انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

ترک های دیوار 8 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 8

 

مقدمه

پیچیدگی رفتار سازه های آجری مانع از آن بوده است که روشهای جامعی برای تحلیلی خواص مکانیکی سازه ای آنها بوجود آید. رفتارهای ناهمگن و غیر خطی و وجود ترکهای فراوان از یک سو و صفحه ای بودن اجزا سازهای از سوی دیگر پیچیدگی خاصی را ایجاد کرد که جز با روشهای اجزای محدود نمیتوان از وضعیت تنشها اطلاعاتی بدست آورد.شکست دیوارهای برشی و عرضی اصلی ترین حالتهای شکست میباشند. زیرا در ساختمانهای آجری سقف بر دیوارها تکیه دارد و با سقوط دیوارها احتمال در هم فروریختن کل ساختمان میباشد، بنابر این ناپایداری دیوارها را میتوان به منزله ناپایداری کلی دانست.شکستهای برشی و خمشی حالتهای اصلی شکست دیوارهای برشی میباشند. دیوارهای میان قاب در مقایسه با دیوارهای مجزا و پایه ها دارای شکل پذیری بیشتری هستند. مقاومت و ظرفیت اتلاف انرژی یک قاب توام با میانقاب بسیار بیشتر از یک قاب خالی است و لذا در یک قاب حاوی دوار داخلی ، حتی علیرغم افزایش نیروها به علت افزایش سختی ، پایداری در مقابل زلزله بیشتر است .در طراحی دیوارهای برشی چون پهنای دیوارهای آجری کم و بیش مساوی ارتفاع دیوار و گاهی بیشتر است لذا نمیتوان جابجایی جانبی دیوار را صرفا ناشی از خمش دانست بلکه برش میتواند سهم زیادی داشته باشد. همچنین در طراحی دیوارهای برشی آجری مسلح ، وقوع یکی از دو نوع لغزش افقی یا قائم به عواملی نظیر مقدار سربار، نسبت بعدی (ارتفاع به طول) و نسبت مقاومت برشی درزهای افقی به قائم بستگی دارد و تعیین دقیق ان بسیار مشکل است.با استقرار کمرکش در دیوار میتوان از نسبت بعدی دیوار کاست و در نتیجه بر کارایی میلگردهای افقی افزود.شرط آن که کمرکش بتواند جلوی ترک قطری اصلی را سد کند این است که از مقاومت خمشی لازم برخوردار باشد. تحقیقات نشان میدهد که وجود درزهای قائم بر سختی و مقاومت اثری کاهنده دارد اما درز افقی عمدتا سختی و مقاومت ترک قطری را کم میکند و بر مقاومت شکست کنج تاثیر چندانی ندارد.در طراحی ساختمانهای بادبندی شده تاثیر میانقابها بر سختی را باید در نظر گرفت ولی میتوان مقاومت میانقاب را نادیده گرفت و به مقاومت بادبند اکتفا کرد، اگر بخواهیم مقاومت میانقاب را هم در نظر بگیریم ، به زحمت میتوان مقاومت این قابها را بطور قطعی برآورد کرد زیرا اولا وجود بادبند باعث بریدگی میانقاب شده است و ثانیا در دوره های مکرر بارگذاری میانقاب رفتاری کاهنده دارد و رفتار آن با قاب بادبنددار فرق میکند.بناهای باستانی بر خلاف ساختمانهای روستایی یا شهری آجری و خشتی که در زلزله های مخرب تاب مقاومت ندارند، دارای مقاومت بیشتری در برابر نیروهای زلزله هستند که با تحمل خساراتی پایداری کلی خود را حفظ می کنند.گنبدها به دلیل شکل پوسته ای شان از مقاومت بالایی برخوردارند و با از دست دادن بخشی از تکیه گاه براحتی میتوانند تنشها را به طور مجدد توزیع کرده ، پایدار بمانند.

موقعیت ترک :

ترکهای عمیق : این ترکها گاهی به طور دائمی به وجود می آید و دلیل آن نشست مرتب پی است که در این صورت ، بودن ساکنان در ساختمان خطرناک است.

ترکهای ثابت : معمولا پس از نشست پی ، تحرک ساختمان کم می شود. این پدیده بر اثر قطع رطوبت و فشرده شدن سطح زیر پیش می اید. در نتیجه ، شکست و افت دیوارها و اسکلت بنا نیز متوقف ، و حالت ترک ثابت می شود.

 

موی ترکهای معمولی : این ترکها در اثر افتهای کوچک در اسکلت بنا و به واسطه نیروها و در مواردی به علت نوع مصالح اندود به وجود می ایند. رطوبت ، انقباض و انبساط حاصله در مقابل خشک شدن سطوح مرطوب ، باعث ایجاد ترکهای مویی می شود.

حالتهای ترک :

ترک را به شکلهای مختلف می توان آزمایش کرد. نوع خطرناک و بدون خطر آنها را به شکلهای زیر می توان شناسایی کرد:

الف) بند دوقسمت دیوار را که بر اثر ترکهای عمیق از یکدیگر جدا شده اند ، با گچ دستی طوری کف کش می کنیم که ملات فقط دو قسمت جدا شده را پوشش دهد ؛ یعنی در ترکها نفوذ نکند

پس از خودگیری و خشک شدن ملات گچ ، چنانچه از دیوار جدا شود ، اسکلت در حال نشست و افت کامل است که باید در مورد آن با احتیاط رفتار کرد.

ب) در موارد ذکر شده در بالا ، می توان روی ترک دو قسمت جدا شده دیوار را نوار کاغذی از جنس کاهی نازک به ابعاد 30*3 سانتیمتر به شکل ضربدر (*) با پونز نصب کرد. چنانچه کاغذ پاره شود ، شکست و نشست در ساختمان بسیار خطرناک می باشد. در این صورت ، ساختمان باید از سکنه خالی شود.

ج) در نشستهای خطرناک ، کلاف پنجره بر اثر نیروی فشار ، اهرم و دفرمه می شود . به علت بالا بودن ضریب شکنندگی ، شیشه پنجره ها ترک می خورند و می شکنند.

د) در افتهای مداوم پی و مواقع سکوت ، صداهای "تک تک " که حاصل ترک مصالح و بویژه اجرکاری است ، شنیده می شود.

روش تعمیر ترکها :

همانطور که گفتیم ، بر اثر نشست ، ترکهایی به وجود می آید که برخی از آنها مویین و ریز هسنتد . با خالی کردن اطراف آنها و با " کشته کشی " و کشیدن پنبه آب روی سطوح ترکهای مویین آنها گرفته و آماده نقاشی می شوند.

ترکهای نیمه عمیق :

بر اثر حرکت پذیری سقف توفال که از انقباض و انبساط رطوبت و حرارت حاصل می شوند . ترکهایی به وجود می آید . این ترکها را با نوک کاردک و ماله خالی می کنیم و پس از " آماده کشی " و پرداخت کشته و پنبه زنی ، ترکها را می گیریم و آماده نقاشی میکنیم.

ترکهای عمیق :

اطراف ترک را با تیشه می تراشیم و سپس درز آن را کاملا خالی می کنیم. کاربردن گچ دستی و کف کش کردن ، درون ترک را پر و سطح آن را با گچ آماده صاف می کنیم . سپس با گچ کشته و پنبه اب ، سوح آن را کاملا پرداخت و آماده نقاشی می کنیم.

توجه شود : چون سطح کشته کشی در بعد بیشتری انجام می شود تا خطر کپ کردن به وجود نیاید ، بابد اصولی را به کاربرد تا سطح ترک از اطراف به شکل پخ از گچکاری و اندود برداشته شود تا عمق ترک در سطحی عریض پیوند شود. به این عمل اصطلاحا " پرداخت کردن ، کشته و همسطح کردن با زمینه در گچکاری قدیمی " می گویند.

 

ترک در تقاطع دیوار :

دیوارها بر اثر نداشتن پیوند با هشت گیر ترک می خورند . در مواقعی نشست و شکست دیوارها ، ترکها کاملا باز و رویت می شوند . در بعضی موارد ، این ترکها بسیار عمیق هستند ؛ به طوری که می توان دست را در درون آنها حرکت داد .در این حالت ، چنین عمل می کنیم :

1- سطح ترک را از دو طرف کاملا با تیشه می تراشیم ، و پس از جارو ، سطوح آن را کاملا مرطوب می کنیم

2- چنانچه لازم باشد ، کنارهای ترک را با قلم و چکش چند سانتیمتر بازتر می کنیم تا نشست گچ با عمق بیشتری انجام شود.

3- ملات گچ تیزون را شلاقی در درون ترک می کوبیم تا سطح ترک کاملا پر شود.

4- پس از پر کردن ترک به شکل سرتاسری و کف کش کردن گچ تیزون ، اندود گچ و خاک را اجرا می کنیم.

5- در صورت نیاز ، ترک را شمشه گیری می کنیم تا در سطح گچکاری یکنواختی به وجود آید.

6- با گچ آماده و سپس گچ کشته ، سطح اندود را " سفیدکاری" می کنیم و با پنبه آب زدن برای پرداخت ، گچکاری را خاتمه می دهیم.

توجه شود: چنانچه در محل تقاطع دیوار دیوار ابزار گرد زده شود ، یعنی ماهیچه به وجود آید ، ترک مجددی پیش نخواهد آمد .



خرید و دانلود  ترک های دیوار 8 ص


تاریخچه‌ ساخت‌ لوله‌ و پروفیل‌ درجهان 8 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 8

 

تاریخچه‌ ساخت‌ لوله‌ و پروفیل‌ درجهان 

    ساخت‌ لوله‌ درزجوش‌ به‌ اوائل‌ قرن19 میلادی برمی‌گردد. بدنبال‌ کشف‌ گاز در سال‌1815میلادی و استفاده‌ از آن‌ بعنوان‌ وسیله‌ای‌ برای‌ گرم‌کردن‌ لوله‌ که‌ ازطریق‌ پرس‌ ساخته‌ شده‌ بود، با بهم‌ جوش‌دادن‌ لبه‌ها برای‌ اولین‌ بار تولید لوله‌ درزجوش‌ امکان‌پذیر گشت‌. درسال1825 روش‌ تولید لوله‌ درزجوش‌ در انگلستان‌ به‌ثبت‌ رسید.لوله‌ درزجوش‌ برای‌ رسیدن‌ به‌ سطح‌ امروزی‌ راه‌ طولانی‌ پیموده‌ است‌. جوش‌ کوره‌ای، روش فریتس مون‌‌، استفاده‌ از الکتریسیته‌ برای‌ گرم‌کردن‌ لبه‌های‌ لوله‌ و بهم‌ جوش‌دادن‌ این‌ لبه‌ها، استفاده‌ از جریان‌ القائی‌ با فرکانس‌ متوسط‌، استفاده‌ از جریان‌ القائی‌ با فرکانس‌ بالا و انتقال‌ آن‌ ازطریق‌ تماس‌ به‌ لبه‌ها و بالاخره‌ استفاده‌ از فرکانس‌ بالا و انتقال‌ غیرتماسی‌ باکمک‌ اندکتور به‌ شکلی‌ که‌ امروزه‌ در این‌ صنعت‌ مورد استفاده‌ قرار دارد مسیر تکاملی‌ این‌ صنعت‌ را تشکیل‌ می‌دهند.     اگر تاریخ‌ شکل‌گیری‌ و تکامل‌ صنعت‌ لوله‌سازی‌ بیش‌ از یک‌ قرن‌ بطول‌ می‌انجامد، شکل‌گیری‌ صنعت‌ پروفیل‌ توخالی تنها از سالهای‌ بعد از جنگ‌ جهانی‌ دوم‌ آغاز می‌شود. این‌ صنعت‌ ابتدا در کشور آلمان‌ پدیدار گشته‌ و پا می‌گیرد و سپس‌ به‌ دیگر کشورهای‌ اروپایی‌ منتقل‌می‌شود.

تاریخچه صنعت لوله و پروفیل‌ در ایران

    ‌بعد از جنگ‌ جهانی‌ دوم‌ بتدریج‌ جمعیت‌ ایران‌ رو به‌ فزونی‌ نهاد و با بهبود وضع‌ نسبی‌ اقتصادی‌ احتیاج‌ به‌ ساختن‌ خانه‌های‌ جدید بیشتراحساس‌ می‌شد. ساختن‌ خانه‌ بدون‌ مصالح‌ لازم‌ مثل‌ سیمان‌ و غیره‌ امکان ‌پذیر نبود از اینرو دولت‌ و مردم‌ بفکر تولید مصالح‌ ساختمانی‌ افتادند.    چون‌ تا آن زمان‌ در و پنجره‌ از چوب‌ ساخته‌ می‌شد و بعلت‌ وضع‌ اقلیمی‌ ایران‌ چوب‌ کافی‌ در دسترس‌ نبود مردم‌ ناچار شدند از آهن‌ و بعداً آلومینیوم‌ برای‌ این‌ منظور استفاده‌ نمایند از این جهت‌ شروع‌ به‌ وارد نمودن‌ انواع‌ پروفیل‌ برای‌ ساختن‌ در و پنجره‌ نمودند و درنتیجه‌ واردات‌ این‌ کالا روبه‌ ازدیاد نهاد و همین‌ ازدیاد، فکر ساخت‌ در داخل‌ کشور را مطرح‌ نمود.    صنعت‌ پروفیل‌ درجهان‌ چنانکه‌ گفته‌ شد بیش‌ از یک‌ قرن‌ پس‌ از صنعت‌ لوله‌ پدیدار گشت‌. لیکن‌ در ایران‌ این‌ صنعت‌ پروفیل‌ بود که‌ ابتدا شروع‌ به‌ فعالیت‌ نمود.درفواصل سالهای 1340 الی 1350 تعداد تولید کنندگان لوله و پروفیل فولادی درایران به8 واحد رسید.( سپنتا، نیمه‌سبک‌(سدید)، دنیای‌ فلز، گیوار، پارس‌، ساوه‌، سپاهان‌، سپافیل ‌) تا سال‌ 1357 تعداد واحدهای‌ فوق‌ به‌ 11 کارخانه‌ رسید.

بررسی نشتی گاز در مخازن و لوله های نفت و گاز

خطوط لوله و مخازن مواد شیمیایی که در بسیاری از موارد در آن ها مواد آلاینده ی محیط زیست، مواد آتش زا و حتی مواد سمی وجود دارد از اهمیت به سزایی در صنعت برخوردارند. بهخصوص خطوط لوله که امروز سراسر کره زمین را فراگرفتهاند.بدیهی است که وجود نشتی از این خطوط، به ویژه در مناطقی که از لحاظ زیست محیطی دارای حساسیت هستند می تواند خطرات زیادی برای موجوداتی که روی زمین زندگی می کنند فراهم آورد.از طرفی هدر رفتن بخشی از مواد ارزشمند که جزء محصولات و یا مواد اولیه ی ما هستند، از لحاظ اقتصادی نیز ناخوشایند است.به طور کلی نتایج وجود نشتی عبارتند از: آلودگی محیط زیست، ایجاد مسمومیت در انسان و دیگر موجودات زنده، انفجار، هدر رفتن مواد ارزشمند، هزینه های تمیز کردن محیط زیست، هزینه های تعمیر و تعویض خط لوله، اتلاف وقت و جرایم احتمالی قانونی.بنابراین دو عامل اقتصاد و محیط زیست انگیزه ی کافی برای رفع چنین مشکلی در ما ایجاد می کنند. عواملی که باعث ایجاد نشتی می شوند عبارتند از: فرسودگی و خوردگی لوله ها و مخازن، عوامل محیطی مثل سرما، یخبندان، گرما و...، همچنین خسارت های عمدی و سهوی و نیز عملیات خارج از محدوده ی طراحی که ممکن است به لوله ها و مخازن آسیب برساند.فرسودگی لوله ها و مخازن یک عامل طبیعی است، خوردگی نیز معمولاً به خاطر وجود مواد خورنده یا سیالات ساینده به وجود می آید.عوامل محیطی مثل سرما، یخبندان، گرما و... نیز از عوامل طبیعی هستند که در پدیده ی نشتی موثرند. خسارت های عمدی معمولاً شامل عملیات خرابکارانه است که ممکن است به خاطر مسایل سیاسی و جنگ به وجود آید. خسارت های سهوی نیز ممکن است به وسیله ی برخورد اشیاء یا چیزهای دیگر و یا در اثر حفاری به وجود آید.عملیات خارج از محدوده ی طراحی نیز یکی از عوامل آسیب به لوله هاست. زیرا هر خط لوله برای محدوده ی خاصی از دما و فشار طراحی شده و اگر عملیات، در خارج از این محدوده انجام شود باعث ایجاد خرابی در خط لوله می شود.بنابراین با توجه به وسعت عواملی که می توانند نشتی را ایجاد کنند و همچنین هزینه ها و مخاطراتی که این پدیده دربر دارد، نشت یابی و جلوگیری از تداوم نشت، مساله ی بسیار مهمی است. با توجه به وسعت و گستردگی این پدیده تشخیص نشتی به طور دقیق و سریع کار بسیار مشکلی است. امروزه سیستم های نشت یابی بسیار متنوعی ارائه شده است که هر کدام با استفاده از تکنیکی خاص سعی در یافتن دقیق و سریع این پدیده دارند. بسیاری از این سیستم ها بسیار ساده و برخی هم سیستم های پیچیده ای هستند. اما هنوز هیچ کدام از این سیستم ها نتوانسته اند به طور کامل همه ی انتظارات را برآورده کنند.این سیستم ها عبارتند از: تشخیص نشتی توسط افراد و با استفاده از حس بویایی، شنوایی، بینایی یا مشاهده ی اثراتی که مواد شیمیایی در پیرامون خود دارند یا سیستم هایی که با اضافه کردن مواد معطر کار نشت یابی راانجام می دهند یا سیستم های موازنه ی جریان، سیستم های صوتی، نصب سنسورهای پیزو الکتریک، سیستم های نمایش بخار، سیستم های نمایش کابلی، سیستم های لوله کشی دو جداره و ... اما هیچ کدام از روش های فوق نمی توانند به صورت کاملاً دقیق و سریع کار نشت یابی را انجام دهند.»بررسی نشتی گاز در مخازن و لوله های نفت و گاز« عنوان پایان نامه ی کارشناسی ارشد »مهرزاد میرزانیا« دانشجوی رشته ی مهندسی شیمی (طراحی فرایند) دانشکده ی فنی مهندسی دانشگاه تربیت مدرس است که با راهنمایی دکتر محسن وفایی در مهرماه 82 ارائه شده است. این پایان نامه، در چهارفصل نشت یابی در مخازن مواد شیمیایی، تست نشتی در خط لوله های آماده به کار، نشت یابی در سیستم های خط لوله ی در حال کار و مدل سازی سیستم های خط لوله، به بررسی روش هایی پرداخته است که به صورت دقیق و سریع، کار نشت یابی را انجام می دهند.پس از فهرست و مقدمه، مطالب ارائه شده در این پایان نامه به تفکیک زیر دسته بندی شده اند. فصل اول: نشت یابی در مخازن مواد شیمیایی 1 - روش نشت یابی و جلوگیری از نشتی در مخازن * روش تست استحکام * مونیتورینگ فضای ما بین دو جداره * روش ایجاد مانع برای جلوگیری از نشتی * استفاده از میله ها و کابل های حساس به مایعات و گازها * روش اندازه گیری جرمی و حجمی * روش کنترل موجودی آماری * روش SIR * روش مدرج سازی اتوماتیک تانک (ATG) * روش مدرج سازی دستی تانک (MTG) * روش صوتی * روش مونیتورینگ بخار * روش مونیتورینگ آب زیر زمینی 2 - حفاظت در برابر خوردگی * استفاده از تانک های فایبر گلاس * استفاده از تانک های فولادی با حفاظت آندی * استفاده از جریان DC * جلوگیری از سرریز کردن تانک * انتخاب روش مناسب برای جلوگیری از نشتی در مخازن فصل دوم: تست نشتی در خط لوله های آماده به کار * روش تست نشتی در خط لوله های آماده به کار * روش تست هیدرواستاتیک * تست پنوماتیک * ترکیب تست پنوماتیک و هیدرواستاتیک * روش تست سرویس اولیه * تست نشتی خلاء * روش تست هد استاتیکی * روش تست توسط هالوژن ها و هلیم * حساسیت روش های تست نشتی و استانداردهای پذیرفته شده فصل سوم: نشت یابی در سیستم های خط لوله ی در حال کار * روش های تست نشتی در سیستم های خط لوله در حال کار فصل چهارم: مدل سازی سیستم های خط لوله * مدل سازی خط لوله * سیستم SCADA * مدل جریان ناپایدار * روش های حل معادلات جریان ناپایدار * نمونه هایی از مدلسازی سیستم های واقعی * سیستم ATMOS محقق در سومین فصل این پژوهش با عنوان »نشتیابی در سیستم های خط لوله ی در حال کار« به بررسی روش های تست نشتی در سیستم های خط لوله ی در حال کار پرداخته است.آن چه در پی می آید بخشی از فصل سوم این رساله است با اندکی دخل و تصرف: نشتی در لوله ها خصوصاً لوله هایی که تحت فشارند یکی از مسایل بسیار مهم در مبحث نشت یابی است. حتی قسمت عمده ای از نشتی های مربوط به مخازن نیز به خاطر وجود نشتی در لوله های مربوط به مخازن است. از لحاظ آماری، خرابی و نشتی در لوله ها حدود دو برابر خرابی در تانک هاست. به علت وجود اتصال های زیاد در سیستم های خط لوله، نشتی در این سیستم ها بسیار اتفاق می افتد. این مساله در لوله های تحت فشار خیلی حادتر است. زیرا فشار باعث می شود تا مواد به صورت پیوسته و با نیروی زیادتر از سوراخ وارد محیط شوند. برای نشت یابی در خطوط لوله روش های متعددی وجود دارد. بعضی از این روش ها به طور پیوسته و بعضی به طور غیر پیوسته کار نشت یابی در لوله ها را انجام می دهند. روش های تست نشتی در سیستم های خط لوله ی در حال کار از ساده ترین روش های تشخیص نشتی در سیستمهای خط لوله عبارتند از: اطلاع دادن نشتی توسط افرادی که در مجاورت خط لوله قرار دارند. این افراد از طریق حس بویایی، شنوایی، بینایی و یا مشاهده ی اثراتی که این مواد شیمیایی در پیرامون خود ایجاد می کنند، مثل تاثیر روی گیاهان یا حیوانات یا پرندگان، می توانند این پدیده را تشخیص دهند. حتی گاهی اوقات با استفاده ی بیرحمانه از حیوانات یا پرندگان حساس می توان نشتی را تشخیص داد. راه ساده تر دیگر اضافه کردن مواد معطر به سیال است. باید در نظر داشت که ماده معطری که برای این منظور انتخاب می شود باید به راحتی قابل جداسازی باشد. این روش برای سیالاتی که بدون بو و غیرقابل اشتعال هستند روش نسبتاً موثری است مثلاً برای تشخیص نشتی گاز مونو اکسیدکربن که بی بو ولی بسیار سمی و خطرناک است. مواد شیمیایی مثل مرکاپتان ها، تری متیل آمین و...می توانند نشتی را در سیستم تشخیص دهند. این دو روش در محیط های عاری از سکنه یا در جاهایی که بادهای شدید می وزند، نمی توانند کاربرد عملی داشته باشند. روش دیگر استفاده از موازنه ی جریان به صورت روزانه یا ساعتی و ترجیحاً آن لاین است. یک سیستم اندازه گیری فشار خط لوله در کنار جریان سنج ها لازم است که نشان دهد گرادیان فشار نسبت به حالت بدون نشتی تغییر کرده است یا نه. این روش دو اشکال دارد، یکی این که با این روش موقعیت نشتی تشخیص داده نمی شود. دیگر این که اگر شدت جریان ها تغییر کند یعنی سیستم Steady state نباشد موازنه برای تشخیص نشتی بسیار مشکل می شود. یکی از روش های چک کردن وجود نشتی در خطوط لوله، موازنه ی حجمی خطوط لوله است. این روش به خصوص برای خطوط لوله ی مایعاتی که تقریباً تراکم ناپذیرند، مناسب است. در این روش تغییرات موجود در خطوط لوله از روی اختلاف بین جریان ورودی و خروجی محاسبه می شود و از روی این اختلاف، نشتی های کوچک تشخیص داده می شود. موازنه در خط لوله به صورت زیر است. (3-1) dV=Vin-Vout-Vl که در آن : dV: حجم نشتی Vin: جریان سیال ورودی Vout: جریان سیال خروجی Vl: میزان موجودی مایع در خط لوله است. یکی دیگر از سیستم های نشت یابی، نشت یابی صوتی است. جریان سیالات می تواند ارتعاشاتی با فرکانس هایی در محدوده ی مافوق صوت تولید کند که به وسیله ی مبدل هایی خاص قابل تشخیص هستند. این مبدل ها قابل حمل بوده و می توانند توسط ماموران خط حمل و به هر نقطه ی دلخواهی برده شوند. روش دیگر نصب سنسورهای پیزو الکتریک است. این سنسورها وقتی تحت تاثیر تنش قرار می گیرند، یک خروجی را صادر می کنند. بنابراین زمانی که در سیستم خط لوله یک نشتی اتفاق می افتد، به سرعت در خط لوله افت فشار خواهیم داشت. امواج ناشی از این افت فشار با سرعت صوت در هر دو جهت حرکت می کنند. در نتیجه سنسورهای نصب شده، این امواج را دریافت کرده و مکان نشتی را از روی شرایط خط و زمان اندازه گیری شده توسط ابزارها، تشخیص می دهند.این روش به خصوص در زمانی که مقدار نشت زیاد است، بسیار موثر می باشد.



خرید و دانلود  تاریخچه‌ ساخت‌ لوله‌ و پروفیل‌ درجهان 8 ص


بتن خود تراکم SCC 8 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 8

 

بتن خود تراکم SCC

بتن خود تراکم ، شامل بازه گسترده ای از طرح های اختلاط می باشد که خواص بتن تازه و سخت شده لازم برای کاربری های خاص دارا می باشند . اگرچه مقاومت هم چنان معیار اصلی موفقیت این بتن می باشند اما ویژگی های بتن تازه آن ، بسیار گسترده تر از بتن معمولی و متراکم شده توسط لرزاننده ها می باشد . این خواص مطلوب باید در زمان ، محل و بتن ریزی حفظ شوند . بتن خود تراکم در مواردی که شبکه بندی آرماتور ها فشرده است ، گزینه ای مطلوب می باشد . هم چنین عدم نیاز به لرزاننده ، آلودگی صوتی محیط را به نحو قابل ملاحظه ای کاهش می دهد . علی رغم ویژگی های مطلوب ، طرح اختلاط و اجرای این نوع بتن به عوامل متعددی از قبیل دانه بندی مصالح سنگی ، نوع مواد افزودنی و همچنین فیلرهای مورد استفاده بستگی دارد . در نظر گرفتن هر یک از معیارهای فوق ، کیفیت بتن سخت شده و کار پذیری بتن تازه را تحت تاثیر قرار میدهد .

زمان هزینه و کیفیت سه عامل مهم در اجرا می باشد که تاثیر مهمی در صنعت ساخت دارند . هر گونه پیشرفت و یا توسعه ای که باعث بهبود این سه عامل گردد ، همواره مورد علاقه مهندسان عمران خواهد بود . هرگاه این پیشرفت ها در صنعت ساخت و ساز تاثیر گذار باشد باید تحقیقات کافی بر روی فواید و مضرات آنها انجام گرفته و اقدامات لازم برای اجرایی ساختن آنها در صنعت ساخت و ساز صورت پذیرد . بتن خود تراکم با توجه به خصوصیات ویژه خود یکی از این توسعه هاست که میتواند تاثیر قابل توجهی بر صنعت ساخت داشته باشد .

برای سالیان متمادی دست یابی به بتنی با قابلیت خودترازی ( خود تراکمی ) بدون افت در مقاومت ، روانی و یا جداشدگی ، آرزوی مهندسین در کشورهای مختلف بوده است در اوایل قرن بیستم به دلیل خشک بودن مخلوط بتنی ، تراکم بتن تنها از طریق اعمال ضربه های سنگین در مقاطع وسیع و در دسترس ممکن بود . با شیوع استفاده از بتن های مسلح و آشکار شدن مشکلات اجرایی کاربرد مخلوطهای خشک ، گرایش به استفاده از مخلوطهای مرطوب تر گسترش یافت اما شناسایی تاثیر نسبت آب به سیمان در دهه 1920 نشان داد که افزایش این نسبت می تواند موجب افت در مقاومت بتن گردد . در سالهای بعد ، توجه به مسئله دوام بتن همچنین تاثیر مخرب افزایش نسبت آب به سیمان را به نفوذ پذیری و کاهش دوام بتن آشکار ساخت . این همه باعث گردید تا توجه ویژه ای بر خواص کارایی و رئولوژی بتن و نیز روشهای تراکم ، با هدف بهبود خواص مقاومت و دوام آن صورت گیرد . این تحقیقات در نهایت منجر به معرفی بتن خود متراکم در ژاپن گردید . بتنی با قابلیت جریان زیاد که می تواند تنها تحت تاثیر نیروی ثقل و بدون نیاز به انجام هرگونه فرآیند دیگری تمامی زوایای قالب را پر کرده و آرماتور ها دربرگیرد، بدون آنکه جداشدگی یا آب انداختن ایجاد گردد . بررسی رئولوژی و کارایی ، تاثیر بالایی بر تعیین خواص بتن خود تراکم را نشان می دهد ؛ لذا بر اساس روابط مایع لزج نیوتنی ، پارامترهای موثر در تعریف رفتار جریان بتن خود تراکم را معرفی می کند و آزمایش جی – رینگ آزمایش ساده و مناسبی برای اندازه گیری مقاومت بتن در مقابل جداشدگی سنگدانه ها است و چنانچه مقدار آب و خصوصا" فوق روان کننده از یک حد معینی افزایش یابد مقاومت جداشدگی بتن کاهش می یابد و از آزمایش دو نقطه ایی میتوان بدست آورد که ثابت های رئولوژی میتوانند خواص رئولوژی ، خصوصا" توانمندی بتن از نظر حرکت پذیری و پرشدگی را بخوبی تعیین نماید .

بتن خود تراکم نخست در سال 1986 توسط H.okamura در ژاپن پیشنهاد گردید و در سال 1988 این نوع بتن در کارگاه ساخته شد و نتایج قابل قبولی را از نظر خواص فیزیکی و مکانیکی بتن ارائه داد . مقالات متعددی در ارتباط با توسعه بتن خودتراکم در دنیا ارائه شد امروزه بتن خود تراکم همزمان با کشور ژاپن در مراکز دانشگاهی و تحقیقاتی کشورهای اروپایی ، کانادا و امریکا تحت عنوان self – consolidating concrete موضوع بحث بررسی و اجرای سازه های بتنی است . در ایران نیز استفاده از بتن خود تراکم از چند سال قبل آغاز شده و مزایای آن بهره گرفته شده است برای مثال می توان از مصرف بتن خود تراکم در تونل رسالت در تهران نام برد .

مبانی طراحی مخلوط بتن خود تراکم

سیال و پایدار بودن از مبانی طراحی مخلوط scc هست ، اما غیر از این خصوصیات ، عامل اقتصادی نیز باید در طراحی در نظر گرفت . چالش مهم در طراحی مخلوط scc ، معادل بودن مشخصات مورد نیاز با مشخصات واقعی است مواد مورد نیاز برای ساخت scc به شرح زیر است :

1 – سیمان : نوع و مقدار سیمان براساس خواص و دوام مورد نیاز تعیین می گردد . معمولا" مقدار سیمان بین 350 – 450 kg/m3 است .

2 – سنگدانه درشت : تمام سنگدانه های درشت که برای بتن معمولی استفاده می شود ، قابل مصرفدر scc است . اندازه حداکثر معمولا" بین 16 – 20 میلیمتر است. به طور کلی مقدار سنگدانه درشت در scc کمتر از بتن معمولی است زیرا سنگدانه درشت انرژی زیادی مصرف می کند که باعث کاهش جاری شدن بتن می شود و در هنگام عبور از موانع مانند آرماتور سبب مسدود شدن بتن میگردد .

3 – سنگدانه ریز : تمام سنگدانه های ریز که برای بتن معمولی استفاده میشود برای scc نیز مناسب است هر دو نوع ماسه شامل شکسته و گرد گوشه قابل استفاده میباشد هرچه مقدار ماسه در مخلوط بیشتر باشد ، مقاومت برشی مخلوط بیشتر است.

4 – مواد افزودنی معدنی : انواع مواد افزودنی معدنی یا پوزولان را میتوان در scc مصرف کرد این مواد برای بهبود خواص بتن تازه و یا بتن سخت شده و دوام مورد استفاده قرار میگیرد . از جمله این موارد میتوان میکروسیلیس ، سرباره و روباره را نام برد.

5 – فوق کاهنده آب : فوق کاهنده آب یا فوق روان کننده ها از مواد بسیار مهم برای ساخت scc محسوب میشوند .

6 – مواد اصلاح کننده ویسکوزیته : مواد اصلاح کننده ویسکوزیته برای افزایش مقاومت جداشدگی در scc مصرف میشود .

7 – فیلرها : به دلیل الزامات رئولوژی خاص scc هردو مواد افزودنی فعال و خنثی برای بهبود کارایی و همچنین برای تعادل در مقدار مصرف سیمان مورد استفاده قرار میگیرد.

تنظیم طرح مخلوط

پس از ساخت مخلوط های آزمایشی ، اگر عملکرد آنها مطلوب نباشد ، باید طرح مخلوط مجددا" انجام شود . بسته به مشکلاتی که در خواص بتن تازه ایجاد میشود ، ممکن است واکنش های زیر انجام گردد : - اضافه کردن فیلر یا استفاده از نوع دیگر فیلر – تجدید نظر در مقادیر شن وماسه – تغییر در مقدار فوق روان کننده یا ماده اصلاح کننده ویسکوزیته – تغییر در مقدار آب و نسبت آب به پودر – تغییر در نوع مواد اصلاح کننده ویسکوزیته یا فوق روان کننده

امروزه برای بتن خود تراکم مشخصات کلی زیر را پیشنهاد می کنند :

الف ) کارآیی ؛ از نظر کارآیی یک بتن خود تراکم مناسب دارای خواص زیر خواهد بود : در حالت معمولی دارای جریان اسلامپی بیش از 600 میلی متر و بدون جداشدگی ، حفظ روانی به مدت حداقل 90 دقیقه ، توانایی مقاومت در شیب 3 % در سطح افقی آزاد ، قابلیت پمپ شدن در لوله ها بطول حداقل 100 متر و به مدت 90 دقیقه ، مقاومت فشاری 28 روزه حدود 600-250 کیلوگرم بر سانتیمتر مربع ، مقاومت در مقابل خوردگی تهاجم سولفاتها و کلریدها و انجماد و ذوب مطابق استاندارد ، کاهش خطر ترکهای حرارتی در مقایسه با بتن معمولی لرزانده شده

بتن خود تراکم مزایایی در اجرای موارد خاصی از سازه های بتنی دارد که به نمونه هایی از آنها اشاره میشود :

-          سازه های بتنی معماری – هنری که نیاز به ظرافت خاص با میلگرد گذاری فشرده دارند .

-    پل های با دهانه بزرگ که بدلیل طولانی بودن خط انتقال بتن اجرای آن ها با بتن معمولی امکان پذیر نمی باشد و در ضمن استفاده از بتن معمولی موجب قطور تر شدن اندازه پایه ها و نازیبایی سازه می گردد.



خرید و دانلود  بتن خود تراکم   SCC 8 ص


آزمایش فشار سه محوری 8 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 8

 

آزمایش فشار سه محوری

این آزمایش برای اندازه گیری استقامت برشی خاکها بکار می رود . در این آزمایش در حالی که نمونه استوانه ای شکل خاک از اطراف تحت فشار جانبی قرار می گیرد و مقدار آن در طول آزمایش ثابت نگه داشته می شود تحت فشار عمودی قرار می گیرد مقدار این فشار عمودی کم کم اضافه می شود تا این که نمونه خاک گسیخته شود . فشار جانبی با قرار دادن نمونه استوانه ای شکل خاک در داخل یک غشا لاستیکی و سپس قرار دادن آن در داخل مایع تحت فشاری به نمونه وارد می شود . آزمایش سه محوری معمولا با چند فشار جانبی مختلف مثلا صفر ، 7/0و4/1 کیلوگرم بر سانتی متر مربع تکرار می شود و هر دفعه فشار عمودی که برای گسیختگی خاک لازم است اندازه گیری می شود . با در دست داشتن فشارهای جانبی و عمودی در هر آزمایش می توان دایره مور مربوط به آن را رسم کرده و سپس با رسم منحنی مماس بر این دوایر منحنی پوش مور را بدست آورید . با استفاده از منحنی گسیختگی پارامترهای مقاومت برشی خاک که عبارتند از زاویه اصطکاک داخلی () و چسبندگی (c ) خاک بدست می آیند . در مواردی که پوش دوایر مور که به منحنی گسیختگی مور نیز موسوم است یک خط مستقیم باشد مقاومت برشی خاک از رابطه کولمب بدست می آید .

 

در این رابطه تنش عمودی و s مقاومت برشی خاک است .

مقدار زاویه اصطکاک داخلی خاکها تابعی از جنس و میزان رطوبت آنها است . مقدار متوسط زاویه اصطکاک داخلی ماسه خشک حدود 29 تا 30 درجه ، لای و ماسه لای دار بین 15 تا 25 درجه . خاک رس نرم اشباع شده صفر ، خاک رس غیر اشباع بین صفر تا 30 درجه و خاکهای شنی بین 40 تا 60 درجه است . خاکهای رسی نرم اشباع شده معمولا دارای اصطکاک داخلی نبوده و استقامت برشی این گونه خاکها فقط از چسبندگی آنها ناشی می شود . استقامت برشسی خاکهای غیرچسبنده بعلت وجود اصطکاک بین دانه ها آن است .

فشار جانبی

فشار قائم اضافی =

فشار قائم=

 

برای تعیین مقاومت خاکها با استفاده از آزمایش فشاری سه محوری باید ابتدا نمونه دست نخورده ای از خاک مورد نظر بدست آید و سپس تحت بحرانی ترین حالتی که ممکن است خاک در حالت طبیعی داشته باشد تحت آزمایش قرار گیرد . با انجام آزمایش فشاری سه محوری که گاهی آنرا آزمایش برشی سه محوری نیز می نامند میتوان دوایر و منحنی گسیختگی مور را برای خاک مورد آزمایش بدست آورد . چون هر اندازه چسبندگی ویا زاویه اصطکاک داخلی خاک بیشتر باشد مقامت برشی خاک بیشتر خواهد بود. لذا می توان با مقایسه منحنی گسیختگی خاک موردآزمایش با منحنی های گسیختگی خاکهایی که عملکرد آنها بعنوان بستر روسازی راه قبلا تعیین شده است ارزش و کیفیت خاک مورد آزمایش را بدست آورد. یک نمونه از این منحنی ها در شکل نشان داده شده است . منحنی های نشان داده شده در این شکل با استفاده از نتایج حاصل از آزمایشات زیادی بر انواع خاکها و مصالح سنگی و بررسی عملکرد آنها بعنوان خاک بستر و لایه های مختلف روسازی تهیه و ارائه شده اند .

چون خاک بستر روسازیها تحت اثرعبور مداوم وسائل نقلیه قرا ردارند از این جهت در سالهای اخیر ارزیابی مقاومت خاکهای ریزدانه با استفاده از آزمایش هایی بدست می آید که در آنها خاک تحت اثر تکرار بار گذاری وباربرداری قرار می گیرد . یکی از این آزمایش ها آزمایش تعیین ضریب برجهندگی خاک است . طبق تعریف ضریب برجهندگی نسبت فشار قائم اضافی (تنش انحرافی ) () به تغییر شکل نسبی قائم () نمونه خاک مورد نظر پس از یک تعداد معین بارگذاری و باربرداری که مقدار ، تناوب و مدت هر بارگذاری معین است می باشد . برای تعیین ضریب برجهندگی از وسیله ای مشابه وسیله انجام آزمایش سه محوری استفاده می شود که در آن فشار شکل 2 منحنی های گسیختگی مر برای ارزیابی کیفیت خاکها ومصالح سنگی جانبی و فشار قائم اضافی وارد بر نمونه طوری اختیار می شوند که تا حتی الامکان تنش هایی که بر نمونه خاک وارد می شود مشابه تنش هایی باشد که در محل و دراثر بارگذرای به آن وارد خواهد آمد . در ا غلب موارد بکار بردن فشار جانبی برابر با 4/1 کیلوگرم بر سانتی متر مربع و فشار قائم اضافی برابر با 2/4 کیلوگرم بر سانتی متر مربع مقادیر مناسبی برای انجام آزمایش است .

 

نمونه خاکی که در این آزمایش بکار می رود بشکل استوانه ای و معمولا دارای قطری برابر با 10 سانتی متر و ارتفاعی برابر با 20 سانتی متر است . آزمایش در مورد خاکهای ریزدانه در درصدهای مختلف رطوبت و پس از آنکه نمونه خاک با استفاده از آزمایش تراکم ، متراکم گردیده انجام می شود .

آزمایش صفحه بارگذاری

آزمایش صفحه برای تعیین قدرت باربری خاک بستر روسازی ، لایه های اساس وزیر اساس و در برخی موارد برای سیستم روسازی بکار می رود . نتایج آزمایش صفحه برای طرح روسازی های انعطاف پذیر و روسازی های سخت قابل استفاده است .

نحوه انجام این آزمایش به این ترتیب است که تعدا 4 صفحه فلزی دایره ای شکل با اندازه های مختلف را بترتیب بر روی هم قرار می دهند بطوریکه بزرگترین صفحه در زیر



خرید و دانلود  آزمایش فشار سه محوری 8 ص


آزمایش تراکم خاک 8 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 8

 

آزمایش : تراکم ( compaction )

هدف از انجام عملیات تراکم ، کاهش میزان تخلخل خاک است . وجود آب تا میزان مشخصی سبب تسهیل این عملیات می شود .بدست آوردن این حد رطوبت و وزن مخصوص خشک بیشینه خاک پس از بکار بردن میزان معینی انرژی کوبشی ،‌هدف مهم آزمایش تراکم است .

مقدمه

در هنگام ساخت و اجرای بزرگراهها ، فرودگاهها و سازه های دیگر متراکم کردن خاک یک امر ضروری جهت بهبود مقاومت خاک می باشد . پروکتور (1933) یک آزمایش تراکم ازمایشگاهی ابداع کرد تا بوسیله آن حداکثر وزن مخصوص خشک خاک که برای تراکم درمحل می تواند استفاده شود را تعیین کند این آزمایش به نام آزمایش تراکم پروکتور مشهور می باشد .

توضیحاتی در مورد مبحث تراکم

زمانیکه به یک خاک نیرو وارد می شود دانه های جامد خاک روی هم می لغزند و در محیط متراکم تری قرار می گیرند و نشست خاک کم می شود . در محیط متراکم تر خاک دارای زاویه اصطکاک داخلی بیشتری است و در نتیجه مقاومت برشی خاک بیشتر می شود . به مسئله تراکم خاک در پروژه هایی نظیر راهسازی و احداث سد برخورد می کنیم و بدین ترتیب مقاومت برش یا به عبارتی توان باربری خاک را افزایش می دهیم از روش های زیر برای متراکم کردن استفاده می شود .

غلطک (roller‌)

با استفاده از غلطک برای اغلب کارهای مهندسی می توان خاک را متراکم نمود بدین ترتیب که در پروژه های راهسازی لایه ها تا 20 سانتیمتر و سد سازی تا 60 سانتی متر ریخته شده و روی آن مقداری آب پاشیده می شود و با گذر چند بار غلطک‌، خاک متراکم می گردد رطوبت موجب می شود دانه های خاک به اصطلاح « روغنکاری » شده وزاویه اصطکاک داخلی آن ها کم شده و متراکم تر می گردد .

انواع غلطک

غلطک چرخ فلزی :

از غلطک های چرخ فلزی عموما در کارهای آسفالتی استفاده می شود و از غلطک های لرزان یا سنگین چرخ فلزی برای متراکم کردن خاک درشتدانه استفاده می گردد . ارتعاش موجب لرزداندن دانه ها شده و دانه ها از بالا به پایین بهتر متراکم می شوند .

چرخ لاستیکی :

از این نوع غلطک برای خاکهای ماسه ای و خاکهای درشتدانه ای که پوک هستند و زیر غلطک چرخ فلزی خرد می شوند استفاده می شود و خاک را از بالا به پایین متراکم می کنند .

پاچه بزی:

این نوع غلطک برای تراکم خاک های رسی استفاده می شود . این نوع غلطک مخصوصا در هسته سد خاکی کاربرد دارند و خاک را از پایین به بالا متراکم می نمایند .

روش vibroffototion : این روش برای خاکهای ماسه ای ریز دانه که دارای عمق زیادی هستند استفاده می شود ، بدین ترتیب که دستگاه vibroffototion که دارای وزن سنگینی در حدود 2 تن است و مجهز به جت آب در بالا وپایین است ، روی لایه مورد نظر قرار می گیرد .

جت آب پایین روشن می شود و با توجه به فشار آب وارده و وزن دستگاه ‌،گودالی ایجاد شده و ماسه خارج شده و دستگاه به داخل زمین فرو می رود . حال جت آب پایین را خاموش کرده و جت های بالایی روشن می شود و هم زمان به داخل گودال ریخته می شود جت های آب موجب می شود که ارتعاش در خاک بوجود آمده و خاک متراکم تر گردد.

انفجار blosting : از انفجار برای خاکهای دانه ای و خصوصا لجن ها استفاده می شود. در این روش چاه هایی تا عمق مورد نظر در لایه کنده شده و داخل چاه ها مواد منفجره کار گذاشته می شود انفجار مواد ،‌خاک اشباع به حالت روان در آمده و هنگام ته نشین شدن خاک د رمحیط متراکم تر قرار می گیرد .

روش dewatering :با پایین آوردن سطح آب زیر زمینی با حفر چاههای آب در زمین و پمپاژ مداوم از داخل آن ها ، سطح آب داخل چاهها پایین آمد و نیروی ارشمیدس وارد به ذرات خاک کم می شود و در نتیجه خاک نشست کرده و متراکم می شود .

روش پیش بازگذاریperloding : برای خاکهای رس اشباع از این روش استفاده می شود که در زمین مربوطه بارگذاری با وزن بسیار بیشتر از ساختمان سازه مورد نظر انجام می شود که موجب خارج شدن آب ازداخل خاک شده و لایه رس اشباع از زمان کمتری نشستهای خود را انجام می دهد .

شرح آزمایش :

آزمایش T-99 آشتو ( برای خاکهای ریزدانه ) به روش پروکتور

فرمولهای مورد نیاز :

 

 

= وزن استوانه پروکتور بدن قالب بندی

= وزن استوانه با خاک

وزن خاک داخل استوانه بعد از 3 بار ریختن و هر بار 25 ضربه چکش در بار اول

 

وسایل مورد نیاز :

1- قالب تراکم 2- الک شماره 4 3- چکش استاندارد پروکتور 4- ترازوی با دقت 01/0 گرم 5- ترازوی با دقت 1/0 گرم 6-ظرف پلاستیکی 7- جک

8- ظرف تعیین رطوبت 9-استوانه مدرج 10- اون یا گرمکن جهت خشک کردن

9-صفحه فلزی با لبه صاف ( لبه زن )



خرید و دانلود  آزمایش تراکم  خاک 8 ص