لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 11
پلیمر چیست؟
اوّلین سؤالی که در ذهن خواننده پس از شنیدن نام بتن پلیمری نقش می بندد این است که پلیمر ( Polymer ) چیست ؟ برای پاسخ به این سؤال بهتر است اوّل با مونومر ( Monomer ) آشنا شویم :
دائره المعارف بریتانیکا در مورد مونومر چنین می گوید :
“ مولکولی از هر دسته ترکیبات ( اغلب ارگانیک ) که می تواند با مولکول های همانند خود یا از نوع دیگر واکنش دهد و تشکیل مولکول های بسیار بزرگ یا پلیمر را بدهد . خاصیّت و ویژگی اساسی مونومر چندگانه واکنش دادن آن است ، مونومر دارای قابلیّت شکل دادن ترکیبات شیمیایی با حدّاقل دو مولکول مونومر دیگر است ، …..”
با توجّه به آنچه گفته شد می توان متوجّه شد که مونومر همانند حلقه های یک زنجیر است و پلیمر خود زنجیر است ، در واقع باید بتوان یک پلیمر را به مونومرها با ضریب صحیح تقسیم کرد ، لزومی ندارد که یک مونومر ، عنصر باشد ، در واقع مونومر مولکولی است که از تکرار آن پلیمر به دست می آید و دارای وزن مولکولی کمی می باشد . بد نیست بدانیم که معادل فارسی مونومر ، تکپار ، و معادل فارسی پلیمر ، بَسپار است .
بتن پلیمری قرن بیستم را به حق باید قرن پلیمر ها نیز دانست ، محصولات پلیمری از لحاظ حجمی در سال 1990 بر حجم محصولات آهنی فایق آمد و پیش بینی می شود که در قرن حاضر ، از لحاظ وزن نیز بالاتر رود . صنایع ساختمان بزرگترین مصرف کننده موادّ پلیمری ، 25 تا 30 درصد از کلّ پلیمر ها را مصرف می کند .
یکی از مواردی که در ساختمان به وفور استفاده می شود بتن است . این مادّه به دلیل هزینه پایین تولید ، راحتی استفاده و استحکام فشاری ، یکی از موادّ پرمصرف در سازه هاست ولی به دلیل نقایصی که دارد ( نقایصی چون : 1 – تخریب یخ زدگی و ذوب 2 – تخریب پذیری توسّط موادّ شیمیایی خورنده 3 – استحکام کششی کم 4- دیرپخت بودن و …. ) همزمان با تولید این مادّه ، ترکیب آن با فولاد ( مسلّح کردن بتن ) و ایجاد خاصیّت تاب خمشی مطرح شد و از همان موقع ، استفاده از موادّ و ترکیبات شیمیایی ، برای بهبود خواصّ آن مورد توجّه قرار گرفت . حاصل تحقیقیاتی که در این زمینه صورت گرفت این نتیجه را در بر داشت که جایگزینی مناسبی ، با موادّ پلیمری انجام شده است و با به کارگیری آنها به روش های مختلف ، خواصّ بتن ارتقا می یابد . ( این تحقیقات بیشتر در ژاپن ، آمریکا و روسیه انجام شده است ) . در این رابطه خانواده بتن های پلیمری ، بهترین خاصیّت ها را از خود نشان دادند . خواصّ این نوع بتن ، برتر از بتن های سیمانی بود و گاهی خواصّ منحصر به فردی از خود نشان می دهد . با توجّه به نیاز بیشتر به استحکام در سازه ها و برتری های این نوع بتن ، بتن پلیمری مورد علاقه دانشمندان واقع شد و با وجود آنکه مدّت زیادی از اختراع آن نمی گذرد و علیرغم قیمت بالایی نیز که داراست مورد استقبال روزافزون قرار گرفته است . بتن های پلیمری از حدود سال 1950 وارد بازار شده اند و پیش بینی می شود در طیّ دهه پیش رو ، مصرفشان 10 برابر شود . کاربرد این نوع پلیمرها به دو شاخه استفاده جامد و استفاده غیر جامد تقسیم می شود . در حالت جامد محصولات پلیمری به جای فولاد جایگزین می شوند و بتن را مسلّح می کنند که در این حالت ، پلیمر به صورت رشته ، شبکه و یا میلگرد در بتن استفاده می شود . در حالت غیر جامد با تزریق پلیمر های پودری و مایع ، در دوام بتن بهبود حاصل می شود .
در کشور ما کار خاصّی روی بتن پلیمری صورت نگرفته است و هنوز در سطح یک موضوع تحقیقاتی برای دانشجویان باقی مانده است ، موضوعی که منابع تحقیق آن نیز غالباً خارجی هستند .
بتن های پلیمری ( Polymer Concrete ) حالت جامد : اکثر موادّ و مصالح طبیعی به دلیل ناپیوستگی های سطحی و ترکیباتی که در خود دارند ، دارای مقاومت لازم برای تحمّل تنش های زیاد نیستند و لازم است تا با موادّ دیگری مسلّح شوند . دانشمندان به دنبال موادّی هستند که در ضمن مسلّح کردن بتن ، دارای وزن کمتر ، مقاومت بیشتر در برابر عوامل جوّی ، رفتار بهتر در بارگذاری های متناوب باشد و بتواند مقاومت خود را در دماهای بالا مثل دمای کوره حفظ کند و …..از این قبیل.
یکی از مشهورترین این مصالح ، کامپوزیت های پلیمری می باشند . اوّلین باری که کامپوزیت ها در بنا استفاده شد در زمان جنگ جهانی دوّم بود . در آن زمان بر روی ساختمان هایی که باید رادار نصب می کردند ، استفاده از سازه های فلزّی و یا حتّی بتن آرمه ، مشکل ایجاد می کرد ، با مسلّح کردن بتن توسّط کامپوزیت های بتنی ، این مشکل برطرف شد . همچنین در همان بحبوحه جنگ بعضی از قسمت های هواپیماهای جنگی را از پلی استرهایی که با رشته های شیشه تقویت شده بودند می ساختند .
در ساختمان های مسکونی از کامپوزیت هایی با فیبر شیشه ای یا پلی استر استفاده می شد . ( سازه کامپوزیتی GPR ) ، دو ساختمان استثنایی با سازه کامپوزیتی ساخته شده است که یکی سازه گنبدی شکل در بن غازی ( 1968 ) و دیگری سقف فرودگاه دبی ( 1972 ) است که تأثیر محسوسی بر استفاده از این نوع سازه ها داشته است .
اکثر این سازه ها دارای سازه اصلی بتن مسلّح بود و برای ساخت پانل ها از GPR (Glass Polymer Reinforced ) بهره می برد ، همانند سازه قوسی فضاکار زمین فوتبال شهر منچستر (1980 ) ، مهمّترین کاربردهای GPR به قرار زیر است :
1- ساختمان هایی که تحت اثر خوردگی شدید هستند .
2- سازه های پیشرفته رادارها .
3- ساختمان هایی که کنترل کیفیّت آنها مهم است .
4- ماهواره ها .
5- آنتن های بزرگ .
مهمّ ترین دلایل افزایش استفاده از کامپوزیت ( Composite ) :
1 – وزن کم 2- قابلیّت ایجاد معماری های زیبا 3- مقاومت در برابر شرایط جوّی 4- خواصّ ضدّ خوردگی
5 – وجود سازه هایی که در آنها نباید از فلز استفاده کرد .
امروزه بسیاری از پل های بتن آرمه به دلیل وجود کلر در آب دریا ، تخریب شده اند که بتن پلیمری این نقیصه را ندارد و خورده نمی شود ، محصولات پلیمری در حالت جامد بیشتر به صورت میلگرد و شبکه مورد استفاده قرار می گیرند .
انواع بتن های پلیمری ( حالت غیر جامد ) : پیش از بیان انواع بتن های پلیمری لازم است با فرآیند پلیمریزاسیون بیشتر آشنا شویم :
پلیمریزه شدن : از اتّصال واحد های مونومر به یکدیگر ، رشته یا شبکه های مولکولی سطحی یا فضاییتشکیل می شود که دارای وزن مولکولی بالایی هستند و به آنها پلی مر می گویند ، این فرآیند را پلیمریزه شدن می گویند .
انواع بتن های پلیمری بدین قرارند :
1- بتن های باردار شده توسّط پلیمر ( PIC ) : شامل بتن پورتلند پیش ریخته شده است که توسّط یک سیستم مونومری باردار گردیده است ( آماده واکنش است ) و متعاقباً در محلّ ، پلیمریزه می شود .
2- بتن های پلیمر – سیمان (PCC) : شامل یک مونومر است که به مخلوط آبی بتن تازه افزوده می شود و متعاقباً در محلّ، پلیمریزه می شود .
3- بتن های پلیمری (PC) : شامل یک سیستم مخلوط از سنگریزه ( Aggregate ) و پرکننده ( Filler ) در مونومر می باشد که متعاقباً در محلّ ، پلیمریزه می شود .
4- بتن های پلیمر – گوگرد (PSC ) : شامل یک سیستم مخلوط از بتن های گوگردی است که توسّط پلیمر ها اصلاح خواصّ پیدا کرده باشد .
نحوه تولید بتن پلیمری (حالت غیر جامد ) : بتن های پلیمری از 80 تا 95 درصد پرکننده های معدنی و گاهی آلی تشکیل شده اند و حدود 5 تا 20 درصد بایندر پلیمری نیز
بتن را نگاه می دارد ( بایندر ( Binder ) به معنای پیوند دهنده یا متّصل کننده است و منظور همان محلول مونومر است که پس از فرآیند پلیمریزاسیون بتن را نگاه می دارد ) ، خواصّ بتن های پلیمری برتر از بتن های سیمانی است .
با انتخاب : الف ) بایندر مناسب ب) نوع و میزان مناسب پرکننده ج ) به کار بردن افزودنی های مناسب
می توان طیف وسیعی از بتن های پلیمری را با خواصّ فیزیکی ، مکانیکی ، دینامیکی ، الکتریکی ، حرارتی ، شیمیایی ، تزئینی و … تهیّه کرد . در صورتیکه این طیف وسیع برای بتن های سیمانی وجود ندارد . از مجموعه موادّ رایج به عنوان بایندر پلیمری سه نوع رایج ترند که عبارتند از : 1 – اپوکسی ( Epoxy ) 2- پلی استر 3 – پلی یورتان
از پرکننده های رایج نیز دو نوع رایج ترند که عبارتند از : 1 – سیلیس (Silica) 2- کربنات کلسیم
بر اساس آزمایش هایی از نوع برزیلی ، نتایج زیر حاصل شد :
1 – نمونه های بتن پلیمری با بایندر اپوکسی و پلی استر ، استحکاک بالاتری دارند .
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 11
پلیمر چیست؟
اوّلین سؤالی که در ذهن خواننده پس از شنیدن نام بتن پلیمری نقش می بندد این است که پلیمر ( Polymer ) چیست ؟ برای پاسخ به این سؤال بهتر است اوّل با مونومر ( Monomer ) آشنا شویم :
دائره المعارف بریتانیکا در مورد مونومر چنین می گوید :
“ مولکولی از هر دسته ترکیبات ( اغلب ارگانیک ) که می تواند با مولکول های همانند خود یا از نوع دیگر واکنش دهد و تشکیل مولکول های بسیار بزرگ یا پلیمر را بدهد . خاصیّت و ویژگی اساسی مونومر چندگانه واکنش دادن آن است ، مونومر دارای قابلیّت شکل دادن ترکیبات شیمیایی با حدّاقل دو مولکول مونومر دیگر است ، …..”
با توجّه به آنچه گفته شد می توان متوجّه شد که مونومر همانند حلقه های یک زنجیر است و پلیمر خود زنجیر است ، در واقع باید بتوان یک پلیمر را به مونومرها با ضریب صحیح تقسیم کرد ، لزومی ندارد که یک مونومر ، عنصر باشد ، در واقع مونومر مولکولی است که از تکرار آن پلیمر به دست می آید و دارای وزن مولکولی کمی می باشد . بد نیست بدانیم که معادل فارسی مونومر ، تکپار ، و معادل فارسی پلیمر ، بَسپار است .
بتن پلیمری قرن بیستم را به حق باید قرن پلیمر ها نیز دانست ، محصولات پلیمری از لحاظ حجمی در سال 1990 بر حجم محصولات آهنی فایق آمد و پیش بینی می شود که در قرن حاضر ، از لحاظ وزن نیز بالاتر رود . صنایع ساختمان بزرگترین مصرف کننده موادّ پلیمری ، 25 تا 30 درصد از کلّ پلیمر ها را مصرف می کند .
یکی از مواردی که در ساختمان به وفور استفاده می شود بتن است . این مادّه به دلیل هزینه پایین تولید ، راحتی استفاده و استحکام فشاری ، یکی از موادّ پرمصرف در سازه هاست ولی به دلیل نقایصی که دارد ( نقایصی چون : 1 – تخریب یخ زدگی و ذوب 2 – تخریب پذیری توسّط موادّ شیمیایی خورنده 3 – استحکام کششی کم 4- دیرپخت بودن و …. ) همزمان با تولید این مادّه ، ترکیب آن با فولاد ( مسلّح کردن بتن ) و ایجاد خاصیّت تاب خمشی مطرح شد و از همان موقع ، استفاده از موادّ و ترکیبات شیمیایی ، برای بهبود خواصّ آن مورد توجّه قرار گرفت . حاصل تحقیقیاتی که در این زمینه صورت گرفت این نتیجه را در بر داشت که جایگزینی مناسبی ، با موادّ پلیمری انجام شده است و با به کارگیری آنها به روش های مختلف ، خواصّ بتن ارتقا می یابد . ( این تحقیقات بیشتر در ژاپن ، آمریکا و روسیه انجام شده است ) . در این رابطه خانواده بتن های پلیمری ، بهترین خاصیّت ها را از خود نشان دادند . خواصّ این نوع بتن ، برتر از بتن های سیمانی بود و گاهی خواصّ منحصر به فردی از خود نشان می دهد . با توجّه به نیاز بیشتر به استحکام در سازه ها و برتری های این نوع بتن ، بتن پلیمری مورد علاقه دانشمندان واقع شد و با وجود آنکه مدّت زیادی از اختراع آن نمی گذرد و علیرغم قیمت بالایی نیز که داراست مورد استقبال روزافزون قرار گرفته است . بتن های پلیمری از حدود سال 1950 وارد بازار شده اند و پیش بینی می شود در طیّ دهه پیش رو ، مصرفشان 10 برابر شود . کاربرد این نوع پلیمرها به دو شاخه استفاده جامد و استفاده غیر جامد تقسیم می شود . در حالت جامد محصولات پلیمری به جای فولاد جایگزین می شوند و بتن را مسلّح می کنند که در این حالت ، پلیمر به صورت رشته ، شبکه و یا میلگرد در بتن استفاده می شود . در حالت غیر جامد با تزریق پلیمر های پودری و مایع ، در دوام بتن بهبود حاصل می شود .
در کشور ما کار خاصّی روی بتن پلیمری صورت نگرفته است و هنوز در سطح یک موضوع تحقیقاتی برای دانشجویان باقی مانده است ، موضوعی که منابع تحقیق آن نیز غالباً خارجی هستند .
بتن های پلیمری ( Polymer Concrete ) حالت جامد : اکثر موادّ و مصالح طبیعی به دلیل ناپیوستگی های سطحی و ترکیباتی که در خود دارند ، دارای مقاومت لازم برای تحمّل تنش های زیاد نیستند و لازم است تا با موادّ دیگری مسلّح شوند . دانشمندان به دنبال موادّی هستند که در ضمن مسلّح کردن بتن ، دارای وزن کمتر ، مقاومت بیشتر در برابر عوامل جوّی ، رفتار بهتر در بارگذاری های متناوب باشد و بتواند مقاومت خود را در دماهای بالا مثل دمای کوره حفظ کند و …..از این قبیل.
یکی از مشهورترین این مصالح ، کامپوزیت های پلیمری می باشند . اوّلین باری که کامپوزیت ها در بنا استفاده شد در زمان جنگ جهانی دوّم بود . در آن زمان بر روی ساختمان هایی که باید رادار نصب می کردند ، استفاده از سازه های فلزّی و یا حتّی بتن آرمه ، مشکل ایجاد می کرد ، با مسلّح کردن بتن توسّط کامپوزیت های بتنی ، این مشکل برطرف شد . همچنین در همان بحبوحه جنگ بعضی از قسمت های هواپیماهای جنگی را از پلی استرهایی که با رشته های شیشه تقویت شده بودند می ساختند .
در ساختمان های مسکونی از کامپوزیت هایی با فیبر شیشه ای یا پلی استر استفاده می شد . ( سازه کامپوزیتی GPR ) ، دو ساختمان استثنایی با سازه کامپوزیتی ساخته شده است که یکی سازه گنبدی شکل در بن غازی ( 1968 ) و دیگری سقف فرودگاه دبی ( 1972 ) است که تأثیر محسوسی بر استفاده از این نوع سازه ها داشته است .
اکثر این سازه ها دارای سازه اصلی بتن مسلّح بود و برای ساخت پانل ها از GPR (Glass Polymer Reinforced ) بهره می برد ، همانند سازه قوسی فضاکار زمین فوتبال شهر منچستر (1980 ) ، مهمّترین کاربردهای GPR به قرار زیر است :
1- ساختمان هایی که تحت اثر خوردگی شدید هستند .
2- سازه های پیشرفته رادارها .
3- ساختمان هایی که کنترل کیفیّت آنها مهم است .
4- ماهواره ها .
5- آنتن های بزرگ .
مهمّ ترین دلایل افزایش استفاده از کامپوزیت ( Composite ) :
1 – وزن کم 2- قابلیّت ایجاد معماری های زیبا 3- مقاومت در برابر شرایط جوّی 4- خواصّ ضدّ خوردگی
5 – وجود سازه هایی که در آنها نباید از فلز استفاده کرد .
امروزه بسیاری از پل های بتن آرمه به دلیل وجود کلر در آب دریا ، تخریب شده اند که بتن پلیمری این نقیصه را ندارد و خورده نمی شود ، محصولات پلیمری در حالت جامد بیشتر به صورت میلگرد و شبکه مورد استفاده قرار می گیرند .
انواع بتن های پلیمری ( حالت غیر جامد ) : پیش از بیان انواع بتن های پلیمری لازم است با فرآیند پلیمریزاسیون بیشتر آشنا شویم :
پلیمریزه شدن : از اتّصال واحد های مونومر به یکدیگر ، رشته یا شبکه های مولکولی سطحی یا فضاییتشکیل می شود که دارای وزن مولکولی بالایی هستند و به آنها پلی مر می گویند ، این فرآیند را پلیمریزه شدن می گویند .
انواع بتن های پلیمری بدین قرارند :
1- بتن های باردار شده توسّط پلیمر ( PIC ) : شامل بتن پورتلند پیش ریخته شده است که توسّط یک سیستم مونومری باردار گردیده است ( آماده واکنش است ) و متعاقباً در محلّ ، پلیمریزه می شود .
2- بتن های پلیمر – سیمان (PCC) : شامل یک مونومر است که به مخلوط آبی بتن تازه افزوده می شود و متعاقباً در محلّ، پلیمریزه می شود .
3- بتن های پلیمری (PC) : شامل یک سیستم مخلوط از سنگریزه ( Aggregate ) و پرکننده ( Filler ) در مونومر می باشد که متعاقباً در محلّ ، پلیمریزه می شود .
4- بتن های پلیمر – گوگرد (PSC ) : شامل یک سیستم مخلوط از بتن های گوگردی است که توسّط پلیمر ها اصلاح خواصّ پیدا کرده باشد .
نحوه تولید بتن پلیمری (حالت غیر جامد ) : بتن های پلیمری از 80 تا 95 درصد پرکننده های معدنی و گاهی آلی تشکیل شده اند و حدود 5 تا 20 درصد بایندر پلیمری نیز
بتن را نگاه می دارد ( بایندر ( Binder ) به معنای پیوند دهنده یا متّصل کننده است و منظور همان محلول مونومر است که پس از فرآیند پلیمریزاسیون بتن را نگاه می دارد ) ، خواصّ بتن های پلیمری برتر از بتن های سیمانی است .
با انتخاب : الف ) بایندر مناسب ب) نوع و میزان مناسب پرکننده ج ) به کار بردن افزودنی های مناسب
می توان طیف وسیعی از بتن های پلیمری را با خواصّ فیزیکی ، مکانیکی ، دینامیکی ، الکتریکی ، حرارتی ، شیمیایی ، تزئینی و … تهیّه کرد . در صورتیکه این طیف وسیع برای بتن های سیمانی وجود ندارد . از مجموعه موادّ رایج به عنوان بایندر پلیمری سه نوع رایج ترند که عبارتند از : 1 – اپوکسی ( Epoxy ) 2- پلی استر 3 – پلی یورتان
از پرکننده های رایج نیز دو نوع رایج ترند که عبارتند از : 1 – سیلیس (Silica) 2- کربنات کلسیم
بر اساس آزمایش هایی از نوع برزیلی ، نتایج زیر حاصل شد :
1 – نمونه های بتن پلیمری با بایندر اپوکسی و پلی استر ، استحکاک بالاتری دارند .
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 15
کاربرد مواد پلیمری در بتن
کاربرد مواد پلیمری در قرن حاضر به سرعت در رشتههای مختلف صنایع و از جمله صنایع ساختمانی در حال گسترش میباشد، یک کاربرد جدید و موفق از این مواد، ساخت بتنهای پلیمری است . بتنهای پلیمری، مخلوطی از حدود 80 تا 95 درصد پرکنندههای معدنی(و گاهی آلی) در 5 تا 20 درصد بایندرهای پلیمری میباشند. این بتنها نسبت به بتنهای رایج سیمانی مزایا و خواص برتری داشته(و در برخی موارد دارای خواصی منحصر به فرد میباشند) و همین مزایا و خواص برتر است که علیرغم قیمت بالاتر آنها، نسبت به بتنهای سیمانی، آنها را مورد استقبال روزافزون صنعتی قرار میدهد. از جملهء این خواص میتوان به استحکام و کرنشهای فشاری، خمشی و کششی بالاتر (چندین برابر بتنهای سیمانی)، میرایی (demping)، عمر سرویس ، مقاومت سایشی و ضربهای، مقاومت در مقابل تغییرات جوی، مقاومت در مقابل مواد شیمیائی و عوامل مخرب محیطی و صنعتی بیشتر و همچنین جذب آب و افت خواص کمتر اشاره کرد. انواع بتنهای پلیمری به لحاظ ویژگیهای خاص خود نظیر خواص تزئینی و دکوراسیونی عالی، در عین خواص مکانیکی و فیزیکی بهتر، رفته رفته جایگزین مناسبی برای سنگهای تزئینی مثل مرمر، انیکس و غیره میشوند. با انتخاب مناسبی از میزان بایندر پلیمری، نوع و میزان مناسبی از پرکننده یا پرکنندههای معدنی(و یا آلی) و همچنین به کار بردن افزودنیهای مناسب ، میتوان خواص بتنهای پلیمری را در یک طیف و محدودهء گستردهای تغییر داده و تنظیم نمود به گونهای که بتوان کلیهء نیازمندیهای مهندسی رایج در مورد مصالح، یعنی نیازمندیهای فیزیکی، مکانیکی، دینامیکی، الکترونیکی، حرارتی، شیمیائی، تزئینی و غیره را که توسط بتنهای سیمانی قابل تامین نیستند، برآورده ساخت . در پروژهء حاضر از مجموعهء انواع مواد پلیمری رایج در ساخت بتنهای پلیمری، سه نوع نسبتا پرمصرف آنها یعنی اپوکسی، پلیاستر و پلییورتان به همراه دو نوع پرکننده معدنی رایج یعنی سیلیس و کربنات کلسیم به کار برده شدهاند. برای مطالعه رفتار و خواص این بتنها و همچنین مطالعهء نحوهء ارتباط و وابستگی این خواص به پارامترهای متغیر فرمولاسیونی نظیر نوع و مشخصات بایندر پلیمری و همچین میزان درصد بار جامد، نوع و دانهبندی پرکننده، ترکیبات متنوعی از بایندر و مخلوط پرکننده تولید، و براساس استانداردهای بینالمللی تحت آزمونهای فشاری، خمشی، کششی(از نوع برزیلی)، دانسیته، جذب آب و غیره قرار گرفتهاند. این بررسیها نشان دادهاند که نمونههای بر پایه اپوکسی و پلیاستر استحکامهای بسیار بالا(چندین برابر خواص مشابه در مورد بتنهای سیمانی) و نمونههای بر پایهء پلییورتان ازدیاد طولهای بسیار زیادی دارند. بطور خلاصه نتایج نشان میدهند که استحکام فشاری نمونههای بتن پلیمری، بر پایه اپوکسی و پلیاستر تا 3/5 برابر، کرنش فشاری تا 2/5 برابر، استحکام کششی تا 8/5 برابر، استحکام خمشی تا 4 برابر و کرنش خمشی تا دهها برابر نسبت به بتن سیمانی بیشتر بوده و در عین حال جذب آب این نمونهها 10 تا 60 برابر کمتر از بتنهای سیمانی است . ضمنا بررسی نمونههای بتن بر پایه پلییورتان نشان میدهد که این مواد با توجه به میزان ازدیاد طولهای بسیار منحصر بفرد خود میتوانند به عنوان پوشش کفها از نوع مقاوم در مقابل سرخوردگی (Skid-resistant) و درزگیر بتنها و ... مورد استفاده قرار گیرند. دستیابی به خواص مکانیکی منطبق با نیازمندیها و خواص اشاره شده در مراجع فنی(و گاهی بهتر از آنها) در پروژه حاضر، مرهون انتخاب صحیح مواد و روش کار بوده است . سیمان گوگردی با استفاده از افزودنی بومی برای اولین بار توسط محققان پژوهشکده توسعه صنایع شیمیایی ایران وابسته به جهاد دانشگاهی ساخته شد.
بتن گوگردی
بتن گوگردی از اختلاط مصالح با سیمان گوگردی تهیه می شود. این نوع بتن در مقایسه با بتن سیمان پرتلند(بتن معمولی) ویژگیهای قابل توجهی از جمله مقاومت بالا در محیط های خورنده، قابلیت استفاده مجدد، عدم استفاده از آب در تولید بتن و غیره را دارا می باشد و تولید آن تحول شگرفی به ویژه در کاربردهای خاص ایجاد می کند.
بتن گوگردی به عنوان جایگزین بتن سیمان پرتلند نبوده بلکه در مواردی که کاربرد بتن پرتلند با محدودیت هایی همراه است به کار می رود.
پودر گوگرد به شکل آلفا (ارتورومبیک) می باشد که بر اثر حرارت ذوب شده و به شکل بتا (منو کلینیک) متبلور می شود. در اثر این تغییر به دلیل تفاوت شکل هندسی فرم های آلفا و بتا در ساختار بتن خلل و فرجی ایجاد می شود. برای رفع این مشکل، افزودنیهای خاصی کاربرد دارد که در ایران تولید نمی شود، از طرفی قیمت بالای آنها، استفاده در داخل کشور را توجیه ناپذیر می کند ولی افزودنی مناسبی که در پژوهشکده توسعه صنایع شیمیایی جهاد دانشگاهی شناسایی و استفاده شده است در داخل کشور تولید می شود.
وجود منابع عظیم گوگرد در ایران و مزایای قابل توجه این نوع بتن ضمن آزمودن افزودنیهایی که بتوانند خواص گوگرد را بهبود بخشیده و از تغییر آلوتروپی آن در مراحل ذوب و انجماد مجدد جلوگیری نمایند، افزودنی مناسب انتخاب شد و در ساخت سیمان گوگردی به کار رفت و در حال حاضر از اختلاط این نوع سیمان با مصالح، ساخت نمونه های ملات به منظور بهینه سازی شرایط و اثبات خواص مکانیکی نمونه ها در دست انجام می باشد.
این نوع بتن در سازه های دریایی، شبکه های فاضلاب، مخازن نگهداری اسید و مواد شیمیایی، کانالهای آبیاری، ساختمان سازی در سرما، ریلهای راه آهن، کف سازی و فونداسیون، روکش پل ها و عایق بندی تونلها و تولید جداول و تجهیزات بتنی بزرگراهها کاربرد دارد
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 8
لوله های فلزی پلیمری ( متال پلاست )
لوله های فلزی پلیمری لوله هایی هستند که ساختمان آنها از سه لوله تو در تو تشکیل شده است به طوری که لوله داخلی از پلیمر ، لوله میانی از فلز ( مانند آلومینیوم یا فلز رنگی دیگر جوشکاری شده ) و لوله بیرونی از پلیمر است .
نکته اصلی در ساخت این لوله ، استفاده از ماده ویژه ای است که سطوح داخلی و بیرونی لوله فلزی ( لایه فلزی ) را با سطوح لوله های پلیمر داخلی و بیرونی به هم اتصال داده و به عبارتی هموژن کند .
باید توجه داشت که به کار گیری این ماده همچنین ، ضریب انبساط لوله پلیمری و لوله فلزی را به هنگام حرارت هماهنگ می کند و در حقیقت اساس دانش فنی و تکنولوژی ساخت لوله های فلزی پلیمری در این ماده نهفته است .
بدین ترتیب از تلفیق و ترکیب 3 لوله از مواد مختلف به صورت 5 لایه ( شکل 1 ) ( با احتساب دو لایه برای ماده ویژه ) . لوله ای تولید می شود که کلیه مزایای لوله های فلزی و پلیمری را به شرح زیر دارا بوده و از معایب آنها عاری است .
- نفوذ ناپذیری صد در صد همانند لوله های فلزی
- ضد خوردگی چه از داخل و چه از خازج و رسوب ناپذیری چون لوله های پلیمری
- دارا بودن مقاومت مکانیکی قابل توجه به دلیل فلزی بودن لوله ( لایه ) میانی
- تحمل فشارهای بالا حتی در دمای بالا ( نمودار 7 ) به دلیل وجود لایه فلز و دارا بودن ضریب انبساط طولی متر همچون لوله های فلزی . در مقام مقایسه می توان از نمودار 8 تحمل فشار در طول زمان را ( 50 سال ) برای لوله های پلیمری PP, HDPE , PEX , PB و فلزی پلیمری یونی پایپ استخراج نمود .
- به دلیل پایین بودن ضریب زبری داخل لوله، افت فشار در این نوع لوله ها بسیار پایین و قابل اغماض می باشد.
- وزن کم ، به کار گیری و مونتاژ سریع و آسان و بالاخره اقتصادی بودن آن .
روش جوش کاری لوله فلزی ( لایه میانی )
چگونگی جوشکاری لوله فلزی ( آلومینیوم ) در خواص فیزیکی لوله فلزی پلیمری مؤثر است . برای این که لوله فلزی پلیمری به آسانی ( با نیروی دست ) قابلیت شکل پذیری داشته باشد لازم است که ورق لوله فلزی حداقل ضخامت را دارا باشد که این خود روش جوشکاری روی هم را مطرح می کند چرا که در صورت به کار گیری روش جوشکاری لب به لب به علت ضخامت کم لبه ورق لوله ، جوشکاری مطمئنی انجام نگرفته و از طرفی لوله پلیمری داخلی نیز صدمه می بیند و بدیهی است انتخاب ورق لوله با ضخامت بیشتر علاوه بر حجیم کردن لوله و سنگینی آن مشکلات شکل پذیری لوله را به هنگام کار گذاری و مونتاژ به همراه خواهد داشت .
در بهره گیری از نوار آلومینیومی یا مواد فلزی دیگر به صورت پوششی برای لوله ، پلیمر داخلی نمی تواند نقش یک لوله میانی فلزی را ایفا کند . چرا که ورق باید جوشکاری شده باشد تا بتواند صد در صد نفوذ ناپذیر بوده و خود لوله فلزی در دمای بالا فشار را تحمل کند .
مشبک کردن داخل و بیرون پلیمر
به طور کلی در لوله های فلزی پلیمری به ویژه برای آب گرم و سیستم حرارتی مصرف شونده باید پلیمر داخلی و بیرونی مشبک شوند . ممکن چنین تصور شود که لایه پلیمر بیرونی چون با حرارت داخلی پلیمر در تماس نیست به مشبک شدن نیاز ندارد . اما با توجه به این که لایه فلزی قابل هدایت حرارت بالایی دارد پلیمر بیرونی نیز باید مشبک شود . اگر فقط پلیمر داخلی لوله مشبک باشد در طول زمان پلیمرهای داخلی و بیرونی لوله واکنش مختلفی نشان خواهند داد و به عبارت دیگر در اثر بروز احتمال نفوذ و رطوبت عرق لوله و یا مواد دیگر بر روی لایه محافظ و یا لایه فلزی وجود داشته و در نتیجه به ساختار لوله آسیب خواهد رسانید .
بدین ترتیب نوع پلیمر استفاده شده برای لایه بیرونی لوله نیز بسیار مهم و ضمن برخورداری از کیفیت بالا باید مشبک ( Cross Linked ) هم باشد . مشخصات
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 17
سازگارکننده ها برای آلیاژهای پلیمری
کاربرد آلیاژهای پلیمری به دلیل ارائه موازنه ای مطلوب از خواص فیزیکی و شیمیایی همچنان به رشد سریع خود ادامه می دهد. سازگارکننده ها مکانیسمی جهت اختلاط این پلیمرهای غیر قابل امتزاج فراهم می آوردند. در این مقاله به روند اخیر استفاده از سازگارکننده ها برای آلیاژهای پلیمری نگاهی می اندازیم.
استفاده از آلیاژهای پلیمری و به تبع آن سازگارکننده ها طبق پیش بینی کارشناسان، همچنان به رشد خود ادامه خواهد داد. بازار سازگارکننده ها، بدون در نظر گرفتن آن میزان که در بازیافت استفاده می شود، در حدود 6/13 میلیون کیلوگرم (30 میلیون پوند) در سال 2000 تخمین زده شده است و انتظار می رود تا با سرعت رشد سالانه % 4/5 در سال 2005 به 6/18 میلیون کیلوگرم (40 میلیون پوند) برسد. کمپانی ارتباطات تجاری (BCC) که یک کمپانی آمریکایی است این مطلب را در گزارش سال 2001 خود تحت عنوان "بهینه سازی پلیمر پس از پلیمریزاسیون" بیان کرده است. دو عامل خواص و قیمت، رشد آلیاژها را تضمین میکنند. آلیاژهای پلیمری جهت حصول موازنه مطلوب میان خواص فیزیکی و شیمیایی به طور وسیعی استفاده می شوند. گرایش به پلیمرهای با نقاط ذوب بالاتر و پایداری حرارتی بهتر منجر به کاربرد بیشتر آلیاژهای پلیمری شده است که برای بهبود این پلیمرها که نوعا شکننده تر هستند، به کار گرفته می شوند.
تمایل دیگر، آلیاژ سازی سه ماده یا بیشتر با یکدیگر می باشد که عمدتاً در اجزای قالب گیری شده محصول مورد استفاده مصرف کننده به کار می روند، که از آن جمله می توان به لاستیک های با زیر دست نرم بر روی مسواک ها یا تیغ ها اشاره نمود. اجزای قالب گیری شده یک محصول از مخلوط پیچیده ای از پلیمرها تشکیل می شوند که خواص فیزیکی مطلوب به همراه چسبندگی به زمینه را دارا می باشند. سازگارکننده ها در به دست آوردن این آلیاژها نقش کلیدی دارند.
صنعت پلاستیک به طور مداوم به دنبال کاهش در هزینه ها می باشد. در برخی موارد که یک پلیمر گران جهت کاربرد مشخصی مورد نظر می باشد، آلیاژ سازی با یک پلیمر ارزان تر با یک پرکننده، با استفاده از سازگارکننده یا عامل اتصال (Coupling Agent) مربوط، هزینه ها را کاهش خواهد داد. راه حل دیگر اصلاح یک پلیمر ارزان مانند pp با استفاده از مواد افزودنی یا آلیاژسازی می باشد به طوری که بتواند با مواد بهتر از لحاظ خواص رقابت کند.
چگونگی عملکرد سازگارکننده ها
سازگارکننده ها جهت تهیه آلیاژ از پلیمرهای غیر قابل امتزاج و خلق یک مخلوط همگون به کار می روند. مواد ناسازگار، مانند آب و روغن، هنگام اختلاط دو فازی می شوند. یک سازگارکننده مانند یک عامل سطح فعال عمل کرده و کشش بین سطحی دو پلیمر ناسازگار را کاهش داده و امکان تهیه آلیاژ از آن ها را فراهم می آورد.
هر چند که آلیاژ کماکان دو فازی است اما سازگارکننده، اختلاط و پایداری دو فاز را تا حدی که آلیاژ به مثابه حالت امتزاج پذیر عمل کند، ممکن می سازد. سازگار کننده نوعاً شامل دو بخش است به طوری که هر بخش می تواند با یکی از اجزای آلیاژ بر همکنش داشته باشد، سازگارکننده های غیر واکنشی پیوندی تشکیل نمی دهند اما عموماً با یکی از اجزا آلیاژ امتزاج پذیر می باشند.
سازگارکننده ها نقش مهمی در خلق انواع مختلف آلیاژ داشته و به آمیزه سازان نیز تا حدودی آزادی عملکرد در جهت برآورد نیازهای مشخص می دهند. آلیاژهای پلیمری عموماً خواص ضربه یا خمشی، مقاومت شیمیایی، شکل پذیری حرارتی و قابلیت چاپ را تغییر می دهند، در برخی موارد بعضی از خواص آلیاژ سازگار شده از هر یک از اجزا به تنهایی پیشی می گیرد.
سازگارکننده های *** از شرکت Crompton را می توان جهت تهیه ترکیبات پلی پروپلین با کارکرد بهینه، همچنین آلیاژهای پلی پروپلین یا بسیاری از گرما نرم های مهندسی مختلف به کار گرفت. جریان پذیری بهتر، دانسیته پایین تر، قالب پذیری و مقاومت شیمیایی بهتر، مقاومت به پیر شدن بهتر، مقاومت به خراش بهتر، شفافیت بالا و ماندگاری رنگ بهتر به علاوه کاهش وزن برای کاربردهای ویژه از مزایای استفاده از این مواد می باشد.
سازگارکننده های مورد استفاده در بازیافت
کاربرد مهم دیگر سازگارکننده ها در بازیافت مواد پلیمری می باشد، استفاده از مواد بازیافتی در فرایند گرما نرم ها معمول است. اگر مواد ضایعاتی شامل پلیمرهای ناسازگار، مانند آنچه در ساختارهای چند لایه مشاهده می شود، باشد، جزء ناسازگار به سطح خارجی ماده اکسترود شده مهاجرت خواهد نمود. سازگارکننده ها می توانند از وقوع این پدیده جلوگیری یا میزان آن را کاهش دهند. همچنین سازگارکننده ها امکان بازیافت تکه های فیلم های چند لایه ای را که حاوی پلیمرهای با اندیس جریان کاملاً متفاوت می باشند، فراهم می آورند.
آمیزه سازی با سازگارکننده ها
هنگام انتخاب یک سازگارکننده، آمیزه ساز ابتدا باید آن سازگارکننده ای را انتخاب کند که با پلیمرهای تشکیل دهنده آلیاژ همخوانی داشته باشد، سازگارکننده های واکنشی نیاز به یک گروه متضاد واکنشی دارند و سازگارکننده های غیر واکنشی باید از لحاظ گرانروی یا به طور ایده آل امتزاج پذیری، با یکی از اجزای آلیاژ تطبیق داشته باشند. آمیزه سازها همچنین باید به محدوده دمایی قابل استفاده برای سازگارکننده و اجزای آلیاژ توجه داشته باشند. آمیزه سازها باید مراقب هر گونه تاثیرات ناخواسته منفی حاصل از افزودن سازگارکننده نیز باشند. برای مثال در یک سیستم واکنشی پیوند زنی مالئیک انیدرید (MA) که پراکسید بسیار زیادی دارد، امکان شبکه ای شدن یکی از پلیمرها در حین فرایند وجود خواهد داشت. در سیستم های حاوی سازگارکننده های غیر واکنشی، آلیاژ سازگار شده باید از لحاظ خواص فیزیکی و خواص بلند مدت نظیر پیر شدن، حداقل به خوبی پلیمر ماتریس به تنهایی باشد. در سیستم های آلیاژی، آمیزه ساز باید به هر گونه لایه لایه شدن با توزیع ناهمگون ماده رنگزا یا افزودنی توجه داشته باشد. اگر یکی از پلیمرها در آلیاژ از دیگری آمورف تر باشد ممکن است که نسبت به ماده بلوری تر، ماده رنگزای بیشتری را در برگیرد. استفاده از سازگارکننده ای که اختلاط مناسب اجزای پلیمری را ممکن می سازد، می تواند توزیع ناهمگون ماده رنگزا را بر طرف سازد.
اختلاط برشی خوب در آلیاژسازی پلیمرها به خصوص هنگام سازگار سازی واکنشی، بسیار مهم می باشد، در برخی موارد میزان مورد نیاز سازگارکننده می تواند با بهبود شرایط اختلاط کاهش یابد. آلیاژهای با گرانروی بسیار متفاوت نیز نیاز به برش بسیار بالا دارند، اکسترودرهای دو پیچه همسوگرد به طور معمول برای اختلاط برشی به کار گرفته می شوند.
شرکت *** پلیمرهای *** را توسعه داده که بر پایه فناوری جدید SBC می باشند که بسیاری مزایای فرایندی و طراحی را ارائه می دهند.
سازگارکننده های واکنشی
پلی الفین های پیوند خورده با مالئیک انیدرید (MA) عموماً به عنوان عوامل اتصال برای سیستم های حاوی پرکننده یا تقویت کننده استفاده می شوند، اما همچنین می توانند به عنوان سازگارکننده های واکنشی برای آلیاژ پلی الفین ها با پلیمرهایی نظیر نایلون و EVOH که با MA واکنش می دهند، به کار گرفته شوند. PE یا PP پیوند خورده با MA تهیه شده توسط شرکت Crompton امکان تهیه آلیاژهای نایلون – PP را برای کاربردهایی نظیر قطعات سیستم سرمایش ماشین ها می دهند. خواص مناسب نایلون در دماهای بالا مورد نیاز می باشد، اما PP نیز به عنوان کاهش دهنده جذب رطوبت که باعث تخریب نایلون می گردد، لازم است. MA-g-PP را همچنین می توان به عنوان لایه میانی (Tie Layer) سازگارکننده در فیلم های بسته بندی چند لایه PP با EVOH که مانع نفوذ اکسیژن است، به کار برد. سازگارکننده های پیوند خورده با MA در بازیافت فیلم های چند لایه که ممکن است حاوی نایلون و PP باشند، سودمند خواهند بود. خط محصول Dupont Pusabound محدوده وسیعی از پلیمرهای پیوند خورده با MA را تولید می کند.
سایر سازگارکننده های واکنشی شامل ترپلیمر اتیلن – بوتیل اکریلات – گلیسیدیل متیل اکریلات (E-BA-GMA) مانند PTW Dupont Elvaloy می باشند که می توانند برای سازگار سازی آلیاژهای پلی بوتیلن ترفتالات PA/ PBT, PP (PBT) و پلی اتیلن ترفتالات (PET) پلی الفین به کار روند. یک کاربرد برای این ترپلیمرها در سیم و کابل های مقاوم حرارتی می باشد.
کوپلیمرهای Kraton PG، کوپلیمرهای بلوکی Kraton G می باشند که با MA پیوند زنی شده اند. از آنجا که هر مولکول دارای دو جزء است، این کوپلیمرها با محدوده وسیعی از پلیمرها شامل نایلون، PS و پلی