لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 63 صفحه
قسمتی از متن .doc :
مقدمه
عبارت فیلتر معمولاً به دستگاهی، سخت افزاری یا نرم افزاری، اطلاق می شود که برای بازیابی اطلاعات مفید در یک سیگنال نویزی به کار می رود. نویز یک سیگنال ناخواسته است که اطلاعات موردنظر ما را تحت تأثیر قرار می دهد و در اثر شرایط متفاوتی تولید می شود. به عنوان مثال سیگنال ممکن است توسط یک سنسور در محیطی نویزی خوانده شود یا شاید سیگنال در طول انتقال در کانال مخابراتی دچار اختلال گردد.
فیلتر به طور کلی سه کاربر دارد:
1-فیلتر کردن:
بازیابی سیگنال با دقت خواسته شده در زمان t با توجه به اطلاعات موجود در زمان t
2-یکنواخت ساختن:
در این کاربرد اطلاعات مورد نظر با دقت خواسته شده در زمان t وجود ندارد ولی به کمک داده هایی که در زمان های بعد از t بدست می آید، سیگنال مورد نظر بازیابی می شود. به همین دلیل برای یکنواخت ساختن باید از تأخیر استفاده کرد.
3-پیش بینی:
در این مورد هدف بدست آوردن سیگنال در زمان در آینده ، بوسیله اطلاعات موجود در زمان t می باشد.
فیلترها را می توان به دو دسته تقسیم بندی نمود:
-خطی
-غیرخطی
یک فیلتر را خطی می نامند هرگاه خروجی آن تابعی خطی از ورودی باشد. در رهیافت آماری برای فیلتر خطی، ما به پارامترهای آماری، مانند میانگین و یا تابع همبستگی، سیگنال و نویز احتیاج داریم. یک راه کاربردی برای بهبود فیلتر کردن، حداقل نمودن مقدار میانگین مربع خطایی که از کم کردن پاسخ مورد نظر و خروجی فیلتر بدست می آید، می باشد. برای ورودی های ساکن، راه حل مناسب فیلتر Wiener می باشد. در این حالت منحنی MSE برحسب پارامترهای قابل تنظیم فیلتر سطح اجرایی خطا نامیده می شود. نقطه حداقل در این نمودار، ضرایب بهینه را مشخص می کند.
فیلتر Wiener در مواقعی که سیگنال یا نویز غیرساکن می باشند، غیرقابل استفاده است. در این شرایط فیلتر بهینه متغیر با زمان فرض می شود که از معروف ترین این نمونه می توان به فیلتر Kalman اشاره کرد.
تئوری فیلترهای وفقی مانند Wiener یا Kalman، در حوزه پیوسته همچون گسسته بحث شده اند ولی در عمل بدلیل حضور کامپیوتر و پردازشگرهای دیجیتال در حوزه گسسته کارایی بیشتری دارند. در فیلترهای وفقی، معمولاً از یک فیلتر دیجیتال به همراه یک الگوریتم وفقی استفاده می شود که ضرایب فیلتر دیجیتال توسط الگوریتم موجود تعیین می شود.
در زیر چند کاربرد فیلترهای وفقی را نام می بریم:
1-در مهندسی پزشکی و دستگاه هایی مانند MRI، EEG و ECG
2-مخابرات دیجیتال
3-حذف اکو در تلفن
4-سیستم رادار
5-سیستم هدایت
این پایان نامه مشتمل بر چهار فصل می باشد. در فصل اول در باره فیلترهای دیجیتال بحث های مختصر و پایه ای شده و خواننده را برای درک مفهوم فیلتر وفقی آماده می سازد. فصل دوم به دو بخش تقسیم شده است. در بخش اول ریاضیات مورد نیاز برای فیلتر وفقی آورده شده است و در بخش دوم به معرفی فیلتر وفقی پرداخته شده و در باره انواع الگوریتم های آن بحث شده است. فصل سوم راجع به قابلیت های نرم افزار تخصصی MATLAB در زمینه فیلترکردن و فیلترهای وفقی می باشد. و در فصل آخر تعدادی از کاربردهای فیلترهای وفقی را مرور می کنیم.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 63
مقدمه
عبارت فیلتر معمولاً به دستگاهی، سخت افزاری یا نرم افزاری، اطلاق می شود که برای بازیابی اطلاعات مفید در یک سیگنال نویزی به کار می رود. نویز یک سیگنال ناخواسته است که اطلاعات موردنظر ما را تحت تأثیر قرار می دهد و در اثر شرایط متفاوتی تولید می شود. به عنوان مثال سیگنال ممکن است توسط یک سنسور در محیطی نویزی خوانده شود یا شاید سیگنال در طول انتقال در کانال مخابراتی دچار اختلال گردد.
فیلتر به طور کلی سه کاربر دارد:
1-فیلتر کردن:
بازیابی سیگنال با دقت خواسته شده در زمان t با توجه به اطلاعات موجود در زمان t
2-یکنواخت ساختن:
در این کاربرد اطلاعات مورد نظر با دقت خواسته شده در زمان t وجود ندارد ولی به کمک داده هایی که در زمان های بعد از t بدست می آید، سیگنال مورد نظر بازیابی می شود. به همین دلیل برای یکنواخت ساختن باید از تأخیر استفاده کرد.
3-پیش بینی:
در این مورد هدف بدست آوردن سیگنال در زمان در آینده ، بوسیله اطلاعات موجود در زمان t می باشد.
فیلترها را می توان به دو دسته تقسیم بندی نمود:
-خطی
-غیرخطی
یک فیلتر را خطی می نامند هرگاه خروجی آن تابعی خطی از ورودی باشد. در رهیافت آماری برای فیلتر خطی، ما به پارامترهای آماری، مانند میانگین و یا تابع همبستگی، سیگنال و نویز احتیاج داریم. یک راه کاربردی برای بهبود فیلتر کردن، حداقل نمودن مقدار میانگین مربع خطایی که از کم کردن پاسخ مورد نظر و خروجی فیلتر بدست می آید، می باشد. برای ورودی های ساکن، راه حل مناسب فیلتر Wiener می باشد. در این حالت منحنی MSE برحسب پارامترهای قابل تنظیم فیلتر سطح اجرایی خطا نامیده می شود. نقطه حداقل در این نمودار، ضرایب بهینه را مشخص می کند.
فیلتر Wiener در مواقعی که سیگنال یا نویز غیرساکن می باشند، غیرقابل استفاده است. در این شرایط فیلتر بهینه متغیر با زمان فرض می شود که از معروف ترین این نمونه می توان به فیلتر Kalman اشاره کرد.
تئوری فیلترهای وفقی مانند Wiener یا Kalman، در حوزه پیوسته همچون گسسته بحث شده اند ولی در عمل بدلیل حضور کامپیوتر و پردازشگرهای دیجیتال در حوزه گسسته کارایی بیشتری دارند. در فیلترهای وفقی، معمولاً از یک فیلتر دیجیتال به همراه یک الگوریتم وفقی استفاده می شود که ضرایب فیلتر دیجیتال توسط الگوریتم موجود تعیین می شود.
در زیر چند کاربرد فیلترهای وفقی را نام می بریم:
1-در مهندسی پزشکی و دستگاه هایی مانند MRI، EEG و ECG
2-مخابرات دیجیتال
3-حذف اکو در تلفن
4-سیستم رادار
5-سیستم هدایت
این پایان نامه مشتمل بر چهار فصل می باشد. در فصل اول در باره فیلترهای دیجیتال بحث های مختصر و پایه ای شده و خواننده را برای درک مفهوم فیلتر وفقی آماده می سازد. فصل دوم به دو بخش تقسیم شده است. در بخش اول ریاضیات مورد نیاز برای فیلتر وفقی آورده شده است و در بخش دوم به معرفی فیلتر وفقی پرداخته شده و در باره انواع الگوریتم های آن بحث شده است. فصل سوم راجع به قابلیت های نرم افزار تخصصی MATLAB در زمینه فیلترکردن و فیلترهای وفقی می باشد. و در فصل آخر تعدادی از کاربردهای فیلترهای وفقی را مرور می کنیم.