لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 130
فصل 1
آناتومی و کینزیولوژی
مفصل Hip
کینزیولوژی
مفصل هیژ یک نمونه از مفاصل Ball and Socket در بدن میباشد که دارای سهدرجه آزادی و سه محور حرکتی میباشد که محورهای حرکتی مفصل هیژ شامل مواردزیر میباشد:
محور عرضی Transverse که در صفحة فرونتال قرار دارد و حرکت flex و extحول ان انجام میشود.
محور عمودی Vertical که در وضعیت نوترال مفصل منطبق با محور مکانیکالاندام تحتانی میباشد و حرکت Rot حول آن انجام میشود.
محور قدامی خلفی Ant. post که در وضعیت ساژینال قرار دارد و حرکت Abd وAdd حول آن انجام میشود. علاوه بر این سه محور دو محور دیگر نیز در اندام تحتانیوجود دارد.
محور مکانیکال mechanical این محور از مرکز مفاصل اندام تحتانی میگذرد و بهطور نرمال با محور آناتومیک ران که از میان تندی خمود میگذرد زاویهای تشکیل میدهدحدود 7-5 علت ایجاد این زاویه فاصله است که بین سر خمور و تند خمور بواسطهیگردن خمود ایجاد شده است. در ناحیهی ساِ پا محور مکانیکال و محور آناتومیک بر هممنطبق میباشند.
محور آناتومیک: این محور در امتداد استخوانهای اندام مربوطه میباشد محورآناتومیک ران و ساِ پا در امتداد هم نمیباشند بلکه با هم زاویهای میسازند که به طرفخارج باد میشود و بنا زاویه والگوس فیزیولوژیک (valgas angle) نامیده میشود.
مفصل هیژ از دو سطح مفصلی ساخته شده است حفرة استابولوم و سر استخوانخمود.
خمود: بزرگترین و قویترین استخوان بدن است. سر استخوان خمود حدود 23 سطحیک کره را میسازد و به قطر 4 تا 5 سانتیمتر است. سر خمود به طور کامل توسطغضروف مفصلی پوشیده شده است. به جز قسمت کوچکی در مرکز آن به نام Fovea کهمحل اتصال لیگامان Teres میباشد. غضروف مفصلی سر خمور در قسمت داخلی وفوقانی ضخیمتر است تا قسمت peripheral سر خمود بواسطهی گردن خمود به طورمایل به طرف داخل، بالا و جلو متوجه است.
استابولوم: در سح خارجی استخوان لگن قرار دارد. درست مثل فیوژن سهاستخوان ایسکیوم، ایلیوم و پومیس استابولوم تقریبا به اندازه یک نیمکره میباشد و فقطقسمت محیطی لآن که به شکل نعل اسب است دارای پوشش غضروفی میباشد. قسمتمرکزی آن بنام حفرهی استابولار (acetabular fossal) میباشد و فاقد پوشش غضروفیمیباشد و توسط بافت چربی و لیگامان ترس پوشیده است. قسمت محیطی آن که دارایپوشش غضروفی میباشد در طرف پائین توسط یک بریدگی عمیق بنام acetabularnothch قطع شده است و به آن شکل یک نعل اسب داده است. عمق حفرة استابولوم توسطیک لیدی فیبروکارتیلاژی به نام acetabulum labrum زیاد شده است. این لابودم علاوهبر افزایش عمق حفره، به نحوی است که سرخمود را دربر میگیرد و به نگهداری سرخموددر داخل حفره کمک مینماید. غضروف مفصلی حفرة استابولوم در قسمت خارجی (بهخصوص فوقانی) ضخیمتر از قسمت مرکزی میباشد. استابولوم به سمت خارج، پایین وجلو متوجه است. در یک مقطع عمودی از استابولوم دیده میشود که حفرهی مزبور بهطرف پایین متوجه است و زاویهای حدوده ْ40-30 با صفحهی افقی میسازد بطوریکهقسمت فوقانی حفره مثل سقفی روی سر خمود را میپوشاند. این پوشش و این زاویه فوِدر استابیلیتی مفصل نقش مهمی را دارد و میزان آن را توسط زاویه (W)wiberg اندازهمیگیرند که حدود ْ30 میباشد.
سقف حفرة استابولوم در زمان W.B بیشترین فشار را تحمل مینماید، در نتیجه همغضروف مفصلی استابولوم و هم سرخمور در قسمت فوقانی از همه ضخیمتر میباشد.
زاویههای خمور: دو زاویه بین گردن خمور و تند خمور وجود دارد. در سیر تکاملی،تندی خمور، تنهی خمور به تدریج ext , med Rot , Add
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 130
فصل 1
آناتومی و کینزیولوژی
مفصل Hip
کینزیولوژی
مفصل هیژ یک نمونه از مفاصل Ball and Socket در بدن میباشد که دارای سهدرجه آزادی و سه محور حرکتی میباشد که محورهای حرکتی مفصل هیژ شامل مواردزیر میباشد:
محور عرضی Transverse که در صفحة فرونتال قرار دارد و حرکت flex و extحول ان انجام میشود.
محور عمودی Vertical که در وضعیت نوترال مفصل منطبق با محور مکانیکالاندام تحتانی میباشد و حرکت Rot حول آن انجام میشود.
محور قدامی خلفی Ant. post که در وضعیت ساژینال قرار دارد و حرکت Abd وAdd حول آن انجام میشود. علاوه بر این سه محور دو محور دیگر نیز در اندام تحتانیوجود دارد.
محور مکانیکال mechanical این محور از مرکز مفاصل اندام تحتانی میگذرد و بهطور نرمال با محور آناتومیک ران که از میان تندی خمود میگذرد زاویهای تشکیل میدهدحدود 7-5 علت ایجاد این زاویه فاصله است که بین سر خمور و تند خمور بواسطهیگردن خمود ایجاد شده است. در ناحیهی ساِ پا محور مکانیکال و محور آناتومیک بر هممنطبق میباشند.
محور آناتومیک: این محور در امتداد استخوانهای اندام مربوطه میباشد محورآناتومیک ران و ساِ پا در امتداد هم نمیباشند بلکه با هم زاویهای میسازند که به طرفخارج باد میشود و بنا زاویه والگوس فیزیولوژیک (valgas angle) نامیده میشود.
مفصل هیژ از دو سطح مفصلی ساخته شده است حفرة استابولوم و سر استخوانخمود.
خمود: بزرگترین و قویترین استخوان بدن است. سر استخوان خمود حدود 23 سطحیک کره را میسازد و به قطر 4 تا 5 سانتیمتر است. سر خمود به طور کامل توسطغضروف مفصلی پوشیده شده است. به جز قسمت کوچکی در مرکز آن به نام Fovea کهمحل اتصال لیگامان Teres میباشد. غضروف مفصلی سر خمور در قسمت داخلی وفوقانی ضخیمتر است تا قسمت peripheral سر خمود بواسطهی گردن خمود به طورمایل به طرف داخل، بالا و جلو متوجه است.
استابولوم: در سح خارجی استخوان لگن قرار دارد. درست مثل فیوژن سهاستخوان ایسکیوم، ایلیوم و پومیس استابولوم تقریبا به اندازه یک نیمکره میباشد و فقطقسمت محیطی لآن که به شکل نعل اسب است دارای پوشش غضروفی میباشد. قسمتمرکزی آن بنام حفرهی استابولار (acetabular fossal) میباشد و فاقد پوشش غضروفیمیباشد و توسط بافت چربی و لیگامان ترس پوشیده است. قسمت محیطی آن که دارایپوشش غضروفی میباشد در طرف پائین توسط یک بریدگی عمیق بنام acetabularnothch قطع شده است و به آن شکل یک نعل اسب داده است. عمق حفرة استابولوم توسطیک لیدی فیبروکارتیلاژی به نام acetabulum labrum زیاد شده است. این لابودم علاوهبر افزایش عمق حفره، به نحوی است که سرخمود را دربر میگیرد و به نگهداری سرخموددر داخل حفره کمک مینماید. غضروف مفصلی حفرة استابولوم در قسمت خارجی (بهخصوص فوقانی) ضخیمتر از قسمت مرکزی میباشد. استابولوم به سمت خارج، پایین وجلو متوجه است. در یک مقطع عمودی از استابولوم دیده میشود که حفرهی مزبور بهطرف پایین متوجه است و زاویهای حدوده ْ40-30 با صفحهی افقی میسازد بطوریکهقسمت فوقانی حفره مثل سقفی روی سر خمود را میپوشاند. این پوشش و این زاویه فوِدر استابیلیتی مفصل نقش مهمی را دارد و میزان آن را توسط زاویه (W)wiberg اندازهمیگیرند که حدود ْ30 میباشد.
سقف حفرة استابولوم در زمان W.B بیشترین فشار را تحمل مینماید، در نتیجه همغضروف مفصلی استابولوم و هم سرخمور در قسمت فوقانی از همه ضخیمتر میباشد.
زاویههای خمور: دو زاویه بین گردن خمور و تند خمور وجود دارد. در سیر تکاملی،تندی خمور، تنهی خمور به تدریج ext , med Rot , Add
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 10
مفصل حرارتی
JOINTS
مفصل حرارتی جهت اتصال دو کابل تک کور یا سه کور به کار می رود. اجزای این مفصل ها شامل : دوراهه جهت اتصال کابل ها کنترل کننده میدان الکتریکی شامل: نوار چسب و تیوب حرارتی استرس کنترل سیستم آب بندی کننده شامل : تیوب حرارتی برای عایق کردن کابل و حفاظت آن از رطوبت و عوامل جوی سیستم ارت کابل شامل: آرمور, شیلد کابل و دوراهه مربوطه.
مطابق با استاندارد:
CENELEC HD 629.1CENELEC HD 628IEC 60502-4
مفصل حرارتی خشک تک کور
HEAT SHRINKABLE STRAIGHT JOINTS
مفصل حرارتی فشار متوسط جهت کابل تک کور با عایق پلیمر, شیلد سیم یا نوار مسی, هادی مس یا آلومینیوم از ولتاژ6kV تا 36kV
Heat Shrinkable Medium Voltage Power Cable Joint Single Core XLPE or EPR Instulated Cables Wire or Tape Screened. Copper or Aluminium Conductor.
ELCOTERM GLS -- 85/E
کد مفصل Code
نوع مفصلType
سطح مقطع کابل(mm2)Cable Cross Section Range
ELCOTERMGLS 1285/E
1*16-25
16-25
1*35-70
35-70
1*95-240
95-240
1*300-500
300-500
1*630
630
ELECOTERMGLS 1785/E
1*25-50
25-50
1*70-240
70-240
1*300-500
300-500
1*630
630
ELCOTERMGLS 2485/E
1*25-35
25-35
1*50-150
50-150
1*185-240
185-240
1*300-500
300-500
1*630
630
ELCOTERMGLS 3685/E
1*25-95
25-95
1*120-240
120-240
1*300-500
300-500
1*630
630
مفصل حرارتی خشک سه کور
HEAT SHRINKABLE STRAIGHT JOINTS
مفصل حرارتی فشار متوسط جهت کابل تک کور با عایق پلیمر, شیلد سیم یا نوار مسی, هادی مس یا آلومینیوم از ولتاژ6kV تا 36kV
Heat Shrinkable Medium Voltage Power Cable Joint Single Core XLPE or EPR Instulated Cables Wire or Tape Screened. Copper or Aluminium Conductor.
ELCOTERM GLS -- 85/E
کد مفصل Code
نوع مفصلType
سطح مقطع کابل(mm2)Cable Cross Section Range
ELCOTERMGLS 1285/E
1*16-25
16-25
1*35-70
35-70
1*95-240
95-240
1*300-500
300-500
1*630
630
ELECOTERMGLS 1785/E
1*25-50
25-50
1*70-240
70-240
1*300-500
300-500
1*630
630
ELCOTERMGLS 2485/E
1*25-35
25-35
1*50-150
50-150
1*185-240
185-240
1*300-500
300-500
1*630
630
ELCOTERMGLS 3685/E
1*25-95
25-95
1*120-240
120-240
1*300-500
300-500
1*630
630
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 4
تصویر مقابل بزرگترن و مفصل ترین تصویری محسوب می شود که هابل طی این سالها از کهکشان بزرگ مارپیچی تهیه کرده است.
این تصویر تلفیقی از 51 تصویر تهیه شده توسط هابل بعلاوه ی داده های بدست آمده از پایگاه های زمینی می باشد . این صفحه ی غول آسای مارپیچی 170000 سال نوری قطر دارد که تقریبا دو برابر کهکشان ما می باشد . این کهکشان میزبان کمتر از یک تریلیون ستاره است که حدود 100 بیلیون از این ستاره ها دما و سنی مشابه خورشید ما دارد . بازو های مارپیچ این کهکشان سراسر پوشیده از مناطق وسیع تشکیل ستاره ها، سحابی هایی با ابر های هیدروژن مولکولی بزرگ می باشد و لبه های آن ، خارج از بازوهای مارپیچی از ستاره های جوان ، داغ و تازه متولد شده پر شده است .
مهمترین تصاویری که با این تصویر جدید ترکیب شده است تصویر هایی است که هابل در مارس 1994 ، سپتامبر 1994 ، ژون 1999 ، نوامبر 2002 و ژانویه 2003 از این کهکشان تهیه کرده است
عامل اصلی تکامل کهکشان ها
ستاره شناسان تصور می کنند که کهکشان های موجود حاصل بیلیون ها سال تکامل هستند
برخوردی پس از برخور دیگر کهکشان های خلاف قاعده را به شکل کهکشان های با شکوه مارپیچی همچون کهکشان راه شیری در می آورد. اما آیا این تکامل به شروع این شرایط و به بیان دیگر به شرایط اولیه ی جهان بستگی دارد و یا مهمترین عامل برخورد های کهکشانی می باشند؟ مطالعه ی بیش از شش هزار و پانصد کهکشان در فواصل مختلف نشان می دهد که محیط اولیه ی جهان تاثیر شگرفی در تکامل کهکشان های امروزی داشته است. بنابراین هر دو عامل محیط و برخورد های کهکشانی پی در پی نقشی سازنده در این تکامل داشته اند
اخترشناسان بر این باورند که کهکشان های امروزی حاصل میلیارد ها سال، تغییر و تحول می باشند.برخورد های پی در پی ، کهکشان های کوچک عادی را به کهکشان های مارپیچى با شکوهی همچون راه شیری تبدیل نموده است.اما آیا این تحولات متعلق به دوران اولیه کیهان می باشد و یا همچنان برخورد ها ادامه دارد؟
تیمی از اخترشناسان فرانسوی و ایتالیایی با بهره گیری از تصویر بردار مرئی و طیف نگار چند منظوره ویموس تلسکوپ غولپیکر اسو ، به نقش محیط اطراف بر شکل گیری و تحول کهکشان ها پی بردند. آنها برای نخستین بار با نقشه برداری از دور دست های کیهان دریافتند که پراکندگی (توزیع) کهکشان ها با توجه به محیط ابتدایی اطرافشان ، تا حد زیادی با زمان در ارتباط است.کشف اخیر از اهمیت ویژه ای برخوردار است، به طوری که بسیاری از فرضیاتی که تا کنون پیرامون شکل گیری و تحول کهکشان ها مطرح شده است را به چالش خواهد کشید.
در حالیکه موضوع "طبیعت در مقابل طبیعت"یکی از داغ ترین مباحث دانش روانشناسی امروزی می باشد، اخترشناسان به دنبال یافتن پاسخی برای پرسشی می باشند که از قلب فرضیات کیهان شناسی سرچشمه می گیرد؛آیا کهکشان های امروزی محصول شرایط آغازین کیهان می باشند و یا اتفاقاتی در گذشته مسیر تحول آنها را تغییر داده است؟
در طی سه سال نقشه برداری که بوسیله تصویر بردار مرئی و طیف نگار چند منظوره ویموس(VIMOS) تلسکوپ غولپیکر اسو (ESO) انجام شد،اخترشناسان با مطالعه بیش از شش هزار و پانصد کهکشان در فواصل و محیط های مختلف، به بررسی چگونگی تغییر درخشندگی و مواد تشکیل دهنده آنها در مقیاس های زمانی متفاوت پرداختند. این امر دانشمندان را قادر ساخت تا اطلسی سه بعدی از کیهان به قدمت 9 میلیارد سال تهیه کنند.
سرشماری جدید نتایج شگفت انگیزی در بر داشت. نسبت رنگ-چگالی که رابطه مواد تشکیل دهنده کهکشان با فضای پیرامون را توصیف می کند در 7 میلیارد سال گذشته بسیار متفاوت بوده است.بنابر این اخترشناسان دریافتند که درخشش کهکشان ها،مواد تشکیل دهنده ابتدایی و محیطی که در آن قرار داشته اند،تاثیری بسیار ژرفی بر تحول آنها داشته است.
الیور لا فیور از آزمایشگاه اختر فیزیک مارسی فرانسه، در این باره می گوید : نتایج این تحقیقات حاکی از آن است که محیط اطراف در تحول کهکشان ها نقش کلیدی داشته ، اما برای مسئله "طبیعت در مقابل طبیعت" در تحول کهکشان ها ،هنوز پاسخ قانع کننده ای وجود ندارد.این گونه تصور می شود که کهکشان ها امروزی حاصل اطلاعات وراثتی ذاتى شان می باشند که در طی زمان تغییر کرده و کنش های متقابل پیچیده ای با فضای اطراف خود داشته اند که بر خورد و ادغام کهکشان ها، نمونه ای از آن است.
نمایی از پراکندگی (توزیع) کهکشان ها