انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

مشتق

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 18

 

 

1- مقادیری از X را که تابع h به ازای آنها پیوسته است را بیابید ؟

Y یک تابع چندجمله ای است وبه ازای هرعددحقیقی پیوسته است وهمچنین f به ازای هرعددمثبت پیوسته است بنابه قضیه بالا برای هر x که بزرگترازصفرباشد پیوسته است .

پیوستگی روی یک بازی : تابع را روی فاصله (a,b ) پیوسته می نامند اگر به ازاء هر نقطه ازاین فاصله تابع پیوسته باشد .

تابع را درفاصله [a ,b] پیوسته می نامند . اگر درفاصله (a ,b) پیوسته ، اگر x در a ازراست ودر b ازچپ پیوسته باشد .

قضیه مقدارمیانی : اگرتابع در [a,b] پیوسته باشد واگر آنگاه به ازای هرعدد k بین و عددی مانند c بین a , b‌ وجوددارد به طوری که مساوی k است .

مثال : فرض کنید آیا این تابع شرایط مقدارمیانی را در فاصله [ 3 و 0 ] دارد ؟

چون تابع در نقطة x = 2‌ پیوسته نیست در نتیجه تابع در فاصله [3و0] پیوسته نمی باشد بنابراین شرایط قضیه مقدار میانی را ندارد .

قضیه افشردگی ( ساندویچ ) اگر ، و سه تابع باشند که :

 

آنگاه

مثال : با استفاده از قضیه افشردگی را بیابید ؟

 

مثال : ازانجایی که قدرمطلق درضمن چون سمت چپ وراست آن صفرمی شودپس مقداروسطی 1 نیز طبق اصل فشردگی صفر خواهد شد .

مشتق

تابع در مشتق پذیراست اگر حد زیر موجود باشد : a عدد حقیقی است و می نویسیم :

اگر درتعریف مشتق x-a=h درنتیجه : ( تعریف دیگر ) :

 

مشتق یک تابع درهرنقطه x :

 

مثال : رابااستفاده از معادله بدست آورید ؟

 

تعبیر هندسی مشتق :

ضریب زاویه خط مماس برمنحنی درنقطه x=a برابر است با مشتق به ازاء طول نقطه تماس

همان معادله

نکته : ضریب زاویه خط قائم برمنحنی درنقطه x=a برابراست با :

 

معادله خط قائم معادله خط مماس

مثال : منحنی را که موازی خط 6x+3y-4=0‌را پیداکنید ؟

 

ضریب زاویه خط مماس

 

معادله خط قائم

نمادگذاری مشتق : نمادهای مشتق عبارتند از :

قضایای مشتق :

اگر مشتق عددثابت صفراست .

 

اگر و مشتق پذیرباشند آنگاه :

 

اگرn یک عددطبیعی باشد :

قضیه : اگرتابع درنقطه x = a مشتق پذیرباشدآنگاه در x = a پیوسته است ولی عکس آن درست نیست .

 

مثال : فرض کنید b رابه گونه ای پیداکنیدکه تابع مشتق داشته باشد ؟

راست گوئیم تابع درنقطه a مشتق پذیراست اگرمشتق چپ وراست موجودوباهم مساوی باشند .

قاعده زنجیری مشتق : اگر f تابعی از u و u تابعی از x باشد :

 

مثال : فرض کنید باشد مشتق این عبارت رامحاسبه کنید ؟ نسبت به x

 

مشتق تابع ضمنی :تابعی است که می توان y را برحسب x ‌ و x رابرحسب y حساب کرد . درتوابع ضمنی همیشه باید تابع رامساوی صفرقراردهیم .



خرید و دانلود  مشتق


مشتق

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 15 صفحه

 قسمتی از متن .doc : 

 

مقدمه

 

 

شیب خط مماس در روش لایپ نیتز (خط )

مشتق یکی از دو مفهوم اصلی حسابان است که مقدار تغییرات لحظه‌ای تابع را نشان می‌دهد.

تعریف

مشتق تابعی مانند f، تابع 'f است که مقدارش در x با معادله‌ی زیر تعریف می‌شود:

 

به شرطی که این حد موجود باشد.

بر طبق این تعریف مشتق مقدار تغییرات مقدار تابع است زمانی که تغییرات به صفر میل می‌کند.

نحوه‌ی نمایش

مشتق اول یک تابع تک متغیره را می‌توان به صورت‌های زیر نشان داد:

f'(x)

f(1)

 

که این نحوه‌ی نمایش را نمایش دیفرانسیلی مشتق می‌نامند.

تاریخچه

مشتق از مسائل مهم ریاضی است که موضّع آن نیوتن و لایبنیتز بودند و حد مقدمه آن است. نیوتن سرعت لحظه‌ای را به کمک قوانین حدگیری و لایبنیتز شیب خط مماس بر منحنی‌ها را با استفاده از قوانین حدگیری محاسبه کرد و هر یک در حالت کلی به مشتق رسید.

مشتقات مراتب بالاتر

مشتقات مراتب بالاتر یک تابع از تعریف اصلی مشتق بدست می‌آیند. با مشتق گیری دوباره از مشتق یک تابع به مشتق دوم آن می‌رسیم و به همین ترتیب دیگر مشتق‌های مراتب بالاتر نیز تعریف می‌شوند.

نحوه‌ی نمایش

مشتقات مراتب بالاتر (مشتق مرتبه دوم، سوم و چهارم) تابع f را می‌توان به دو صورت زیر نمایش داد:

f'' و f''' و f''''

f(2) و f(3) و f(4)

تابع مشتق‌پذیر در یک نقطه

اگر مشتق تابع f در نقطه‌ای مانند x موجود و معین باشد، گفته می‌شود که تابع f در نقطه‌ی x مشتق‌پذیر است.

تابع مشتق‌پذیر

اگر تابعی در هر نقطه از دامنه‌اش مشتق‌پذیر باشد، تابع مشتق‌پذیر نامیده می‌شود.

شرایط مشتق‌پذیری

برای اینکه تابعی در یک نقطه مانند x مشتق‌پذیر باشد، باید در یک همسایگی آن تعریف شده باشد و نیز در آن نقطه پیوسته باشد. یا به عبارتی تابع در آن نقطه هموار باشد.

مشتق یکی از مهمترین مفاهیم ریاضی است. بوسیله مشتق میتوان برخی از مفاهیم فیزیکی (مانند سرعت و شتاب)با تعاریف ریاضی بیان نمود. ااگر منحنی یک تابع را در فضای دو بعدی در نظر بگیریم بوسیله مشتق میتوانیم شیب خط مماس بر منحنی را در هر نقطه دلخواه بدست آوریم.همچنین با استفاده از مشتق میتوان خواص هندسی منحنی یک تابع مانند تقعر و تحدب را مشخص کرد. البته باید به این نکته توجه کرد که هر تابعی در هر نقطه نمیتواند مشتق داشته باشد و به طور کلی مشتق پذیری یک تابع در یک نقطه شرایط خاصی میطلبد.

مشتق گیری و مشتق پذیری :

در گذشته های نه چندان دور، مشتق یک تابع را به صورت زیر نشان می دادند: که در این فرمولنشان دهنده میزان تغییرات یک کمیت است. ولی در حال حاضر برای محاسبه مشتق توابع،بیشتر از فرمول زیر استفاده میکنند: معمولا از نمادهای زیر برای نشان دادن مشتق تابع f نسبت به متغیر x، استفاده میکنند:

 

 

 

یک تابع را در نقطه ای مانند x مشتق پذیر گویند اگردر آن نقطه مشتق موجود باشد. و برای مشتق پذیری تابع در یک بازه لازم است تابع در هر نقطه دلخواه از



خرید و دانلود  مشتق


مشتق 19 ص

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 19 صفحه

 قسمتی از متن .doc : 

 

مقدمه:

 

شیب خط مماس در روش لایپ نیتز (خط )

مشتق یکی از دو مفهوم اصلی حسابان است که مقدار تغییرات لحظه‌ای تابع را نشان می‌دهد.

تعریف:

مشتق تابعی مانند f، تابع 'f است که مقدارش در x با معادله‌ی زیر تعریف می‌شود:

 

به شرطی که این حد موجود باشد.

بر طبق این تعریف مشتق مقدار تغییرات مقدار تابع است زمانی که تغییرات به صفر میل می‌کند.

نحوه‌ی نمایش:

مشتق اول یک تابع تک متغیره را می‌توان به صورت‌های زیر نشان داد:

f'(x)

f(1)

 

که این نحوه‌ی نمایش را نمایش دیفرانسیلی مشتق می‌نامند.

تاریخچه:

مشتق از مسائل مهم ریاضی است که موضّع آن نیوتن و لایبنیتز بودند و حد مقدمه آن است. نیوتن سرعت لحظه‌ای را به کمک قوانین حدگیری و لایبنیتز شیب خط مماس بر منحنی‌ها را با استفاده از قوانین حدگیری محاسبه کرد و هر یک در حالت کلی به مشتق رسید.

مشتقات مراتب بالاتر:

مشتقات مراتب بالاتر یک تابع از تعریف اصلی مشتق بدست می‌آیند. با مشتق گیری دوباره از مشتق یک تابع به مشتق دوم آن می‌رسیم و به همین ترتیب دیگر مشتق‌های مراتب بالاتر نیز تعریف می‌شوند.

نحوه‌ی نمایش

مشتقات مراتب بالاتر (مشتق مرتبه دوم، سوم و چهارم) تابع f را می‌توان به دو صورت زیر نمایش داد:

f'' و f''' و f''''

f(2) و f(3) و f(4)

تابع مشتق‌پذیر در یک نقطه:

اگر مشتق تابع f در نقطه‌ای مانند x موجود و معین باشد، گفته می‌شود که تابع f در نقطه‌ی x مشتق‌پذیر است.

تابع مشتق‌پذیر:

اگر تابعی در هر نقطه از دامنه‌اش مشتق‌پذیر باشد، تابع مشتق‌پذیر نامیده می‌شود.

شرایط مشتق‌پذیری:

برای اینکه تابعی در یک نقطه مانند x مشتق‌پذیر باشد، باید در یک همسایگی آن تعریف شده باشد و نیز در آن نقطه پیوسته باشد. یا به عبارتی تابع در آن نقطه هموار باشد.

مشتق یکی از مهمترین مفاهیم ریاضی است. بوسیله مشتق میتوان برخی از مفاهیم فیزیکی (مانند سرعت و شتاب)با تعاریف ریاضی بیان نمود. ااگر منحنی یک تابع را در فضای دو بعدی در نظر بگیریم بوسیله مشتق میتوانیم شیب خط مماس بر منحنی را در هر نقطه دلخواه بدست آوریم.همچنین با استفاده از مشتق میتوان خواص هندسی منحنی یک تابع مانند تقعر و تحدب را مشخص کرد. البته باید به این نکته توجه کرد که هر تابعی در هر نقطه نمیتواند مشتق داشته باشد و به طور کلی مشتق پذیری یک تابع در یک نقطه شرایط خاصی میطلبد.



خرید و دانلود  مشتق 19 ص


دانلود مقاله مشتق و مفاهیم

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 20

 

مشتق و مفاهیم

1- از تعریف مشتق استفاده کنید و فرمول مشتق حاصلضرب (uv) دو تابع مشتقپذیر u و v را بیابید.

2- مشتق تابع زیر را بیابید.

 

3- را بیابید.

 

 

4- اگر را بیابید. برای اینکه مشتق وجود داشته باشد، چه محدودیتهایی باید برای دامنه‌ی a قائل شویم؟

5- با توجه به تعریف مشتق تابع، در نقطه‌ی x=1 مقدار را بدست آورید.

6- در تابع مقدار را بدست آورید.

7- مشتق تابع را بدست آورید.

8- نشان دهید که تابع در معادله‌ی زیر صدق می‌کند:

 

9- توابع مفروض‌اند. آیا این توابع در x=0 مشتق دارند؟ در صورت وجود آنها را تعیین کنید.

10- نشان دهید که تابع که در آن تابع Q(x) پیوسته است و ، در نقطه‌ی x=a مشتق ندارد. مشتق‌های چپ و راست را در این نقطه بیابید.

11- مشتق توابع زیر را از تعریف مشتق حساب کنید.

 

 

 

12- تابع f(x)= xsgnx چطور باید در x=0 تعریف شود که در این نقطه پیوسته باشد؟ آیا در این صورت در این نقطه مشتق‌پذیر است؟

13- نشان دهید که مشتق یک تابع مشتق‌پذیر فرد، زوج بوده و مشتق یک تابع مشتق‌پذیر زوج، فرد است؟

14- با استفاده از تفاضل مکعبات: مشتق را مستقیما از تعریف مشتق حساب کنید.

15- تابع در کجا مشتق‌پذیر نیست؟

16- مشتق توابع داده شده را حساب کنید.

 

 

 

17- مشتق زیر را بیابید.

 

خطوط مماس و شیب آنها:

18- معادله‌ی خط مماس بر منحنی داده شده در نقطه‌ی ذکر شده را بیابید.

در

در

19- شیب منحنی در نقطه‌ی را بیابید. معادله‌ی خط مماس بر به شیب 3- چیست؟

20- خط x+y=k به ازای چه مقدار از ثابت k به منحنی قائم است؟

21- آ) شیب در نقطه‌ی x=a را بیابید.

ب) معادلات خطوط مستقیم به شیب 3 و مماس بر را بیابید.

22- آیا نمودار تابع f در نقاط داده شده خط مماس دارند؟ اگر چنین است، خط مماس چیست؟

در x=1

23- معادله‌ی خط مماس بر منحنی در را بیابید.

24- نشان دهید که منحنی دو مماس دارد که از نقطه‌ی محور x می‌گذرد.

25- نشان دهید که نمودار در مبدأ دارای مماس نیست.

26- آیا منحنی داده شده دو مماس عمود بر هم دارد؟

 

27- در چه نقطه از منحنی مماس بر خط y=x عمود است؟

28- به ازای چه مقادیری از b,m، تابع

 

در a مشتق پذیر است؟

29- منحنی مماسی دارد که از (1و0) می‌گذرد. آن را بیابید.

30- معادلات خط مماس و خط قائم به منحنیهای زیر را بنویسید:

به سهمی در نقطه‌ای به طول، 5/0-= x.

31- معادلات خطوط مماس به منحنی را در نقاط تلاقی با سهمی را بنویسید.

32- نشان دهید که تابع در نقطه‌ی x=0 خط مماس ندارد. زاویه‌ی بین خطوط مماس چپ و راست در این نقطه چقدر است؟

33- خط y=3x+b بر خم مماس است. مقدار b و نقطه‌ی تماس را بیابید.

34- معادله‌ی خط عمود بر مماس بر خم در نقطه‌ی (3و2) را بیابید.

35- خمهای و در نقطه‌ی (0و1) بر هم مماس‌اند. مطلوبست تعیین c,b,a.

36- مطلوبست طول از مبدأ و عرض از مبدأ خط مماس بر خط در .

37- خط قائم بر خم در (0و1) آن را در چه نقاط دیگری قطع می‌کند؟

38- نشان دهید که قائم بر دایره‌ای در هر نقطه‌ی () از مرکز می‌گذرد.

39- شیب را در مبدأ بیابید. معادله‌ی خط مماس در مبدأ را تعیین کنید.



خرید و دانلود دانلود مقاله مشتق و مفاهیم


مشتق 19 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 19

 

مقدمه:

 

شیب خط مماس در روش لایپ نیتز (خط )

مشتق یکی از دو مفهوم اصلی حسابان است که مقدار تغییرات لحظه‌ای تابع را نشان می‌دهد.

تعریف:

مشتق تابعی مانند f، تابع 'f است که مقدارش در x با معادله‌ی زیر تعریف می‌شود:

 

به شرطی که این حد موجود باشد.

بر طبق این تعریف مشتق مقدار تغییرات مقدار تابع است زمانی که تغییرات به صفر میل می‌کند.

نحوه‌ی نمایش:

مشتق اول یک تابع تک متغیره را می‌توان به صورت‌های زیر نشان داد:

f'(x)

f(1)

 

که این نحوه‌ی نمایش را نمایش دیفرانسیلی مشتق می‌نامند.

تاریخچه:

مشتق از مسائل مهم ریاضی است که موضّع آن نیوتن و لایبنیتز بودند و حد مقدمه آن است. نیوتن سرعت لحظه‌ای را به کمک قوانین حدگیری و لایبنیتز شیب خط مماس بر منحنی‌ها را با استفاده از قوانین حدگیری محاسبه کرد و هر یک در حالت کلی به مشتق رسید.

مشتقات مراتب بالاتر:

مشتقات مراتب بالاتر یک تابع از تعریف اصلی مشتق بدست می‌آیند. با مشتق گیری دوباره از مشتق یک تابع به مشتق دوم آن می‌رسیم و به همین ترتیب دیگر مشتق‌های مراتب بالاتر نیز تعریف می‌شوند.

نحوه‌ی نمایش

مشتقات مراتب بالاتر (مشتق مرتبه دوم، سوم و چهارم) تابع f را می‌توان به دو صورت زیر نمایش داد:

f'' و f''' و f''''

f(2) و f(3) و f(4)

تابع مشتق‌پذیر در یک نقطه:

اگر مشتق تابع f در نقطه‌ای مانند x موجود و معین باشد، گفته می‌شود که تابع f در نقطه‌ی x مشتق‌پذیر است.

تابع مشتق‌پذیر:

اگر تابعی در هر نقطه از دامنه‌اش مشتق‌پذیر باشد، تابع مشتق‌پذیر نامیده می‌شود.

شرایط مشتق‌پذیری:

برای اینکه تابعی در یک نقطه مانند x مشتق‌پذیر باشد، باید در یک همسایگی آن تعریف شده باشد و نیز در آن نقطه پیوسته باشد. یا به عبارتی تابع در آن نقطه هموار باشد.

مشتق یکی از مهمترین مفاهیم ریاضی است. بوسیله مشتق میتوان برخی از مفاهیم فیزیکی (مانند سرعت و شتاب)با تعاریف ریاضی بیان نمود. ااگر منحنی یک تابع را در فضای دو بعدی در نظر بگیریم بوسیله مشتق میتوانیم شیب خط مماس بر منحنی را در هر نقطه دلخواه بدست آوریم.همچنین با استفاده از مشتق میتوان خواص هندسی منحنی یک تابع مانند تقعر و تحدب را مشخص کرد. البته باید به این نکته توجه کرد که هر تابعی در هر نقطه نمیتواند مشتق داشته باشد و به طور کلی مشتق پذیری یک تابع در یک نقطه شرایط خاصی میطلبد.



خرید و دانلود  مشتق 19 ص