لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 4
نسبت های مثلثاتی
تاریخچه
مثلثات یکی از شاخههای ریاضیات است که با سهگوشها و زاویهها و تابعهای مثلثاتی مثل سینوس و کسینوس سروکار دارد. مثلات در بسیاری از شاخههای ریاضیات محض و همچنین ریاضیات کاربردی کاربرد دارد. به همین ترتیب مثلات در علوم طبیعی نیز دارای کاربرد است.
احتمالا مثلثات برای استفاده در ستاره شناسی ایجاد شده و کاربردهای اولیه آن نیز در همین باره بوده است.
تالس اولین کسی نبود که این قضیه را کشف کرد قبل از او مصریان و بابلیان این قضیه را میدانستند ولی آنها نتوانسته بودند اثباتی برای آن بیان کنند. چون این قضیه اولین بار توسط تالس به اثبات رسید به نام او نیز معروف شد.البته تالس با استفاده از تعریف مثلث متساوی الساقین و نیز علم به این موضوع که جمع زوایای یک مثلث، 180 درجه است ،این قضیه را اثبات کرد.
نسبت های مثلثاتی
مثلث از اساسی ترین اشکال در هندسه میباشد.یک مثلث دارای سه راس است که سه ضلع این رئوس را به هم وصل میکند.در هندسه اقلیدسی این اضلاع خطوطی مستقیم هستند. ولی در هندسه کروی این اضلاع کمان هایی از دایره عظیمه میباشند.این دو نوع مثلث را میتوانید در شکلهای روبرو مشاهده نمایید .
انواع مثلث
مثلث متساوی الاضلاع: مثلثی است که دارای سه ضلع با طولهای مساوی است و زوایای داخلی این مثلث نیز با هم برابرند.
مثلث متساوی الساقین: مثلثی است که دارای دو ضلع با طولهای مساوی استو دو زاویه داخلی برابر دارد.
البته مثلث میتواند دارای سه ضلع با طولهای مختلف و زوایای غیر مساوی باشد.
مثلث قائم الزاویه: مثلثی را گویند که یکی از زوایای آن 90درجه باشد.نسبت های مثلثاتی مانند sin و cos ،بر روی مثلث قائم الزاویه تعریف میشوند.
مثلث منفرجه: مثلثی را گویند که یکی از زوایای داخلی آن بیشتر از 90 درجه باشد.
مثلث حاده : مثلثی را گویند که تمام زوایای داخلی آن کمتر از 90 درجه باشد.
300 سال قبل از میلاد اقلیدس ،اصول اولیه درباره مثلث را ارائه داد.به عنوان مثال یکی از اصول مهم در مورد مثلث این است که مجموع زوایای داخلی یک مثلث برابر 180 درجه است. بر اساس این اصل میتوان با معلوم بودن دو زاویه از مثلث اندازه زاویه سوم را بدست آورد. یکی از مهمترین قضایای موجود در مثلثات قضیه فیثاغورث میباشد.در این قضیه رابطه بین وتر و اضلاع قائم یک مثلث قائم الزاویه بیان میشود.
محاسبه مساحت مثلث
برای محاسبه مساحت یک مثلث روشهای مختلفی وجود داردو در ادامه به توضیح این روشها می پردازیم .
روش هندسی
برای محاسبه مساحت یک مثلث باید طول ارتفاع مثلث و نیز طول قاعده(ضلعی که ارتفاع بر آن عمود است) آن را داشته باشیم.آنگاه میتوانیم از فرمول زیر استفاده کنیم:
در این فرمول b طول قاعده و h طول ارتفاع مثلث میباشد. در شکل زیر نحوه بدست آمدن این فرمول بیان شده است:
تبدیل مثلث به یک متوازی الاضلاع که دو برابر مثلث مساحت دارد وسپس تبدیل متوازی الضلاع به یک مستطیل
برای پیدا کردن مساحت مثلث (قسمت سبز) ابتدا یک کپی از مثلث (قسمت آبی) را برداشته و آن را 180 درجه میچرخانیم و به مثلث اولیه متصل میکنیم تا یک متوازی الاضلاع بدست آید. با بریدن قسمتی از متوازی الاضلاع و متصل کردن آن به ضلع دیگر آن(همانند شکل) یک مستطیل ایجاد میشود. چون مساحت مستطیل برابر bh است .پس مساحت مثلث اولیه، نصف این مساحت خواهد بود.
روش برداری
مساحت یک متوازی الاضلاع را میتوان با استفاده از بردارها محاسبه کرد.اگر AB,AC را مطابق شکل فرض کنیم آنگاه مساحت ABCD برابر |AB × AC| خواهد بود.این مفدار ،اندازه ضرب خارجی دو بردار AB و AC میباشد.پس مساحت مثلث ABC برابر با نصف اندازه ضرب خارجی دو بردار AB و AC خواهد شد.
روش مثلثاتی
ارتفاع یک مثلث را میتوان با استفاده از روابط مثلثاتی بدست آورد.به عنوان مثال در شکل روبرو ارتفاع مثلث از فرمول محاسبه میشود.اگر این فرمول را در فرمول جایگذاری کنیم فرمول بدست می آید:
روش مختصاتی
فرض میکنیم نقطه A به مختصات (0, 0)یک راس از مثلث باشد و نقاط B به مختصات(x1, y1) و C به مختصات(x2, y2) دو راس دیگر مثلث باشند.در این صورت مساحت مثلث نصف مقدار|x1y2 − x2y1| خواهد شد.
فرمول heron
راه دیگر محاسبه مساحت مثلث استفاده از فرمول heron است. این فرمول به صورت زیر است:
گرد آورنده : محمد هادی اقتصادی
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 31
مثلثات و توابع مثلثاتی
مطالعه روی زوایا و روابط موجود میان زوایای اشکال مسطح و سه بعدی مثلثات نامیده میشود.تابع مثلثاتی از قبیل سینوس و کسینوس توابعی هستند که بوسیله روابط هندسی تعریف میشوند.
تاریخچه
اولین کسانی که از مثلثات استفاده میکردند یونانیان بودند.در یونان قدیم از مثلثات برای تعیین طول مدت روز یا طول سال (با مشخص کردن موقعیت ستارگان در آسمان)استفاده میشد.بعدها ریاضیدانان و منجمان هندی نیز پیشرفتهایی در مثلثات بدست آوردند ولی پیشرفت این علم مدیون دانشمندان مسلمان است .مسلمانان اصلیترین نقش را در پیشرفت این علم ایفا کردند و سپس این اندوختهها را در قرون وسطی به اروپاییان منتقل کردند. اروپاییان نیز دانش فراوان مسلمانان در مثلثات استفاده کردند و این علم را توسعه داده و به شکل امروزی در آوردند.
کاربردها
علم مثلثات در نجوم کاربرد فراوانی دارد و ازآن برای اندازهگیری فواصل بین ستارگان استفاده میشود. همچنین در طراحی سیستمهای ماهواره ای از مثلثات استفاده فراوانی میشود.در دریانوردی نیز از مثلثات برای تشخیص جهتهای جغرافیایی کمک گرفته میشود.امروزه از مثلثات در شاخه های مختلف فیزیک ماننداپتیک ، اکوستیک ، در تحلیل بازارهای مالی، الکترونیک ، معماری ، اقیانوس شناسی ، مکانیک ، بلور شناسی ، ژئودزی ، عمران و اقتصاد استفاده فراوانی میشود.
مثلثات مطالعه اندازه گیری زاویه است. اما این سخن به معنی اندازه گیری مقدماتی زاویه در هندسه نیست که در آن مقدار زاویه مورد نظر هر یک نقاله خوانده می شود بلکه محاسبه با توابع خاصی است که بستگی به زوایا دارند و به علت کابردشان در مثلثات، توابع مثلثاتی نامیده می شوند.
تابع مثلثاتی
علوم ریاضی
مثلثات مطالعه اندازه گیری زاویه است. اما این سخن به معنی اندازه گیری مقدماتی زاویه در هندسه نیست که در آن مقدار زاویه مورد نظر هر یک نقاله خوانده می شود بلکه محاسبه با توابع خاصی است که بستگی به زوایا دارند و به علت کابردشان در مثلثات، توابع مثلثاتی نامیده می شوند.
تعریف روی مثلث قائم الزاویه
برای تعریف توابع مثلثاتی از یک مثلث قائم الزاویه استفاده می کنیم به عنوان مثال می خواهیم این توابع را برای زاویه A در شکل روبرو تعریف کنیم
ما برای استفاده از این مثلث نامگذاری زیر را انجام می دهیم.
وتر ضلعی است که روبروی زاویه قائم قرار دار که بلندترین ضلع مثلث نیز می باشد و آن را با h نشان داده شده است.
ضلع مقابل زاویه A که آن را با a نشان می دهیم.
ضلع مجاور زاویه قائمه که درشکل با b نشان داده شده است.
حال توابع مثلثاتی را برای زاویه A روی مثلث ABC تعریف می کنیم.
sin: نسبت ضلع مقابل به وتر را سینوس می گویند یعنی:
cos: نسبت ضلع مجاور به وتر را گویند یعنی داریم:
tangent: نسبت ضلع مقابل زاویه به ضلع مجاور را گویند.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 15 صفحه
قسمتی از متن .doc :
ارتفاع مثلث
ALTITUDE OF A Triangle
هر ارتفاع مثلث، پاره خطی است که یک سر آن یک رأس مثلث، و سر دیگر آن، پای عمودی است که از آن رأس بر ضلع مقابل به آن رأس فرود میآید؛ مانند ارتفاع هر مثلث، سه ارتفاع دارد، ، و که در یک نقطة مانند به نام مرکز ارتفاعی مثلث همرسند. اندازة ارتفاعهای ، و را بترتیب با ، و نشان میدهند.
اصل نامساوی مثلثی
Axiom Triangle Inequality
هر گاه A، B و C سه نقطة دلخواه باشند، آن گاه . تساوی، وقتی برقرار است که سه نقطه روی یک خط راست، و نقطة B بین دو نقطة A و C باشد.
انتقال) توابع مثلثاتی
Axiom Triangle Inequality
برای محاسبة مقادیر نسبتهای مثلثاتی در ربعهای دوم، سوم و چهارم میتوان از رابطههای زیر استفاده کرد:
توابع کسینوس و سینوس دورهای، با دورة ْ360 هستند:
تابع تانژانت دورهای، با دورة ْ180است:
همچنین از تبدیلهای زیر نیز میتوان استفاده کرد:
اندازة زاویه
Measure of an angle
نسبت آن زاویه است، به زاویهای که به عنوان واحد زاویه اختیار شده است.
اندازة شعاع کرة محاطی چهار وجهی منتظم
( چهار وجهی منتظم
اندازة شعاع کرة محیطی چهار وجهی منتظم
( چهار وجهی منتظم
اندازة مساحت مثلث
Area of a Triangle
برابر است با نصف حاصلضرب اندازة هر ضلع مثلث در اندازة ارتفاع نظیر آن ضلع. اگر مساحت مثلث ABC را با S نمایش دهیم، داریم:
با توجه به این که است، داریم:
برای محاسبة مساحت مثلث از دستور که در آن و به دستور هرون Heron مرسوم است، نیز استفاده میکنند.
اندازة نیمسازهای زاویههای برونی مثلث
Measure of external angle bisectors of triangle
تصفیه: در هر مثلث، مربع اندازة نیمساز هر زاویة برونی، برابر است با حاصلضرب اندازههای دو پاره خطی که آن نیمساز بر ضلع سوم پدید میآورد، منهای حاصلضرب اندازههای دو ضلع آن زاویه.
یعنی اگر در مثلث ABC AD(نیمساز زاویة برونی A باشد داریم:
اگر اندازة نیمسازهای زاویهای برونی A، B و C از مثلث ABC را بترتیب با ، d(a و d(b و d(c محیط مثلث را با P2 نشان دهیم، داریم:
اندازة نیمسازهای زاویههای برونی مثلث
Measure of internal angle bisectors of triangle
قضیه: در هر مثلث، مربع اندازة نیمساز هر زاویة درونی برابر است با حاصلضرب اندازة دو ضلع آن زاویه، منهای حاصلضرب دو پاره خطی که آن نیمساز بر ضلع سوم پدید میآورد. یعنی اگر AD نیمساز زاویة درونی A از مثلث ABC باشد، داریم:
اگر اندازة نیمسازهای زاویههای درونی A، B و C از مثلث ABC به ضلعهای BC=a ,AC=b و AB=c را بترتیب da، db و dc بنامیم، داریم:
تابع تانژانت
Tangent function
این تابع به صورت tgx = yمیباشد. دورة تناوب آن ( است. کافی است نمودار تابع را در فاصلة رسم کنیم. برای رسم نمودار در فاصلة منحنی را در امتداد xها به اندازة ( در سمت راست
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 2
تابع مثلثاتی
علوم ریاضی
(cached)
مثلثات مطالعه اندازه گیری زاویه است. اما این سخن به معنی اندازه گیری مقدماتی زاویه در هندسه نیست که در آن مقدار زاویه مورد نظر هر یک نقاله خوانده می شود بلکه محاسبه با توابع خاصی است که بستگی به زوایا دارند و به علت کابردشان در مثلثات، توابع مثلثاتی نامیده می شوند.
تعریف روی مثلث قائم الزاویه
برای تعریف توابع مثلثاتی از یک مثلث قائم الزاویه استفاده می کنیم به عنوان مثال می خواهیم این توابع را برای زاویه A در شکل روبرو تعریف کنیم ما برای استفاده از این مثلث نامگذاری زیر را انجام می دهیم. وتر ضلعی است که روبروی زاویه قائم قرار دار که بلندترین ضلع مثلث نیز می باشد و آن را با h نشان داده شده است. ضلع مقابل زاویه A که آن را با a نشان می دهیم. ضلع مجاور زاویه قائمه که درشکل با b نشان داده شده است. حال توابع مثلثاتی را برای زاویه A روی مثلث ABC تعریف می کنیم.
sin: نسبت ضلع مقابل به وتر را سینوس می گویند یعنی:
cos: نسبت ضلع مجاور به وتر را گویند یعنی داریم:
tangent: نسبت ضلع مقابل زاویه به ضلع مجاور را گویند.
cosecant: نسبت وتر به ضلع مقابل زاویه را گویند.
secant: نسبت وتر به ضلع مجاور است
cotangent: نسبت ضلع مجاور به ضلع مقابل را گویند.
تعریف روی دایره واحد
در یک صفحه دستگاه مختصات دکارتی، زاویه می تواند هر چهار ربع را طی کند، و مقدار آن می تواند به حسب درجه، گراد رادیان اندازه گیری شود. ضلع متروک این زاویه، دایره با شعاع و مرکز در مبدا، دایره موسوم به دایره واحد یا یک را در نقطه قطع می کند. زاویه در تقاطع محور ها با دایره، مقدار صفر را اختیار می کند این زاویه، طی یک دوران کامل ضلع متحرکش حول مبدا از صفحه شروع و پس از رسیدن به مکان اولیه، دارای زاویه 360 درجه می باشد. روابط مثلثاتی که برای زوایای مختلف برقرار است. برای زوایای بزرگتر از 360 نیز، بر قرار می باشد. مثلا برای دو تابع سینوس و کسینوس خواهیم داشت:
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 26
تعاریف و ویژگیهای بنیادی توابع مثلثاتی
اندازه کمان بر حسب رادیان، دایره مثلثاتی
دانشآموزان اولین چیزی را که در مطالعه توابع مثلثاتی باید بخاطر داشته باشند این است که شناسههای (متغیرهای) این توابع عبارت از اعداد حقیقی هستند. بررسی عباراتی نظیر sin1، cos15، (نه عبارات sin10، cos150،) ، cos (sin1) گاهی اوقات به نظر دانشجویان دورههای پیشدانگاهی مشکل میرسد.
با ملاحظه توابع کمانی مفهوم تابع مثلثاتی نیز تعمیم داده میشود. در این بررسی دانشآموزان با کمانیهایی مواجه خواهند شد که اندازه آنها ممکن است بر حسب هر عددی از درجات هم منفی و هم مثبت بیان شود. مرحله اساسی بعدی عبارت از این است که اندازه درجه (اندازه شصت قسمتی) به اندازه رادیان که اندازهای معمولیتر است تبدیل میشود. در حقیقت تقسیم یک دور دایره به 360 قسمت (درجه) یک روش سنتی است. اندازه زاویهها برحسب رادیان بر اندازه طول کمانهای دایره وابسته است. در اینجا واحد اندازهگیری یک رادیان است که عبارت از اندازه یک زاویه مرکزی است. این زاویه به کمانی نگاه میکند که طول آن برابر شعاع همان دایره است. بدین ترتیب اندازه یک زاویه بر حسب رادیان عبارت از نسبت طول کمان مقابل به زاویه بر شعاع دایرهای است که زاویه مطروحه در آن یک زاویه مرکزی است. اندازه زاویه برحسب رادیان را اندازه دوار زاویه نیز میگویند. از آنجا که محیط دایرهای به شعاع واحد برابر است از اینرو طول کمان برابر رادیان خواهد بود. در نتیجه برابر رادیان خواهد شد.
مثال1-1-1- کمانی به اندازه یک رادیان برابر چند درجه است؟
جواب: تناسب زیر را مینویسیم:
اگر باشد آنگاه یا را خواهیم داشت.
مثال 2-1-1 کمانی به اندازه رادیان برابر چند درجه است؟
حل: اگر و باشد آنگاه
2- دایره مثلثاتی. در ملاحظه اندازه یک کمان چه بر حسب درجه و چه برحسب رادیان آگاهی از جهت مسیر کمان از نقطه مبدا A1 به نقطه A2 حائز اهمیت است. مسیر کمان از نقطه مبدأ به نقطه مقصد در جهت خلاف حرکت عقربههای ساعت معمولاً مثبت در نظر گرفته میشود. در حالیکه در جهت حرکت عقربههای ساعت منفی منظور میشود.
معمولاً انتهای سمت راست قطر افقی دایره مثلثاتی به عنوان نقطه مبدأ اختیار میشود. نقطه مبدأ دایره دارای مختصات (1,0) خواهد بود. آن را بصورت A=A(1,0) نشان میدهیم. همچنین نقاط D,C,B از این دایره را بترتیب با مختصات B=(0,1)، C=(-1,0)، D=(0,-1) داریم.
دایره مثلثاتی را با S نشان میدهیم. طبق آنچه که ذکر شد چنین داریم:
3- پیچش محور حقیقی به دور دایره مثلثاتی. در تئوری توابع مثلثاتی نگاشت از R مجموعه اعداد حقیقی روی دایره مثلثاتی که با شرایط زیر انجام میشود نقش اساسی را ایفا میکند:
عدد t=0 روی محور اعداد حقیقی با نقطه : A همراه میشود.
اگر باشد آنگاه در دایره مثلثاتی نقطه را به عنوان نقطه مبدا کمان AP1 در نظر گرفته و بر محیط دایره مسیری به طول T را در جهت مثبت اختیار میکنیم، نقطه مقصد این مسیر را با Pt نشان داده و عدد t را با نقطه Pt روی دایره مثلثاتی همراه میکنیم. یا به عبارت دیگر نقطه Pt تصویر نقطه A=P0 خواهد بود وقتی که صفحه مختصاتی حول مبدا مختصاتی به اندازه t رادیان چرخانده شود.
اگر باشد آنگاه با شروع از نقطه A بر محیط دایره در جهت منفی، مسیری به طول را مشخص میکنیم. فرض کنید که Pt نقطه مقصد این مسیر را نشان دهد و نقطهای متناظر به عدد منفی t باشد.
همانطوریکه ملاحظه شد جوهره نگاشت : P این نکته را میرساند که نیممحور مثبت اعداد حقیقی در جهت مثبت بر روی S میخوابد؛ در حالیکه نیممحور منفی اعداد حقیقی در جهت منفی بر روی S میخوابد. این نگاشت بکبیک نیست: اگر به عدد متناظر باشد یعنی اگر F=P باشد آنگاه این نقطه نیز به اعداد متناظر خواهد بود:
در حقیقت با افزودن مسیری با طول (در جهت مثبت و یا در جهت منفی) به مسیری به طول t مجدداً به نقطه F خواهیم رسید. نگاره وارون کامل P-1(Pt) نقطه Pt با مجموعه تطابق دارد.
توجه: عدد t معمولاً با نقطه pt که متناظر به این عدد است یکی در نظر گرفته میشود، با این حال مسائل باید به موضوع مطروحه نیز توجه کرد.
مثال4-1-1- همه اعداد را که متناظر به نقطه با مختصات است تحت نگاشت P بدست آورید.
حل: بدلیل رابطه زیر نقطه F عملا روی S قرار دارد:
فرض میکنیم که Y,X پای عمودهای مرسوم از نقطه F بر روی محورهای مختصاتی OX و OY باشند (شکل 3). آنگاه بوده و XFO مثلث متساویالساقین قائمالزاویه خواهد بود: بدین ترتیب اندازه کمان AF برابر بوده و به نقطه F فقط اعداد متناظر میشود.
یک تابع متناوب دارای دورهای تناوب نامتناهی است؛ به اینصورت که بر اساس دوره تناوب T و به ازاء هر عددی بصورت که در آن به صورت یک عدد صحیح است تابع دارای یک دوره تناوب میشود. کوچکترین دوره تناوب مثبت یک تابع متناوب را دوره تناوب بنیادی مینامند.
قضیه1-1. توابع و با دوره تناوب بنیادی متناوب هستند.
قضیه 2-1. توابع و با دوره تناوب بنیادی متناوب هستند.
برهان قضایای 1-1 و 1-2 را با استفاده از نمودارهای سینوس، کسینوس، تانژانت و کتانژانت، و نیز به کمک دایره مثلثاتی میتوان بطور عادی اثبات کرد. برای اعداد حقیقی فقط یک نقطه PX روی دایره مثلثاتی متناظر است از اینرو این اعداد دارای سینوسها و کسینوسهای یکسانی هستند. در همان حال هیچ عدد مثبت کوچکتر از نمیتواند دوره تناوب توابع باشد. در حقیقت اگر T دوره تناوب