انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

هندسه

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 32 صفحه

 قسمتی از متن .doc : 

 

مقدمه :

هندسه شاخه از ریاضیات است که اشکال و اندازه ها را مورد سر و کار دارد. هندسه ممکن است به عنوان علم فضا نیز انگاشته شود. همانطور که یک حسابگر مورد سر و کار دارد. با مسائلی را که شامل محاسبه(شمارش)است، هندسه نیز مسائلی را که در برگیرندۀ فضا است توضیح و ربط می دهد. هندسه پایۀ به ما این امکان را می دهد تا خصوصیاتی را مانند مساحت و محیط اشکال دو بعدی و سطوح صاف و حجم های اشکالی سه بعدی را تعیین کنیم.

افراد از فرمول های مشتق شده از هندسه را در زندگی روزمره برای کارهایی مانند مقدار رنگ لازمه برای رنگ آمیزی دیوارهای یک خانه یا برای محاسبۀ مقدار آب یک آکواریوم استفاده می کنند.

متدلوژی (روش شناسی)

هندسه قطعات مستقل ادراکی ساده را برای ایجاد با ساختارهای منطقی پیچنده ترکیب می کند. این قطعات مستقل شامل موارد تعریف نشده، اصطلاحات تعریف شده و قضیه ما می باشند. ترکیب این اجزاء زنجیره هایی از برهان ها را بوجود می آورد که نتایج موسوم به قضیه ها را حمایت (تأیید) می کند.

اصطلاحات تعریف نشده :

بعضی از مفاهیم اصلی در هندسه به صورت مفاهیم ساده تری بیان نشده اند. معروفترین آنها نقطه، خط و صفحه است. این مفاهیم اساسی از تجربیات روزانه بوجود آمده است. بنابراین تجربه از مکانی که یک شیئی است منتهی به ایده ای از یک مکان ثابت و دقیق می شود.

آنچه که اصطلاح "نقطه" به آن اشاره دارد مفهوم شهودی و مبتنی بر درک است. اجسام فیزیکی زیادی مفهوم "نقطه" را ارائه می دهند. از جمله گوشۀ یک قطعه، نوک یک مداد و یا نقطه ای روی یک صفحه کاغذ.

این چیزها مذل، نحوۀ نمایش یا تصویر نقطه نامیده میشود. گرچه موارد فوق تقریباً فقط مفهومی در ذهن را ارائه می دهند. بطور مشابه، یک ردیف از نقطه های موجود در یک رشته محکم کشیده شده، لبۀ یک میز یا میلۀ پرچم که بصورت نامحدودی در دو جهت امتداد یافته اند خط نامیده میشود.

واژۀ "صفحه" یک سطح مسطح را توصیف می کند. مانند کف اطاق، صفحۀ نمایش یا تخته سیاه. اما با این فرض که در همۀ جهات بصورت نامحدودی امتداد یافته است. و این بدین معنی است که صفحه هم مانند یک خط که انتها ندارد، لبه ندارد. سایر اصطلاحات تعریف نشده ارتباط بین نقطه ها، خطوط و صفحات را توضیح می دهد مانند ارتباط بیان شده بوسیلۀ این عبارت نقطه ای که روی یک خط قرار می گیرد."

اصطلاحات تعریف شده :

اصطلاحات تعریف نشده می توانند برای تعریف سایر اصطلاحات ترکیب شوند مثلاً نقاطی در یک خط مستقیم قرار نگرفته اند، همان نقاطی هستند که روی همان خط قرار نمی گیرند. پاره خط بخشی از یک خط است که شامل دو نقطۀ خاص است و همۀ نقطه ها بین آن دو نقطه خاص قرار می گیرد.

در حالیکه (ray) بخشی از یک خط است که شامل نقطۀ خاص موسوم به نقطۀ انتهایی و همۀ نقاطی است که بطور نامحدودی در یک طرف نقطۀ انتهائی امتداد یافته اند.

اصطلاحات تعریف شده می توانند با یکدیگر و با اصطلاحات تعریف نشده به منظور تعریف اصطلاحات بیشتر ترکیب شوند.

به عنوان مثال، یک زاویه ترکیبی از دو خط یا دو پرتو مختلفی است که در یک نقطه پایانی مشترک هستند. همینطور یک مثلث از سه نقطۀ غیر واقع در یک امتداد پاره خطهایی که بین آنها قرار دارد تشکیل شده است.

قضیه ها:

قضیه ها، یا اصل ها، ثابت نشده اند اما فرضیه هایی هستند که پذیرفته شدۀ جهانی هستند. مثلاً "فقط و فقط یک خط وجود دارد که از دو نقطۀ معین می گذرد". سیستم متشکل از یک سری قضیه های نامتناقض اصول کلی راجع به اصطلاحات تعریف نشدۀ نقطه، خط و صفحه را با قضیه های استنباط شده از این اصول کلی را هندسه گویند .

مجموعه های متفاوت قضیه ها کل سیستمهای متفاوت هندسه را تعیین می کنند. اگر قصیه های انتخاب شده بوسیلۀ تجربۀ فضای فیزیکی ارائه شوند، بنابراین بطور منطقی انتظار می رود تا نتایج بدقت با تجربیات مربوط به فضا ارتباط نزدیکی داشته باشد. اما چون هر سری از قضیه ها حتماً باید بر اساس مشاهدۀ ناقص و تقریبی انتخاب شوند بنابراین آنها به احتمال زیاد برای فضای واقعی بطور تقریبی قابل اعمال هستند.

بنابراین تعجب آور نیست که هر هندسه خاصی برای مسائل فضای واقعی غیر کاربردی یا فقط تا حدی کاربردی از کار درآید.

برهان ها:

برهان بطور منطقی از قضیه ها نتیجه گیری میوند. این فرآیند نتیجه گیری و قیاس یک دلیل (ثبات) نامیده میشود. هر مرحله از یک برهان باید بوسیلۀ یکی از قضیه ها یا بوسیلۀ



خرید و دانلود  هندسه


تحقیق در مورد هندسه 13 ص

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 20 صفحه

 قسمتی از متن .doc : 

 

«همانگونه که واژه های زبان، ما را از عقیده دیگران آگاه می کند: نمادهای ریاضی، یعنی نشانه های زبان ریاضی هم، وسیله ای است برای اینکه نظر خود را کامل تر، ساده تر و دقیق تر به دیگران بفهمانیم ومفهوم تازه خود را در برابر دیگران بگذاریم»

لوباچفسکی

مقدمه

هندسه هم مانند حساب، یکی از کهن ترین بخش های دانش ریاضیات است.تاریخ پیدایش آن در ژرفای سده های گذشته است.هندسه در دنیای کهن،بیشتر جنبه کاربردی داشته است و این دوران خود را، که طولانی ترین دوران تکامل آن است، در ایلام، بابل،مصر،چین و در واقع در همه سرزمین های گذرانده است و همه ملت ها در ارتباط بااندازه گیری، به ویژه اندازه گیری زمین های کشاورزی، در ساختن مفهوم های هندسی دخالت داشته اند.

مفهوم اصل،قضیه ودیدگاه اقلیدس:

«اصل» در هندسه، به حکمی گفته می شود که بدون اثبات پذیرفته شود؛ در واقع درستی آن با تجربه سده های متوالی تایید می شود.حکم هایی که به یاری اصل ها ثابت می شوند،« قضیه » نام گرفته اند. اثبات،عبارت از استدلالی است که به یاری آن و به یاری اصل ها، می توان قضیه را ثابت کرد.قضیه،ترجمه ای از واژه یونانی «ته ئورم» که به معنای «اندیشیدن» است.

اصل ها و قضیه ها را برای نخستین بار،دانشمندان یونانی وارد دانش کردند. ارشمیدس(سده سوم پیش از میلاد) در کتاب های خود،بارها از اصل وقضیه استفاده کرده است. تاسرانجام اقلیدس(سده سوم پیش از میلاد) در«مقدمات» خود در سیزده کتاب اصل هاو قضیه های هندسی را منظم کرده است.

«مقدمات اقلیدس» تنها کتابی است که در طول نزدیک دو هزار سال پس از او، هندسه را به دیگران آموخته است.حتی امروز هم، هندسه دبیرستانی بر اساس مقدمات اقلیدس است.

برخی از اصل ها را ،اقلیدس «پوستولا» (خواست)نامیده است. برای نمونه،نخستین پوسترلا در «مقدمات» اقلیدس، به این ترتیب تنظیم شده است: «دو نقطه را میتوان به وسیله خط راست به هم وصل کرد.»

به ظاهر، پوستولاهای اقلیدس،ویژه هندسه است. او اصل هایی را که عمومی ترند ودر دانش های دیگر هم به کار می روند «آکسیوم» می نامد. امروز همه اصل ها(آکسیوم ها وپوستولاها) را «آکسیوم» می نامند که در زبان فارسی، به «اصل موضوع» معروف اند.

معمای اصل پنجم اقلیدس

در طول بیش از دو هزارسال، دانشمندان گمان می کردند که هندسه ای جز هندسه اقلیدسی وجود ندارد. براساس این تصور، ریاضیدانان تلاش می کردند پوستولاهای اقلیدس را از دیگر اصل های موضوع نتیجه بگیرند. تغییر یافته پوستولای پنجم اقلیدس به وسیله «پولی فر» چنین می گوید: از یک نقطه بیرون از یک خط راست، نمی توان دو خط راست موازی با خط راست مفروض رسم کرد.ولی همه تلاش ها برای اثبات این اصل موضوع ناکام ماند.

ریاضیدانان ایرانی از جمله فضل حاتم نیریزی وعمر خیام، در این راه کوشیدند؛ ولی نتیجه



خرید و دانلود تحقیق در مورد هندسه 13 ص


مقاله درمورد هندسه اقلیدسی و ناقلیدسی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 21

 

مقدمه

واژه هندسه عربی شده واژه »اندازه «در فارسی است. در زبان انگلیسی به آن geometry و در زبان فرانسه به آن géométrie میگویند که هردو از γεωμετρία )گئومتریا (در زبان یونانی آمده است. این کلمه از دو کلمه »جئو«ٍ به معنای زمین و »متری« به معنای اندازه گیری تشکیل شده است که به معنای اندازهگیری زمین است.احتمالا بابلیان و مصریان کهن نخستین کسانی بودند که اصول هندسه را کشف کردند. در مصر هر سال رودخانه نیل طغیان میکرد و نواحی اطراف رودخانه را سیل فرا میگرفت. این رویداد تمام علایم مرزی میان املاک را از بین میبرد و لازم میشد دوباره هر کس زمین خود را اندازهگیری و مرزبندی کند. مصریان روش علامتگذاری زمینها با تیرک و طنابرا ابداع کردند. آنها تیرکی را در نقطهای مناسب در زمین فرو میکردند و تیرک دیگری در جایی دیگر نصب میشد و دو تیرک با طنابی که مرز را مشخص میساخت به یکدیگر متصل میشدند. با دو تیرک دیگر زمین محصور شده و محلی برای کشت یا ساختمان سازی مشخص میشد.در آغاز هندسه برپایه دانستههای تجربی پراکندهای در مورد طول و زاویه و مساحت و حجم قرار داشت که برای مساحی و ساختمان و نجوم و برخی صنایع دستی لازم میشد. بعضی از این دانستهها بسیار پیشرفته بودند مثلا هم مصریان و هم بابلیان قضیه فیثاغورث را ۱۵۰۰ سال قبل از فیثاغورث میشناختند.یونانیان دانسته های هندسی را مدون کردند و بر پایهای استدلالی قراردادند. برای آنان هندسه مهمترین دانشها بود و موضوع آن را مفاهیم مجردی میدانستند که اشکال مادی فقط تقریبی از آن مفاهیم مجرد بود. در سال ۶۰۰ قبل از میلاد مسیح، یک آموزگار اهل  ایونیا) که در روزگار ما بخشی از ترکیه بهشمار میرود (به نام تالس، چند گزاره یا قضیه هندسی را به صورت استدلالی ثابت کرد. او آغازگر هندسه ترسیمی بود. فیثاغورث که او نیز اهل ایونیا و احتمالا از شاگردان تالس بود توانست قضیهای را که بهنام او مشهور است اثبات کند. البته او واضع این قضیه نبود.

اما دانشمندی به نام اقلیدس که در اسکندریه زندگی میکرد، هندسه را به صورت یک علم بیان نمود. وی حدود سال ۳۰۰ پیش از میلاد مسیح، تمام نتایج هندسی را که تا آن زمان شناخته بود، گرد آورد و آنها را به طور منظم، در یک مجموعه ۱۳ جلدی قرار داد. این کتابها که اصول هندسه نام داشتند، به مدت ۲ هزار سال در سراسر دنیا برای مطالعه هندسه به کار میرفتند.

براساس این قوانین، هندسه اقلیدسی تکامل یافت. هر چه زمان میگذشت، شاخههای دیگری از هندسه توسط ریاضیدانان مختلف، توسعه مییافت. امروزه در بررسی علم هندسه انواع مختلف این علم را نظیر هندسه تحلیلی و مثلثات، هندسه غیر اقلیدسی و هندسه فضایی مطالعه میکنیم.خدمت بزرگی که یونانیان در پیشرفت ریاضیات انجام دادند این بود که آنان احکام ریاضی را به جای تجربه بر استدلال منطقی استوار کردند. قبل از اقلیدس، فیثاغورث 572-500) ق.م ( و زنون 490) ق.م.( نیز به پیشرفت علم ریاضی خدمت بسیار کرده بودند.در قرن دوم قبل از میلاد ریاضیدانی به نام هیپارک، مثلثات را اختراع کرد. وی نخستین کسی بود که تقسیم بندی بابلیها را برای پیرامون دایره پذیرفت. به این معنی که دایره را به ۳۶۰ درجه و درجه را به ۶۰ دقیقه و دقیقه را به ۶۰ قسمت برابر تقسیم نمود و جدولی براساس شعاع دایره به دست آورد که وترهای بعضی قوسها را به دست میداد و این قدیمیترین جدول مثلثاتی است که تاکنون شناخته شده است.بعد از آن دانشمندان هندی موجب پیشرفت علم ریاضی شدند. در سده پنجم میلادی آپاستامبا، در سده ششم، آریابهاتا، در سده هفتم، براهماگوپتا و در سده نهم، بهاسکارا در پیشرفت علم ریاضی بسیار مؤثر بودند.

کلاس بندی هندسه هنـدسه مقـدماتی به دو شاخه تقسیـم می گردد : -    هنـدسه مسطحه -    هندسه فضایی در هندسه مسطحه ، اشکالی مورد مطالعه قرار میگیرند که فقط دو بعد دارند، هندسه فضایی ، مطالعه اشکال هندسی سه بعدی است. این بخش از هندسه در مورد اشکال سه بعدی چون مکعب ها ،استوانه ها، مخروط ها، کره ها و غیره است. در هندسه مدرن شاخه های زیر مورد مطالعه قرار میگیرند: •    هندسه تحلیلی •    هندسه برداری •    هندسه دیفرانسیل •    هندسه جبری •    هندسه محاسباتی •    هندسه اعداد صحیح •    هندسه اقلیدسی •    هندسه نااقلیدسی •    هندسه تصویری و ناجابجایی

هندسه اقلیدسی علومی که از یونان باستان توسط اندیشمندان اسلامی محافظت و تکمیل شد، از قرون یازدهم میلادی به بعد به اروپا منتقل شد، بیشتر شامل ریاضی و فلسفه ی طبیعی بود. فلسفه ی طبیعی توسط کوپرنیک، برونو، کپلر و گالیله به چالش کشیده شد و از آن میان فیزیک نیوتنی بیرون آمد. چون کلیسا خود را مدافع فلسفه طبیعی یونان می دانست و کنکاش در آن با خطرات زیادی همراه بود، اندیشمندان کنجکاو بیشتر به ریاضیات می پرداختند، زیرا کلیسا نسبت به آن



خرید و دانلود مقاله درمورد هندسه اقلیدسی و ناقلیدسی


دانلود مقاله هندسه در راز و رمزهای دینی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 18

 

هندسه در راز و رمزهای دینی

بررسی تطبیقی دایره به عنوان نماد دینی در تمدن‌های بین‌النهرین، ایران، آیین بودایی هند و چین

مقدمه:

در جهان باستان، اعتقادات دینی و اسطوره‌ای سر منشأ بسیاری حرکت‌های انسانی بود. درون و ذات هر پدیده‌ای که رخ می‌داد به نوعی به اسطوره و دین پیوند می‌خورد و هنر بهترین وسیله برای نمایش این تفکر دینی و اسطوره‌ای بود.

در هنر باستانی، برخی نقش‌ها و نمادها صرفا تصویر نبودند بلکه نماد یک عقیده و سمبل دینی بودند. از میان این نشانه‌های دینی می‌توان به دایره اشاره کرد. دایره در جهان باستان از جمله بین‌النهرین، ایران، مصر، هند و تمدن‌های بودایی مذهب نقش مهمی را به عنوان سمبل دینی به عهده گرفته است.

حضور دایره در ابتدا در ادیان خدا - خورشید، از بین‌النهرین شروع شد و به ایران رفت. دایره نماد خدای خورشید بود ولی بعدها به عنوان نماد دینی و عقیدتی به مصر و چین و هند و... رفت و نقش‌های متعددی به خود گرفت.

دایره و مرکز از جمله رمزهای اساسی محسوب می‌شوند. درخت زندگی و مار، در زمانی اساطیری و در بهشت روی زمین که مستدیر توصیف شده، نشانه‌ها و نگاهبانان مرکز بودند. در غالب تمدن‌ها، ابدیت به شکل دایره و چرخ و اروبوروس، ماری که دمش را گاز گرفته تصویر می‌شود. شکل مدور نمودار یکی از مهم‌ترین جهات زندگی یعنی وحدت و کلیت و شکفتگی و کمال است. انسان غالبا در درون دایره‌ای که نشانگر تناسبات پیکر است تصویر شده است. در بسیاری سنن، به این شکل بسته که انسان را در برگرفته؛ محافظت می‌کند، کار ویژه‌ای جادویی منسوب شده است.(مونیک دوبوکور،1376،ص77(

در تمامی ادیان و اساطیری که خورشید نقش مهمی در آن‌ها ایفا می‌کند شکل خورشید به تدریج تبدیل به دایره شده و به عنوان نماد خورشید در هنرهای دینی آنان مطرح شده است.«خورشید غالبا در مرکز کیهان تصویر شده است و نشانه‌ی عقل عالم به شمار رفته است آن چنان که قلب آدمی مقر بعضی قوای وی محسوب می‌شود. خورشید به عنوان قلب جهان و چشم عالم، گاه در مرکز چرخ فلک البروج می‌درخشد و نیز یکی از صور درخت جهان است که در این نقش پرتوهایش درخت زندگی به شمار می‌روند(مونیک دوبوکور،1376، ص86)

در این تحقیق به بررسی تطبیقی دایره در اعتقادات مذهبی بین‌النهرین، ایران، هند و نیز جهان بودایی مانند چین پرداخته می‌شود، به اهمیت دایره در هنر مذهبی جهان باستان توجه شود.دایره در هنر بین‌النهرین و ایران

در تمدن بین‌النهرین، آشور( آسور) خدای بزرگ و محافظ کشور آشور است. قرص بالدار او را احاطه کرده است و کمانی بر ضد دشمنان دارد. وی حامی جنگ و سپاه کشور خود است.(جیمز هال، ص327)در کهن‌ترین تصاویر خورشید- خدایان، هاله‌ی تقدس ظاهر می‌شود که به شکل قرص است. هاله یا به صورت قرص ساده یا پرتوهای نوری در می‌آید که از سر آن‌ها ساطع است.(جیمز هال، ص221)

دایره و چرخ همواره بر یکدیگر دلالت کرده‌اند و همراه هم بوده و گاه به یکدیگر تبدیل شده‌اند. اولین چرخ‌هایی که در تاریخ نشانی از آن‌ها یافت شده چرخ‌های ارابه ای‌ است مخصوص حمل اموات که کاتبی سومری در 3500 ق.م آن را تصویر کرده است.(مونیک دوبوکور،1376ص87)صلیب با چهار بازوی مساوی – که ابتدا دایره بود و- درون یک دایره محاط شده است، چهار جهت اصلی آن در بین‌النهرین نماد چهار جهت اصلی طبیعت و بادهای باران زاست که نماد خدایان آسمان، آب و هوا است و نیز نماد شمش Shamash و آنو Anu خدای آسمان است(جیمز هال، ص205)

صلیب با بازوی مساوی نماد خدای آسمان بین النهرین

دایره نماد شمش خدای خورشید بین‌النهرین است. دایره‌ای به صورت ستاره چهار پر با چهار شعله یا پرتو که درون یک دایره واقع شده‌اند.(جیمز هال، ص205)

دایره نماد خدای خورشید شمش

شاه بابل در حال قربانی کردن برای الهه خورشید

مار به منزله علامتی از مدار ماه که به صورت دایره‌ای چنبر زده است. از نمادهای کیهانی بین النهرین

یکی دیگر از نمادها و سمبل‌ها که بر دایره دلالت می‌کند، گردونه تندروی است که با اسب کشیده می‌شود؛ متعلق به مهاجمان آریایی که در پیروزی نظامی آن‌ها جنبه‌ای قاطع داشت و بعدها در قصر آشور بانیپال دوم ظاهر شد. گردونه نظامی نماد پیروزی و  اسب نماد نیروی خورشید بود. گردونه نیز وسیله انتقال بسیاری از خورشید- خدایان مانند ایشتار الهه جنگ بین‌النهرین که همواره سوار بر گردونه به تصویر در آمده است.)جیمز هال 180(

چرخ گردونه در بین النهرین که کاملا بر دایره دلالت می کند

همچنین در بین‌النهرین نمادهای دیگری ظاهر شده که کاملا دایره‌ای شکل است و آن گروهی از خدایان(هفت عدد) بین‌النهرین بدون نام که برای اولین بار به روی مهرهای استوانه‌ای شکل بابل



خرید و دانلود دانلود مقاله هندسه در راز و رمزهای دینی


دانلود مقاله هندسه ترسیمی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 25

 

هندسه ترسیمی:

نقطه: کوچکترین جزء هندسی که از برخورد دو خط بوجود می آید.

خط: مکان هندسی مجموعه نقاط را خط می گویند.

نکته1: فصل مشترک دو خط یک نقطه و فصل مشترک دو صفحه یک

خط و فصل مشترک دو فضا یک صفحه است.

روش تقسیم کردن یک پاره خط به چند قسمت مساوی:

ابتدا پاره خط مورد نظر را با طول معلوم ترسیم می کنیم رئوس آنرا با دو حرف A وB مشخص می کنیم از یکی از دو نقطه A یا B خط کمکی با طول و زاویه دلخواه ترسیم می کنیم و روی خط کمکی با استفاده از پرگار که دهانه آنرا به دلخواه باز کرده ایم n قسمت مساوی روی آن جدا می کینم از آخرین تقسیم خطی به سر دیگر پاره خط وصل می کنیم از سایر نقاط روی خط کمکی خطوطی به موازات خط رویی رسم می کنیم بدین ترتیب خط AB به n قسمت مساوی تقسیم می شود.

رسم مثلث:

دایره ای به شعاع R رسم می کنیم و دو قطر عمود بر هم آن را رسم می کنیم از محل تقاطع قطر دایره به اندازه شعاع R کمان می زنیم که دایره را در دو نقطه A وB قطع می کند، امتداد همان قطری که از آن به شعاع R رسم کرده ایم نقطه C راس دیگر مثلث است.

رسم مربع:

دایره ای به شعاع R ترسیم می کنیم و دو قطر عمود برهم آنرا رسم می کنیم نقاط A , B ,C , D محل تقاطع قطعی ها با محیط دایره است. از نقاط یاد شده به شعاع R قوسی می زنیم این قوسها همدیگر را در نقاط q’ , q , S' , S قطع می کند امتداداین نقاط دایره ما را در نقاط Q , P , N , M قطع می کند که از اتصال این چهار نقطه مربع پدید می آید.

صفحه تصویر:

برای نمایش یک جسم احتیاج به سطحی داریم که به آن صفحه تصویر می گویند. صفحه تصویر سطحی مستقیم است یعنی هموار و بدون پستی و باندی که از لحاظ هندسی طول و عرض محدودی ندارد به عبارت دیگر صفحه نامحدود است و چون نمایش سطح نامحدود برای ما امکان پذیر نیست ، همیشه قسمت محدودی از آنرا که در دسترس است در نظر می گیریم و به شکل زیر نشان می دهیم.

تصویر:

اگر نقطه M (جسم) بین ناظر و صفحه P قرار بگیرد و شعاع مصور از نقطه M بگذرد و صفحه P را در نقطه m قطع کند m تصویر نقطه M روی صفحه P می گوییم. صفحه P تصویر نقطه M است.

تصویرخط روی صفحه تصویر:

تصویر هر خط مستقیم خطی است مستقیم، بنابراین برای پیدا کردن تصویر یک پاره خط روی صفحه کافی است تصاویر دو نقطه A , B را روی صفحه P پیدا کرده و به هم متصل نماییم.

الف: خط با صفحه تصویر موازی است: در این صورت اندازه تصویر یک پاره خط به اندازه خود خط است.( مانند شکل بالا ). AB = ab

ب: خط با صفحه تصویر موازی نیست: در این صورت تصویر آن کوچکتر از خود خط خواهد بود.

ج: خط بر صفحه تصویر عمود است: در این حالت تصویر خط AB به صورت نقطه b , a است.

تصویر سطح روی صفحه تصویر:

الف: سطح موازی صفحه تصویر است: در این صورت اندازه تصویر سطحی با اندازه واقعی آن برابر خواهد بود.

ب: سطح با صفحه موازی نیست: وضعیت قرار گرفتن سطح نسبت به صفحه تصویر حالاتی مختلف دارد که اندازه تصویر سطح کوچکتر از اندازه واقعی آن است.

ج: سطح عمود بر صفحه تصویر است: تصویر چنین سطحی همواره یک خط می باشد.

تصویر یک جسم:

شکلی است مسطح که از تصویر کردن رئوس ، خط، و سطوح آن جسم بدست می آید.

قرار دادها:

انتخاب صفحات تصویر: صفحات تصویر عبادتند از شش سطح یک مکعب که به آن مکعب تصویر گفته می شود.

سطوح فوقانی و تحتاننی سطوح افقی هستند و سطوح جلو و پشت سطوح قائم و بالاخره سطوح جانبی سطوح نیم رخ هستند.



خرید و دانلود دانلود مقاله هندسه ترسیمی