لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 3
آمیب ( Amoeba )
آمیب گونه ای از انگل های تک یاخته ای است که بااندازه ای در حدود یک صدم تا سه صدم میلی متر باعث اسهال خونی می شود . این انگل تنها انسان را به عنوان میزبان خود آلوده و به دیگر جانوران کاری ندارد.
اوگلنا
اوگلنا موجودی تک سلولی است که به فرمانروی آغازیان شاخه اوگلنا ها تعلق دارد . لکه چشمی در اوگلنا ساختاری است که در جهت گیری موجود نسبت به نور نقش دارد لکه چشمی ساختار سلولی ندارد .
پارامسی ها
پارامسی ها پروتوزوئرهای تک سلولی (یونی سلولار) هستند و در شاخه مژه داران و سلسله پروتیستا طبقه بندی می شوند. آنها در آب های آرام و آبگیرهای راکد زندگی می کنند و بخش اصلی زنجیره ی غذایی را تشکیل می دهند. آنها از پسمانده ی جلبکها و سایر موجودات ریز تغذیه می کنند و خودشان توسط موجودات کوچک دیگر خورده می شوند. تمام اعضای شاخه مژه داران (سیلیوفورا) به وسیله برآمدگی های ریز مو مانندی که مژه نامیده می شود حرکت می کنند.
پارامسی قادر نیست شکل بدنش را مانند آمیب تغییر دهد زیرا غشای (پوسته ی) بیرونی ضخیم و سختی به نام پلیکل دارد. پلیکل غشای سلولی را فرا می گیرد.
پارامسی دو نوع هسته دارد. هسته ی بزرگ ماکرونوکلئوس نامیده می شود و فعالیتهایی مانند تنفس، سنتز پروتئین و هضم غذا را کنترل می کند. هسته ی کوچک تر میکرونوکلئوس می باشد و تنها در طی تولید مثل به کار گرفته می شود. تولید مثل در پارامسی شامل تبادل DNA بین میکرونوکلئوس است. برای انجام این امر دو پارامسی از طول به هم می چسبند و از طریق دهان سلولی به هم ملحق می شوند. این فرایند گشنگیری نامیده می شود و نوعی تولید مثل جنسی در میکروارگانیسم ها می باشد.
واکوئل انقباضی در سلولهای جانوری برای بیرون راندن آب اضافی به کار می رود. واکئول انقباضی شکلی شبیه به ستاره دارد.
پارامسی ها هتروتروف هستند. یعنی باید از غذا برای کسب انرژی استفاده کنند. غذا از طریق دهان سلولی وارد می شود و به شیار دهانی می رود. در انتهای شیار دهانی واکئول غذایی شکل می گیرد. واکئول غذایی تا زمانی که هضم شود در سیتوپلاسم باقی می ماند. ذرات غذایی تجزیه نشده از طریق سوراخ مخرجی دفع می شود. ناحیه ی تو رفته و کنگره دار، جایی که غذا وارد پارامسی می شود شیار دهانی نام دارد.
پارامسی می تواند به دما، غذا، اکسیژن و توکسین ها پاسخ دهد و همچنین مکانیسم دفاعی بسیار ساده ای دارد. درون پلیکل اعضای نخ مانندی به نام تریکوسیست وجود دارد. پارامسی برای گرفتار کردن شکارچی ها و برای بزرگتر به نظر رسیدن تریکوسیست ها را به بیرون پرتاب می کنند. همچنین می دانیم پارامسی ها می توانند رفتار اجتنابی از خود نشان دهند. مانند وقتی که یک پارامسی از کنار محرک های منفی و ناخوشایند دور می شود.
دو نوع سیتوپلاسم در پارامسی وجود دارد. سیتوپلاسمی که در کناره ها قرار دارد صاف و کم تراکم است و اکتوپلاسم نامیده می شود. بقیه ی سیتوپلاسم غلیظ تر است و اندو پلاسم نامیده می شود.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 14 صفحه
قسمتی از متن .doc :
بتن سبک ( فوم بتن)
ساختمان به طور مستقیم ( به لحاظ سبکی ویژه این نوع بتن ) و صرفه جویی در مصرف انرژی بطور غیر مستقیم( به لحاظ عایق بودن این نوع بتن در مقابل سرما و گرما و در نتیجه کاهش میزان مواد سوختی ) , از لحاظ اقتصادی گام های بلند و مهمامروزه مهندسین و معماران سازنده ساختمان در دنیا با استفاده از بتن سبک در قسمت های مختلف بنا با سبک کردن وزنی برداشته اند.
فوم بتن پوششی است جدید جهت مصارف مختلف در ساختمان که به علت خواص فیزیکی منحصر به فرد خود بتنی سبک و عایق با مقاومت لازم و کیفیت مطلوب نسبت به نوع استفاده از آن ارائه میدهد . این پوشش از ترکیب سیمان , ماسه بادی (ماسه نرم ) , آب و فوم ( ماده شیمیائی تولید کننده کف ) تشکیل می شود . ماده کف زا در ضمن اختلاط با آب در دستگاه مخصوص , با سرعت زیادی , حباب های هوا را تولید و تثبیت نموده و کف حاصل که کاملا پایدار می باشد در ضمن اختلاط با ملات سیمان و ماسه بادی در دستگاه مخلوط کن ویژه , خمیری روان تشگیل می دهد که به صورت درجا با در قالب های فلزی یا پلاستیکی قابل استفاده می باشد . این خمیر پس از خشک شدن با توجه به درصد سیمان و ماسه بادی ( مطابق با جدول شماره 1 ) دارای وزن فضایی از 300 الی 1600 کیلو گرم در متر مربع خواهد بود .
ویژگی های عمده فوم بتن
1 _ عامل اقتصادی : سبکی وزن با مقاومت مطلوب فوم بتن یا توجه به نوع کاربرد آن , بطور کلی به لحاظ اقتصادی مخارج ساختمان را میزان قابل ملاحظه ای کاهش می دهد چون در نتیجه استفاده از آن , وزن اسکلت فلزی و دیوار ها و سقف کاهش یافته و ضمنا باعث کاهش مخارج فونداسیون و پی در ساختمان می گردد که با توجه به خواص فوق , با سبک تر بودن ساختمان , نیروی زلزله خسارات کمتری را در صورت وقوع متوجه آن می سازد .
2 _ سهولت در حمل و نقل و نصب قطعات پیش ساخته : حمل و نقل قطعات پیش ساخته : حمل و نقل قطعات پیش ساخته با فوم بتن هزینه کمتری را نسبت به قطعات بتنی دربرداشته و نصب قطعات بعلت سبکی آنها . بسیار آسان می باشد , هر گونه نازک کاری براحتی روی پوشش فوم بتن قابل اجراست و ضمنا چسبندگی قابل توجهی با سیمان و گچ دارد .
3 _ خواص فوق العاده عایق بودن در مقابل گرما , سرما و صدا : فوم بتن به علت پائین بودن وزن مخصوص آن یک عایق موثر در مقابل گرما , سرما و صداست . ضریب انتقال حرارتی فوم بتن ( طبق جدول شماره 3 ) بین65 0/0 تا 435/0 k cal / m2 hc می باشد ( ضریب هدایت حرارتی یتن معمولی بین 3/1 تا 7/1 می باشد ) استفاده از فوم بتن بعنوان عایق باعث صرفه جویی در استفاده از وسائل گرم زا و سرما زا می گردد . فوم بتن عایق مناسبی جهت صدا با ضریب زیاد جذب آگوستیک به سمار می رود که در نتیجه بعنوان یک فاکتور رفاهی در جهت جلوگیری از ورود صداهای اضافی اخیرا مورد توجه طراحان قرا کرفته است .
4 _ خصوصیات عالی در مقابل یخ زدگی و فرسایش ناشی از آن و مقاومت در برابر نفوذ رطوبت و آب : نظر به اینکه فوم بتن در قشرهای سطحی دارای تخلخل فراوان می باشد در نتیجه شکاف های موئین و و درزهای کمتری در سطح ایجاد می شود و اگر پوشش فوم بتن با ضخامت کافی مورد استفاده قرار گیرد در مقابل خطر نفوذ باران و رطوبت مقاومت مطلوبی خواهد داشت .
5 _ مقاومت فوق العاده در مقابل آتش : مقاومت فوم بتن در مقابل آتش فوق العاده می باشد .
به طور مثال قطعه ای از نوع فوم بتن با وزن فضایی 700 الی 800 کیلو گرم در متر مکعب که حداقل 8 سانتی متر ضخامت داشته با شد به راحتی تا 1270 درجه سانتی گراد را تحمل می نماید و اصولا در وزن های پائین غیر قابل احتراق است .
6_ قابل برش بودن :6 به دلیل قابل برش بودن با اره نجاری و میخ پذیر بودن آن . کارهای سیم کشی و نصب لوازم برقی و تاسیسات خیلی سریع و به راحتی قابل عمل خواهد بود .
کاربرد فوم بتن در ساختمان
1 _ شیب بندی پشت بام : فوم بتن با صرفه ترین و محکم ترین مصالح سبکی است که می توان از آن برای پوشش شیب بندی استفاده نمود . نظر به اینکه با دستگاه مخصوص به صورت بتن یکپارچه در محل قابل تهیه و استفاده است می توان مستقیما روی آن را عایق بندی یا ایزولاسیون نمود .
2 _ کف بندی طبقات : به دلیل سبکی وزن فوم بتن و آسان بودن تهیه آن . می توان تمامی کف طبقات . محوطه و بالکن ساختمان را بعد از اتمام کارهای تاسیساتی با آن پوشانده و بلافاصله عملیات بعدی را مستقیما روی آن انجام داد .
3 _ بلوک های غیر بار بر سبک : با بلوک های تو پر به ابعاد دلخواه می توان تمامی کار تیغه بندی قسمت های جدا کننده ساختمان را با استفاده از ملات یا چسب بتن انجام داد . با این نوع بلوک ها علاوه بر اینکه از سنگین کردن ساختمان جلوگیری می شود عملیات حمل و نصب خیلی سریع انجام می گیرد و دست مزد کمتری هزینه می شود . پس از اجرای دیوار می توان مستقیما روی آن را گچ نمود . این بلوک ها دارای وزن فضایی بین 800 الی 1100 کیلو گرم می باشند .
4 _ پانل های جدا کننده یکپارچه و نرده های حصاری جهت محوطه و کاربری در موارد خاص : جهت ساخت دیوارهای سردخانه ها . گرم خانه ها و سالن های ضد صدا می توان در محل با قالب بندی . فوم بتن را به صورت یک پارچه عمودی ریخت . به دلیل ویژگی عمده عایق بودن این نوع بتن . جهت عیق بندی سردخانه ها . گرم خانه ها . پوشش لوله های حرارتی و برودتی و ...... کاربرد مهمی دارد . ضمنا به دلیل اینکه عایق صدا می باشد برای موتورخانه ها و اتاق های آکوستیک مورد استفاده وسیع قرار می گیرد .
خصوصیات بتن سبک
بتن سبک ماده ای است با ترکیبات جدید و فوق العاده سبک و مقاوم .
مواد تشکیل دهنده بتن سبک عبارت است از ورموکولیت، پرلیت، سنگ بازالت و سیمان تیپ 2 و ...
در این بتن همانند بتنهای عادی ، از ماسه استفاده نمی شود.
عدم وجود ماسه باعث سبک و همگن شدن ساختار بتن گردیده و باعث می شود که مواد تشکیل دهنده که تقریبا" از یک خانواده می باشند و بهتر همدیگر را جذب کنند .
ساختمان این بتن متخلخل بوده و این مسئله پارامتر بسیار موثری است. چون تخلخل موجود در بتن باعث مقاوم شدن در برابر زلزله و عایق شدن در برابر صدا ، گرما و سرما می گردد .
ترکیبات این بتن به گونه ای عمل می کند که حالت ضد رطوبت به خود گرفته و به مانند بتن معمولی که جذب آب دارد عمل نکرده و آب را از خود دفع می کند .
این بتن تحت فشار مستقیم (پرس) ساخته می شود .
بدلیل شکل گیری بتن در فشار، ساختار آن دارا ی یکپارچگی قابل قبولی است .
بتن سبک در قالبهای طراحی شده توسط متخصصین ، بصورت یکپارچه ریخته می شود .
بدلیل یکپارچگی در نوع ساختمان بتن ، قطعه تولیدی از استحکام بالایی برخوردار شده و مقاومت بالایی نیز در برابر زلزله از خود نشان خواهد داد .
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 20
استاندارد روش اندازهگیری ید ( بر حسب ید ور پتاسیم ) در خوراک دام و طیور
1- هدف
هدف از تدوین این استاندارد ارائه روش تعیین مقدار ید ( بر حسب ید ور پتاسیم ) در خوراک دام و طیور میباشد .
2- دامنه کاربرد
این استاندارد برای تعیین مقدار ید در خوراک دام و طیور کابرد دارد :
3- روش اندازهگیری مقدار ید
تعیین مقدار ید در خوراک دام و طیور به یکی از دو روش زیر انجام میگیرد ,
3-1- روش الف .
3-1-1- معرف ها
3-1-1-1- تاکادیاستاز
3-1-1-2- شناساگر متیل اورانژ برای تهیه آن 0/5 گرم متیل اورانژ را در آب حل کرده و تا یک لیتر رقیق کنید .)
3-1-1-3- اسید سولفوریک رقیق 2 نرمال
3-1-1-4- آب بروم : محلول مائی اشباع شده : غلظت تقریبی را ( میلی گرم در میلی لیتر ) با افزودن حجم معینی ( توسط بورت ) به بالن محتوی 5 میلی لیتر از محلول ید ور پتاسیم 10 درصد تعیین کنید . 5 میلی لیتر از محلول اسید سولفوریک رقیق اضافه کنید و یذ آزاد شده را با محلول نرمال تیوسولفات سدیم عیارسنجی کنید .
3-1-1-5- محلول تقریبا یک درصد سولفیت سدیم ( وزن به حجم )
3-11-6- محلول تقریبا 5 درصد فنل ( وزن به حجم )
3-1-1-7- محلول تقریبا 10 درصد ید ور پتاسیم ( وزن به حجم )
3-1-1-8- محلول استاندارد تازه تهیه دشه 0/005 نرمال تیو سولفات سدیم
3-1-1-9- محلول یک درصد نشاسته ( وزن به حجم ) تازه تهیه شده
3-1-1-10- محلول کلرور سدیم برای تهیه آن 10 گرم کلرور سدیم را در آب حل کرده و حجم آن را به 100 میلی لیتر برسانید .)
3-1-1-11- محلول ید ور پتاسیم شاهد : 0/328 گرم ید ور پتاسیم را در آب حل کرده و حجم آن را به 250 میلی لیتر برسانید . 5 میلی لیتر از این محلول را تا 250 میلی لیتر رقیق کرده و 5 میلی لیتر آن را به عنوان شاهد مورد استفاده قرار دهید که معادل یک میلی گرم ید و یا 0/308 میلی گرم ید ور پتاسیم است .
3-1-2- آماده کردن محلول نمونه :
3-1-2-1- بدقت حدود 50 گرم از نمونه را وزن کرده و آن را در 100 میلی لیتر آب مقطر حل کنید . 2 گرم تاگادیاستاز به آن بیافزایید و بگذارید در حرارت 37 درجه سانتی گرادبه مدت 2 ساعت بماند محلول را صاف کرده و باقی مانده را با آب بشویید محلول صاف شده و آبهای شستشو صاف شده را روی هم بریزید و حجم آن را در یک بالن ژوژه به 250 میلی لیتر برسانید .
3-1-3- طرز عمل :
50 میلی لیتر محلول مورد آزمون (3-1-2-1) را به وسیله پی پت به یک ارلن مایر 200 میلی لیتری منتقل نموده و سپس به وسیله اسید سولفوریک رقیق شده در حضور شناساگر متیل اورانژ خنثی کنید , سپس به وسیله بورت قطره قطره آب برومی که حاوی 20 میلی گرم برم باشد به محلول اضافه کنید بعد از چند دقیقه بوسیله افزودن قطره قطره سولفیت سدیم و بهم زدن مداوم برم آزاد باقی مانده را از بین ببرید . قسمت دهانه و دیوارههای ارلن مایر را با آب مقطر شستشو و کاملا برم آزاد را بوسیله افزودن یک تا 2 قطره محلول فنل خارج کنید . یک میلی لیتر اسید سولفوریک رقیق و 5 میلی لیتر محلول ید ور پتاسیم افزوده و ید آزاد شده را به وسیله محلول تیو سولفات سدیم استاندارد در حضور یک میلی لیتر معرف نشاسته که در انتهای عمل تیتره کردن اضافه کرده عیارسنجی نمایید .
همراه با این آزمون یک یا چند آزمون شاهد با معرفها بکار برید که از 50 میلی لیتر محلول کلر ور سدیم که به آن مقدار کافی محلول شاهد ید ور پتاسیم افزوده شده استفاده نمایید .
3-1-4- محاسبه :
3-1-4-1- درصد ید به صورت ید ور پتاسیم بر اساس ماده خشک مساویست با :
که در آن
= V1 حجم محلول تیو سولفات سدیم استاندارد مورد احتیاج برای آزمون محلول نمونه آماده شده بر حسب میلی لیتر
= V2 حجم محلول تیوسولفات سدیم مورد احتیاج برای آزمون شاهد بر حسب میلی لیتر
= N نرمالیته محلول تیوسولفات سدیم استاندارد
= W وزن ماده مورد آزمون ( بند 3-1-2-1)
= M درصد رطوبت
3-2- روش ب
3-2-1- روش اندازهگیری ید ( روش C.A.O.A) Elmslie - Calwell
3-2-1-1 معرفها
3-2-1-2- کربنات سدیم
3-2-1-3- محلول سود (1+1)
3-2-1-4- الکل اتیلکیک
3-2-1-4- محلول اشباع شده آب برم Br-H2O
3-2-1-5- اسید فسفریک 85 درصد
3-2-1-6- معرف متیل اورانژ
3-2-1-7- کریستال اسید سالسیلیک
3-2-1-8- ید ور پتاسیم
3-2-1-9- تیو سولفات 0/005 نرمال
3-2-1-10- معرف نشاسته تازه تهیه شده
3-2-2- وسایل :
3-2-2-1- بوته پلاتینی یا نیکلی
3-2-2-2- کوره الکتریکی
3-2-3- طرز عمل :
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 12
ارتباطات تحریکپذیر زمانی در پروتکل شبکهCANا ( Time Triggered CAN)
چکیده :شبکههای صنعتی یکی از مباحث بسیار مهم در اتوماسیون میباشد. شبکهی CAN به عنوان یکی از شبکههای صنعتی ، رشد بسیار روز افزونی را تجربه کرده است. در این میان ، عدم قطعیت زمان ارسال پیامها در این پروتکل شبکه ، باعث میشود که کاربرد این شبکه در کاربردهای حیاتی با اشکال مواجه شود. یکی از راهحلهای برطرف کردن این مشکل ، استفاده از تکنیک تحریک زمانی است که در ایت مقاله مورد بررسی قرار میگیرد.کلید واژهها : شبکه صنعتی ، تحریک زمانی ، CAN ارتباطات تحریکپذیر زمانی در پروتکل شبکهی CAN 1) مقدمه در محیطهای صنعتی ، کارخانجات ، خطوط تولید و امثالهم ، اتصال میکروکنترلرها ، سنسورها (Sensor) و محرکها (Actuator) با چندین نوع سیستم ارتباطی متفاوت به یکدیگر ، نوعی هنر معماری در الکترونیک و کامپیوتر است. امروزه ارتباطات از نوع تحریکپذیر زمانی بهطور گستردهای در پروتکل ارتباطات برپایه شبکه با پروتکل CAN (Controller Area Network) استفاده میشود. مکانیسم داوری (Arbitrating) در این پروتکل اطمینان میدهد که تمام پیامها بر اساس اولویت شناسه (Identifier) منتقل میشوند و پیامی با بالاترین اولویت به هیچ عنوان دچار آشفتگی نخواهد شد. در آینده ، بسیاری از زیرشبکههای (SubNet) مورد استفاده در کاربردهای حیاتی ، بهعنوان مثال در بخشهایی مثل سیستمهای کنترل الکترونیکی خودرو (X-By-Wire) ، به سیستم ارتباطی جامعی نیاز دارند که دارای قطعیت ارسال و دریافت در هنگام سرویسدهی باشد. به عبارتی ، در ماکزیمم استفاده از باس که به عنوان محیط انتقال این نوع شبکه بهکار میرود ، باید این تضمین وجود داشته باشد که پیامهایی که به ایمنی (Safety) سیستم وابسته هستند ، به موقع و به درستی منتقل میشوند. علاوه بر این باید این امکان وجود داشته باشد که بتوان لحظهی ارسال و زمانی را که پیام ارسال خواهد شد را با دقت بالایی تخمین زد.در سیستم با پروتکل CAN استاندارد ، تکنیک بدست آوردن باس توسط گرههای شبکه بسیار ساده و البته کارآمد است. همانگونه که در قبل توضیح دادهشده است ، الگوریتم مورد استفاده برای بدست آوردن تسلط بر محیط انتقال ، از نوع داوری بر اساس بیتهای شناسه است. این تکنیک تضمین میکند که گرهای که اولویت بالایی دارد ، حتی در حالتیکه گرههای با اولویت پایینتر نیز قصد ارسال دارند ، هیچگاه برای بدست آوردن باس منتظر نمیماند. و با وجود این رقابت بر سر باس ، پیام ارسالی نیز مختل نشده و منتقل میشود. در همین جا نکتهی مشخص و قابل توجهی وجود دارد. اگر یک گرهی با اولویت پایین بخواهد پیامی را ارسال کند باید منتظر پایان ارسال گرهی با اولویت بالاتر باشد و سپس کنترل باس را در اختیار گیرد. این موضوع یعنی تاخیر ارسال برای گرهی با اولویت پایینتر ، ضمن این که مدت زمان این تاخیر نیز قابل پیشبینی و محاسبه نخواهد بود و کاملا به ترافیک ارسال گرههای با اولویت بالاتر وابسته است. به عبارت سادهتر : ● گره یا پیام با اولویت بالاتر ، تاخیر کمتری را برای تصاحب محیط انتقال در هنگام ارسال پیشرو خواهد داشت.● گره یا پیام با اولویت پایینتر ، تاخیر بیشتری را برای بدستگرفتن محیط انتقال در هنگام ارسال ، تجربه خواهد کرد. یک راه حل برطرف کردن نیازهای ذکرشده در بالا ، استفاده از شبکهی استاندارد CAN با اضافهکردن تکنیک تحریک زمانی (Time Trigger) به آن میباشد. استفاده از تکنیک تحریک زمانی در CAN ، طبق توضیحاتی که داده خواهد شد ، باعث اجتناب از این تاخیر میشود و باعث استفادهی مفیدتر و کارآمدتر از پهنای باند شبکه ، به کمک ایجاد قطعیت در زمانهای انتظار و ارسال ، میشود. به عبارت دیگر ، مزایای این شبکه با استفاده از تکنیک تحریک زمانی عبارت خواهد بود از : ● کاهش تاخیرهای غیر قابل پیشبینی در حین ارسال● تضمین ارتباط قطعی و تاخیرهای قابل پیشبینی● استفادهی مفیدتر و کارآمد از پهنای باند شبکهبا توجه به مکانیسمهای پیشبینی شده در TTCAN ، این پروتکل زمانبندی پیامهایی با تحریک زمانی (TT) را به خوبی پیامهایی با تحریک رویداد (Event Trigger) را که قبلا در این پروتکل قرار داشت ، مدیریت میکند. این تکنیک اجازه میدهد که سیستمهایی که دارای عملگرهای بلادرنگ هستند نیز بتوانند از این شبکه استفاده کنند. همچنین این تکنیک انعطاف بیشتری را برای شبکههایی که قبلا از CAN استفاده میکردند ، ایجاد میکند. این پروتکل برای استفاده در سیستمهایی که ترافیک دیتا بصورت مرتب و متناوب در شبکه رخ میدهد ، بسیار مناسب و کارآمد میباشد.در این تکنیک ، ارتباطات بر پایهی یک زمان محلی بنا شده است. زمان محلی توسط پیامهای متناوب یک گره که بهعنوان گرهی مدیر زمان (Time Master) تعیین شده است ، هماهنگ و تنظیم میشود. این تکنیک اجازهی معرفی یک زمان سراسری و با دقت بالا را بصورت یکپارچه (Global) را ، در کل سیستم فراهم میکند. بر پایهی این زمان ، پیامهای متفاوت توسط یک سیکل ساده ، در پنجرههایی قرار میگیرند که متناسب با زمان پیام چیده شده است. یکی از مزایای بزرگ این تکنیک در مقایسه با شبکهی CAN با روش زمانبندی کلاسیک ، امکان ارسال پیغامهای تحریک شوندهی زمانی با قطعیت و در پنجرههای زمانی است. اگر فرستندهی فریم مرجع دچار خرابی شود (Fail) ، یک گرهی از پیش تعریف شدهی دیگر بهطور اتوماتیک وظیفهی گرهی مرجع را انجام میدهد. در اینحالت ، گرهی با درجهی پایینتر جایگزین گرهی با درجهی بالاتر که دچار خرابی شده است ، میشود. حال اگر گرهی با درجهی بالاتر ، تعمیر شده و دوباره به سیستم باز گردد ، بهصورت اتوماتیک تلاش میکند تا بهعنوان گرهی مرجع انتخاب شود. توابعی بهصورت پیشفرض در تعاریف و خصوصیات TTCAN قرار داده شده است تا سیستم از این تکنیک خروج و بازگشت خودکار ، پشتیبانی کند. در ادامهی این مقاله ، جزییات این پروتکل مورد بررسی دقیقتر قرار میگیرد. 2) پیادهسازی TTCAN :پروتکل TTCAN بر اساس تحریک بر مبنای زمان و ارتباط پریودیک ، که توسط مدیر زمان
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 3
کاربرد نانو سنسورها در بخش لرزهنگاری ( Seismic ) صنایع بالادستی نفت
خلاصه
نانوتکنولوژی به مواد و سیستمهایی مربوط میشود که ساختار و اجزای آن به دلیل ابعاد نانومتری، خواص، پدیدههای فیزیکی، شیمیایی و بیولوژیکی، رفتار جدیدی را نشان میدهند. مواد دارای اندازه ذره نانومقیاس در حوزهای بین اثرات کوانتومی اتمها و مولکولها و خواص توده قرار میگیرند. با توانایی ساخت و کنترل ساختار نانوذرات میتوان خواص حاصل را تغییر داده و خواص مطلوب را در مواد طراحی کرد. امروزه تاثیرگذاری نانوتکنولوژی بر همه صنایع همچنین صنعت نفت پوشیده نیست. در این مجال بررسی تاثیرگذاری نانوسنسورها برروی بخش لرزه نگاری در صنایع بالادستی نفت ارایه می شود.
مقدمه
یکی از تکنیکهای رایج در اکتشاف نفت و گاز ، لرزه نگاری است .لرزه نگاری عبارتست از ایجاد انفجار در نقاط مختلف روی زمین و ثبت لرزههای ایجاد شده، ساختار کلی لایههای زمین و مخزن بدست آورده میشود. این فرآیند بر اساس تفاوت سرعت حرکت صوت در لایههای مختلف انجام میگیرد. لرزهنگاری به صورت یک بعدی، دو بعدی، و سه بعدی انجام میشود. از این طریق میتوان تشخیص داد که لایههای مختلف حاوی گاز، نفت یا آب هستند. لرزهنگاری چهاربعدی همان لرزهنگاری سهبعدی است که در زمانهای مختلف انجام میشود و از طریق آن میتوان نحوه پیشروی سیالات مختلف را تشخیص داد.
کاربرد نانوسنسورها در این بخش
به نظر میرسد با کاربرد نانوتکنولوژی در ایجاد سنسورهای جدید می توان ثبت لرزهها را به صورت دقیقتر انجام داد زیرا امکان وارد کردن نانوسنسورها در لایههای مختلف زمین و ثبت لرزهها از موقعیتهای متنوعتر وجود دارد.
در این بخش یک نوع سنسورهای صوتی مورد استفاده قرار میگیرد، که ژئوفون نام دارد. این سنسورها با ثبت اطلاعات به صورت صوتی و بازیابی آنها پس از عملیات لرزه نگاری مورد استفاده قرار می گیرند. نانوتکنولوژی می تواند علاوه بر پیشرفت فوق با نانوساختار کردن ژئوفونها به عملکرد سریع و ثبت اطلاعات صوتی دقیق تر منجر گردد.
ونگ و مادو (Wang and Madau) نشان دادند که یکی از انواع سنسورهای میکرو الکترومکانیکی کربنی کارآیی مناسبی در گستره وسیعی از بیومواد و مواد شیمیایی دارد. با استفاده از روش تولید این سنسورها میتوان ساختارهای کربنی میکروالکترومکانیکی با "ضریب طول"[ نسبت طول به عرض جسم] بزرگتر از10 تولید کرد.
باتکنیک تولید [Carbon Microelectro Mechanical Systems]C – MEMS میتوان گستره وسیعی از MEMS ها و NEMS ها با "ضریب طول" بالا که قابلیت شارژ / دشارژ شدن توسط یون Li را دارند، تولید کرد. این سیستمها پتانسیل تولید آرایه باتریهایی از مواد هوشمند قابل سوئیچ را خواهند داشت. تکنیک تولید C – NEMS ها با استفاده از Nano Fabrication و با کنترل روش پیرولیز میباشد.
نیاز به مینیاتوری کردن ساختارها، سرعتهای بالاتر، اتلاف حرارت بهتر، مصرف توان کمتر وسازگاری بیشتر بامحیط زیست در تولید این سنسورها باعث اقبال عمومی زیاد آنها شده است.