده از میکروکنترلها و پروسسورهای بسیار سریع باعث شده تا در کاربردهایی که فقط موتورهای جریان مستقیم استفاده می شدند نیز بتوان از موتورهای جریان متناوب باعملکرد مطلوب استفاده کرد .در سالهای اخیر ،شرکتهای بزرگ سازنده محرکه های الکتریکی از کشورهای مختلف دنیا کمک های زیادی به توسعه محرکه های AC کرده و محصولات فراوان تا رنجهای توان بسیار زیاد برای انواع موتورهای AC ( سنکرون وآسنکرون) به بازار عرضه داشته اند .
دو روش اصلی برای کنترل موتورهای جریان متناوب وجود دارد که در کاربردهای با دقت زیاد وعملکرد سریع استفاده می شوند :
روش کنترل برداری (FOC )
روش کنترل مستقیم گشتاور(DTC )
محرکه هایی که بر اساس روش کنترل برداری کار می کنند نخستین بار در آلمان در سه دهه قبل توسط blashke,hasse,Leonard معرفی شدند .شکل (1-1) بلوک دیاگرام کنترل برداری با فرمان شارو گشتاور را نشان می دهد . محور d ماشین روی بردار شار روتور قرار داده می شود که خود این بردار با سرعتی برابر فرکانس استاتور می چرخد .مقادیر خطای شار و گشتاور به ترتیب فرمانهای را تولید می کنند که این مقادیر به صورت مجزا قادر به کنترل شار و گشتاور هستند .
همانطور که از بلوک دیاگرام مشخص است ،موقعیت بردار شار جهت تبدیل دستگاه چرخان سه فاز به دستگاه چرخان d-p موردنیاز است لذا از سنسور سرعت استفاده شده است .
روش کنترل مستقیم گشتاور که به طور خاص در این پایان نامه مورد بررسی قرار می گیرد ، حدودا 15 سال است که از ابداع آن می گذرد. این روش در ابتدا در ژاپن توسط آقای ناکاهاشی ودر آلمان توسط آقای دپنبرگ معرفی شد . هر چند که تا به حال شرکتهای صنعتی معدودی محصول تجاری این روش را به بازار عرضه کرده اند ولی پیش بینی می شود که شرکت های بیشتری در آینده محرکه های صنعتی را که بر اساس روش کنترل مستقیم گشتاور کار می کنند ، به بازار عرضه نمایند .
مهمترین مزایای روش کنترل مستقیم گشتاور را می توان به شرح ذیل بر شمرد :
عدم نیاز به تبدیل دستگاه سه فاز abc به دستگاه چرخان :
این خصوصیت درصورتیکه فقط کنترل گشتاور و شار مد نظر باشد منجر به حذف سنسور سرعت خواهد شد. این درحالی است که اکثر محرکه هایی که با روش کنترل برداری کار می کنند نیاز به سیگنال سرعت یا موقعیت دارند .
عدم نیاز به کنترلر PWM :
بر خلاف روش کنترل برداری ، این روش نیاز به کنترلر PWM ندارد و لذا از جهت سخت افزاری پیاده سازی آن ساده تر است .
عدم نیاز به کنترل کننده های PI :
در صورتیکه کنترل گشتاور و شار مدنظر باشد فقط به دو کنترل کننده هیسترزیس نیاز خواهیم داشت . این در حالیست که در کنترل برداری حداقل به دو کنترل کننده PI نیاز داریم که تنظیم کردن ضرائب آن خالی از مشکل نیست .
عدم نیاز به بلوک مجزا کننده ( دیکوپلینگ ) ولتاژهای q,d :
در کنترل برداری با اینوتر منبع ولتاژ نیاز داریم که ولتاژهای q,d ازهم مجزا شوند لیکن در DTC با مولفه های ولتاژ سرو کار نداریم لذا نیازی به بلوک دیکوپلینگ نمی باشد .
مقاوم بودن سیستم کنترل به تغییر پارامترهای ماشین به جز مقاومت استاتور :
تنها پارامتر مورد نیاز ماشین در این روش مقاومت استاتور است .
در بررسی انجام شده بر روی روش کنترل مستقیم گشتاور به معایب آن نیز اشاره شده است از جمله اینکه :
مشکل داشتن در سرعتهای پایین ودر هنگام راه اندازی :
به خاطر بالا بودن جریان راه اندازی و در نتیحه زیاد بودن افت ولتاژ روی مقاومت استاتور ،تخمین شار دقیق نخواهد بود .
تخمین شار و گشتاور : این مشکل در مورد کنترل برداری نیز وجود دارد .
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 20
مروری بر مکانیک خاک
ترکیب و طبقهبندی خاک
خاک از سه بخش تشکیل شده است، آب، هوا و قسمت جامد، که مجموع آب و هوا، منافذ گویند. و روابط زیر بین آنها حاکم است:
خاکها از متلاشی شدن سنگها پدید میآیند و فضای خالی بین ذرات خاک از آب یا هوا (سیالات) پر شده است. پیوند ضعیف بین ذرات خاک معمولاً به علت رسوب کربناتها و یا اکسیدها و یا به سبب وجود مواد آلی و یا پیوندهای بین مولکولی است. اگر مواد حاصل از متلاشی شدن سنگها در محل اصلی خود باقی بمانند، خاک حاصل از نوع برجا و در صورتی که مواد متشکل به محل دیگری حمل و به جای گذاشته شوند، خاک از نوع انتقالی است. نیروی ثقل، باد، آب و یخچالهای طبیعی، عوامل جابجا شدن خاکها میباشند.
روند تخریبی تشکیل خاک از سنگ ممکن است فیزیکی و یا شیمیایی باشد. روند تخریب فیزیکی به صورت فرسایش حاصل از عمل باد، آب و یخچالها، جاذبه و سقوط و یا خرد شدن ناشی از تناوب ذوب و انجماد آب موجود در حفرهها و ترکهای داخل سنگ صورت میگیرد. در این حالت، ذرات خاک پدید آمده همان ترکیب شیمیایی سنگ مادر را دارا هستند. مانند ماسه که از تخریب فیزیکی ماسه سنگ یا کوارتز حاصل میشود. خاکهای بوجود آمده از این طریق دارای شکلهای گرد، تیز گوشه، ورقهای و یا سوزنی هستند که میتوان به خاکهای درشت دانه شنی و ماسهای در این مورد اشاره نمود.
در روند تخریب شیمیایی نوع کانی سنگ مادر بر اثر عواملی از قبیل آب (به ویژه اگر قدری اسیدی یا قلیایی باشد)، دی اکسید کربن، اکسیژن و سایر عوامل دستخوش تغییر میشود و ساختمان خاک حاصل به لحاظ ساختار شیمیایی متفاوت با سنگ مادر است. مثلاً کانی رسی کائولینیت، از تجزیه فلدسپات تحت اثر آب و دی اکسید کربن بوجود میآید. غالباً خاکهای ریزدانه تحت چنین فرآیندی بوجود میآیند و دارای بافت صحفهای با باندهای الکتریکیاند.
شناسایی و طبقهبندی خاک ها
در مهندسی پی و پیسازی، خاکها به دو دسته مهم، یعنی ریزدانه و درشت دانه تقسیم میشوند که میتوان تعبیر خاکهای چسبنده و غیرچسبنده (اصطکاکی) را نیز به ترتیب برای آنها بکار برد. خاکهای ریزدانه از تخریب شیمیایی سنگ پدید میآیند و ذرات آنها با چشم دیده نمیشوند. مقاومت برشی آنها عمدتاً از طریق پارامتر چسبندگی (C) حاصل میشود. تراکم آنها دشوار است و عمده نشست ناشی از بارگذاری در آنها وابسته به زمان است. این خاکها دارای قابلیت آبگذری و یا ضریب نفوذپذیری پایینی هستند و غالباً توان باربری و سختی کمتری نسبت به خاکهای درشت دانه دارند. رفتار خاکهای ریزدانه با جذب آب تغییر میکند. از طرف دیگر، خاکهای درشت دانه دارای نفوذپذیری و زهکشی قابل توجه میباشند و از مصالح مناسب جهت کاربرد در صنعت راهسازی، زهکشی و فیلتر، بتن و آسفالت به شمار میآیند. به استثنای ماسههای شل و غیرمتراکم. این خاکها معمولاً توان باربری و سختی مناسب با قابلیت تغییرات حجمی کم در بارگذاری استاتیکی دارند.
مقاومت برشی این خاکها از طریق اصطکاک داخلی بین ذرات () حاصل میشود. نشست این خاکها هنگام بارگذاری به صورت آنی و سریع است. تراکم اینگونه خاکها نیز به سهولت توسط کوبندههای ارتعاشی انجام میپذیرد. خاکها به دو روش صحرایی و آزمایشگاهی شناسایی و طبقهبندی میشوند. چگونگی روشهای متداول طبقهبندی خاکها به شرح زیر است:
شناسایی صحرایی خاکها
به عنوان بررسیهای محلی و شناساییهای اولیه گاهی لازم است که خاک در محل پروژه مورد ارزیابی قرار گیرد که در این زمینه روشهای زیر متداول هستند:
شناسایی چشمی
اگر نصف ذرات خاک با چشم دیده شوند، خاک درشت دانه و در غیراینصورت ریزدانه میباشند. اگر در خاک درشت دانه بیش از نیمی از ذرات از دانه عدس بزرگتر باشند، خاک درشت دانه از نوع شن و در اینصورت ماسه میباشد.
تکان دادن (ارتعاش)
اگر با افزودن آب به یک مشت خاک، گلولهای خمیری به قطر حدود 5 سانتیمتر درست کنیم و در کفدست چندین بار تکان دهیم. در صورتی که خاک موردنظر لای یا به اصطلاح سوئدی باشد «میتا» باشد، سطح خارجی آن با فیلم نازکی از آب شفاف میشود و در صورتی که رس باشد، پدیده قابل توجهی در سطح خارجی آن مشاهده نمیشود.
آزمایش مقاومت خشک
مقدار از خاک موردنظر را با آب مخلوط و خمیری میسازیم. خمیر حاصل را در گرمخانه (آون) خشک نموده، سپس به کمک انگشتان دست سعی میکنیم نمونه را بشکنیم. با افزایش خاصیت خمیری خاک، مقاومت خشک آن افزایش مییابد. رس با خاصیت خمیری بالا بیشترین مقاومت خشک را دارا میباشد. مقاومت رس با خاصیت خمیری کم و لای با خاصیت خمیری بالا، مقدار کمتر است. کمترین مقاومت را در این بین، خاکهای آلی و لای با خاصیت خمیری پایین دارند. ماسههای ریز، لایهای ریز و ماسه لایدار مقاومتی از خود نشان نمیدهند. این آزمایش را بر روی نمونههای خشک شده در محل نیز میتوان انجام داد.
آزمایش سفتی
نمونهای از خاک را با آب مخلوط و خمیرهای میسازیم. سپس همانند آزمایش حد خمیری در مکانیک خاک، فتیله کردن خمیر با کف دست روی یک سطح شیشهای انجام میشود تا کاهش قطر آن به 3 میلیمتر بالغ گردد. خاکهای آلی و لایدار در دفعات اولیه ترک برمیدارند، اما رسها چندین بار قابلیت گلوله و فتیله شدن حتی تا قطر کمتر از 3 میلیمتر را از خود نشان میدهند.
آزمایش ته نشینی
حدود 50 گرم (برای خاکهای شنی مقداری بیشتر) خاک را در یک ظرف یا لیوان شیشهای به عمق 15 سانتیمتر ریخته و آن را با آب پر میکنیم. سپس آن را هم میزنیم. اگر خاک مورد مطالعه، شن یا ماسه درشت دانه باشد، سریعاً تهنشین میشود. اگر ماسه ریزدانه باشد، در مدت زمان کمتر از 10 دقیقه و اگر لای باشد از 10 تا 60 دقیقه تهنشین خواهد شد. در مورد رسها زمان ممکن است چندین ساعت و حتی شبانهروز به طول انجامد.
رنگ، بو و احساس
رنگهای تیره مثل قهوهای، خاکستری و سیاه، نشانه وجود خاکهای آلی است. خاکهای آلی بوی بدی دارند. ذرات ماسهها و لایها به سادگی توسط دست از هم جدا میشود. لای زیر دندان تولید صدا نموده، ولی رس زیر دندان صدا نمیدهد.
طبقهبندی خاکها در آزمایشگاه
یک سیستم طبقهبندی خاک، نشان دهنده وجود یک فرهنگ و ادبیات فنی و استاندارد مشترک بین دستاندرکاران مهندسی عمران میباشد که علاوه بر تهیه یک روش سیستماتیک دستهبندی بر مبنای رفتار محتمل مهندسی خاکها، امکان دسترسی به مجموعه تجارب به دست آمده دیگران را نیز فراهم مینماید. یکی از رایجترین سیستمهای طبقهبندی آزمایشگاهی خاکها، سیستم طبقهبندی متحد یا یونیفاید میباشد که در سال 1948 توسط کاساگرانده ارائه شد و بعدها اصلاح گردید.
طبقهبندی متحد خاکها برای خاکهای درشت دانه بر اساس توزیع دانهبندی ذرات است، در حالی که رفتار خاکهای ریزدانه اساساً به پلاستیسیته (خمیری بودن) و درصد رطوبت آنها وابسته است. بنابراین در این سیستم، تعیین دانهبندی خاکها به کمک آنالیز الک و نیز تعیین حدود اتربرگ با استفاده از تعیین حدود خمیری و روانی خاکها صورت میگیرد. چهار دسته اساسی خاکها در سیستم طبقهبندی متحد عبارتند از:
خاکهای درشت دانه
خاکهای ریزدانه
خاکهای آلی
خاکهای نباتی
ذرات با قطر متوسط معادل بزرگتر از 750 میلیمتر به مصالح اندازه بزرگ یا تخته سنگ اطلاق میشود. در این میان به اندازههای بزرگتر از 300 میلیمتر، پارهسنگ و به اندازه 75 تا 300 میلیمتر، قوه سنگ گفته میشود. شنها از محدوده 76/4 تا 75 میلیمتر و ماسهها 75/4 تا 07/0 میلیمتر را دربر میگیرند. اندازه ذرات لای در محدوده اندازههای 07/0 تا 002/0 میلیمتر قرار دارند و رسها ذرات کوچکتر از 002/0 میلیمتر را شامل میشوند.
خاکهای درشت دانه از قبیل شن و ماسه، ذراتی هستند که بیش از 50 درصدشان روی الک شماره 200 باقی مانده و به عبارتی نصف ذراتشان دارای اندازه معادل بزرگتر از 075/0 میلیمتر است. اگر بیش از نصف مصالح درشت دانه روی الک شماره 4 (75/4میلیمتر) باقی بماند، خاک موردنظر شن و در غیراینصورت ماسه است. خاکهای درشت دانه به زیرگروههایی تقسیم میشوند که زیرگروهها بر اساس دانهبندی خوب یا پیوسته، دانهبندی بد یا گسسته و یا یکنواخت، لایدار و رسدار با پسوندهای W, P, M, C به ترتیب مشخص میشوند.
اگر خاکی بیش از 50% از الک 20 رد شده باشد، در محدوده خاکهای ریزدانه قرار گرفته که لایها و رسها را دربر داشته و بر اساس نمودار پلاستیسیته ارائه شده توسط کاساگرانده و انجام شدن آزمایشهای اتربرگ حدود روانی و خمیری و شاخص خمیری طبقهبندی میشوند. در چارت پلاستیسیته اگر نقطه بدست آمده حاصل از آزمایشهای حدود اتربرگ برای خاکهای رد شده از الک 40 در بالای خط A واقع شود، خاک مزبور رسی و اگر در زیر آن واقع شود، از نوع لای است. معادله خط A به صورت زیر تعریف میشود:
PI=0.73(LL-20)
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 24
مروری بر حسابداری منابع انسانی (بخش اول)
چکیده مقاله:
حسابداری در صدد گزارش وضعیت مالی و عملکرد اقتصادی اشخاص اعم از حقیقی و حقوقی است، زمانی که پارامتر انسان در گزارش وضعیت مالی و نتیجه عملیات مد نظر قرار نگیرد، ارزشهای انسانی نیز جایی در حسابداری ندارد. به نظر میرسد به منظور حصول اهداف ذیل باید حسابداری منابع انسانی جنبههای کمی و عملی پیدا کند:
1- ثبت ارزش اقتصادی انسان در گزارشهای مالی
2- احتساب سرمایهگذاری یک سازمان در منابع انسانی خود
3- افزایش کارآیی مدیریت منابع انسانی و ایجاد امکاناتی برای ارزشیابی خطمشیهای پرسنلی نظیر برنامههای آموزشی و توجیهی
4- ارزیابی منابع انسانی یک سازمان از نظر حفظ شدن، تحلیل رفتن و یا توسعه یافتن .
5- شناسایی سود غیر عملیاتی و بهرهوری ایجاد شده ناشی از سرمایهگذاری در منابع انسانی.
6- محاسبه میزان ارزشی که منابع انسانی در سایر منابع مالی و فیزیکی یک سازمان ایجاد میکند.
با توجه به نیاز مدیریت به اطـــلاعات برای تصمیمگیری، حسابداری منابع انسانی (HUMAN RESOURCE ACCOUNTING) اطــــلاعاتی فــــراهم میآورد که مدیران هر چه بهتر و مفیدتر بتوانند از منابع انسانی تحت اختیارشان استفاده کنند.
یکی از هدفهای عمدهی حسابداری منابع انسانی، گسترش کاربرد روشهای معتبر و درخور اطمینان برای اندازهگیری ارزش منابع انسانی (کارکنان) در سازمان است. برای تعمیم روشهای اندازهگیری ارزش منابع انسانی باید ارزش خدمات کارکنان و عواملی را که روی این ارزش اثر می گذارند، مشخص کنیم.
ارزش در علم اقتصاد دارای دو معنی متفاوت به شرح زیر است:
الف) قابل استفاده بودن یک منبع
ب) قدرت خرید آن منبع
تمام نظریههای ارزش در اقتصاد مبتنی بر این فرضیه است که منبع بتواند در آینده مطلوب باشد و خدمات ایجاد کند. لادویک وان اقتصاددان معروف در این مورد گفته است «کسی که میخواهد یک نظریه مقدماتی ارزش و قیمت را بنا کند باید در درجه اول به مطلوب بودن آن فکر کند. » بهطور مشابه ایروینگ فیشر چنین میگوید:
«ثروت فعلی، ارزش تنزیل شدهی ارزش سرمایهای درآمدهای آینده است، اگر چیزی در آینده بازدهی مورد انتظار را نداشته باشد، ارزشی نخواهد داشت.»
بنابراین ارزش یک دارایی، ارزش بازدهی مورد انتظار آن در آینده است.
تاریخچه حسابداری منابع انسانی:
حسابداری منابع انسانی مولود نیازهای عصر خود، رشد و گسترش دانش بشری و نیز نیازهای اطلاعاتی استفادهکنندگان اطلاعات حسابداری است. تحقیقات در این زمینه از سال 1960 آغاز شده و همگام با مکتب «مدیریت انسانی» گسترش یافته است، این مکتب انسان را به عنوان یکی از منابع با ارزش هر سازمان مورد توجه خاص قرار میدهد و معتقد به رفتاری شایسته و در خور این ارزشهاست.
تعیین نقطه شروع حسابداری منابع انسانی به عنوان یک موضوع تحقیقی یا مطالعاتی مشکل است. در سال 1976 مجله حسابداری، فهرست سازمانها و جوامع مربوط به این مبحث را که یازده مورد از آنها مربوط به پایان نامههای منتشر نشده دوره دکتری بود و نیز اولین مرجع را که اساس کار دابلین[1] و لاتکا[2] در سال 1930 بود، منتشر کرد.
سالهای 1971 تا 1976 را میتوان دورهی توجه هر چه بیشتر به حسابداری منابع انسانی دانست. اما از 1976 تا 1980 توجه به حسابداری منابع انسانی از طرف محافل علمی و تجاری کاهش یافت. در سال 1970 بسیاری از نویسندگان علاقهمند بودند تا به عنوان پیشکسوتان حسابداری منابع انسانی و ارایهکنندگان اندیشههای جدید مطرح شوند. این اندیشهها به طور متداول به حسابداری دارایی های انسانی اشاره میکرد اما بیانیههای کوتاه آن دربارهی کارکنان در بلندمدت موجب تعمیم اهمیت منابع انسانی شد.
واژهی حسابداری داراییهای انسانی را میتوان در ادبیات دههی 1960 تحت عنوان مدیریت کارکنان در پوشش جدید خود یا مدیریت منابع انسانی بازیافت که برای تحکیم ادعای اهمیت محوری در مدیریت کوشش میکند. شاید یک علاقهمندی واقعی در برخی از مدیران اجرایی برای سنجش ارزش منابع انسانی برحسب واحد پول، موجب پدیداری دوبارهی حسابداری منابع انسانی در عصر حاضر شده باشد، تا مدیران ارشد را آماده نمایند که کارکنان را به عنوان ارزشمندترین داراییها، مورد توجه قرار دهند.
فلم هولتز[3] پنج مرحله را در توسعهی حسابداری منابع انسانی ذکر میکند:
¨ مرحله اول سالهای 1966-1960: در این دوره مفهوم حسابداری منابع انسانی استنتاجی از نظریهی اقتصادی «سرمایه انسانی» و متأثر از مکتب «منابع انسانی نوین » و روانشناسی سازمانهای متمرکز و تاثیر نقش رهبری در سازمان بود.
¨ مرحلهی دوم سالهای 1971-1966: تحقیقات فنی و عملی در این دوره به الگوهایی برای اندازهگیری دقیق و تعیین هویت استفادهکنندگان بالقوه این روش و استفاده تجربی حسابداری منابع انسانی در سازمانهای واقعی معطوف گشت.
¨ مرحلهی سوم سالهای 1976-1971: این دوره را میتوان دورهی توجه پژوهشگران و سازمانها به حسابداری منابع انسانی دانست. سازمانهای کوچک تلاش بیشتری برای به کار بردن حسابداری منابع انسانی داشتند. برآوردها و نتیجهگیریهای به عمل آمده بر اساس تاثیرات بالقوه اطلاعات حسابداری منابع انسانی بر مدیریت اجرایی و تصمیمات سرمایهگذاران بود.
¨ مرحله چهارم سالهای 1980 – 1976: این دوره، دورهی توجه نکردن محققان حسابداری و موسسههای بازرگانی به حسابداری منابع انسانی بوده است.