لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 18
اعداد اول
* لئوپولد کرونکر ریاضیدان آلمانی اظهار داشته است که خداوند اعداد صحیح را آفرید و بشر باقی ریاضیات را. *
درباره ی اعداد اول
در بین اعداد طبیعی بزرگتر از یک یعنی ...و 4و3و2 اعدادی وجود دارند که تنها بر یک و خود بخش پذیرند، این اعداد را اعداد اول می نامند. اعداد اول مبنایی برای همه ی عددهای طبیعی است ، به این معنی که هر عدد طبیعی به صورت حاصل ضرب توانی از اعداد اولی است که مقسوم علیه های این عددند. به عنوان مثال . نخستین هفت عدد اول متمایز عبارتند از: 2و3و7و11و13و17. اینک این سؤال پیش می آید که آیا این رشته از اعداد مختوم است یا اینکه تا بی شمار ادامه دارد. به عبارت دیگر آیا بزرگترین عدد اول وجود دارد یا نه. جواب این است که بزرگترین عدد اول وجود ندارد. این موضوع از عصر طلائی یونانیان مکشوف بوده و توسط اقلیدس در سه قرن قبل از میلاد به اثبات رسیده است. استدلال وی بی اندازه ساده و مبرهن است و هنوز هم تازگی خود را حفظ کرده. پس از اثبات نامتناهی بودن مجموعه ی اعداد اول سؤالاتی دیگر در مورد این اعداد مطرح می شود، که به بعضی از آنها پاسخ داده شده ، ولی برخی هم همچنان بی جواب باقی مانده اند. در این جا چند نمونه از این سؤالات مورد بررسی قرار می گیرند، و ضمناً برهان اقلیدس نیز ارائه خواهد گردید.
معلوم نیست که مفهوم اول برای اولین بار در چه زمانی طرح شده است و چه مدتی سپری گشته تا از مطالعه در خواص اولیه چنین اعدادی به نامتناهی بودن آن پی برده شود. شاید پس از نخستین ملاحظات تجربی و نیز مطالعه ی عملی در خواص اعدادی چون 2و3و11و17 این سؤال طبعاً پیش آمده است.
برهان ذیل، برای اثبات نامتناهی بودن رشته ی اعداد اول هنوز هم از ساده ترین برهان ها در این زمینه است. فرض کنیم که چنین نباشد در این صورت ، عدد اولی مانند p وجود دارد که از هر عدد اول دیگر بزرگتر است. اینک را در نظر می گیریم این عدد بر هیچ یک از اعداد ()بخشپذیر نیست . چون m یک عامل اول دارد و این عامل در بین اعداد ()نیست پس عامل اولی به غیر از اعداد یاد شده دارد و این با فرض ما در تناقض است. این نتیجه ی ظریف و زیبای اقلیدسی ، که ضمناً برهانش هم بسیار ساده است ، یکی از اولین نمونه ی برهانهای مشهود ریاضی است که به طریقه ی برهان خلف صورت گرفته است. پس ازبررسی این حکم سؤالات تازه ای مطرح می شود، و پاسخ به این سؤالات منجر به نتایج و ملاحظات دیگری می گردد. به عنوان مثال ، با بکار بردن مفهوم « فاکتوریل» می توان متقاعد شد که همواره یک رشته ی بقدر کافی طولانی از اعداد طبیعی متوالی که اول نباشد وجود دارد. در واقع به ازای هر n مفروض می توان n عدد متوالی ، با در نظر گرفتن اعداد طبیعی : n!+2,n!+3,n!+4,…,n!+n به دست آورد؛ این اعداد جملگی مرکب اند (غیر اول). زیرا اولی بر 2 ودومی 3 و سومی 4 و n امی برn بخش پذیر است.
هر گاه موضوع را بیشتر تعقیب کنیم، به شگفتی این اعداد و خصیصه ی مسائل مربوط به آن پی خواهیم برد، به تدریج مسائل جدید مطرح می شوند و این مسائل ، مسائل جدید دیگری را پیش می آورند که عموماً پاسخ به بعضی از آنها چندان هم ساده نیست.
از بین مسائل معروف اعداد اول ، مقدماتی ترین آنها مسئله ذیل است: در مورد اعداد طبیعی زوج به امتحان ملاحظه شده است که قابل نمایش به صورت حاصل جمع دو عدد اول است. « کریستیان گلدباخ» ریاضیدان آلمانی حالت کلی را حدس زد. یعنی به حدس اظهار داشت که هر عدد طبیعی زوج بزرگتر از 2 قابل نمایش به صورت حاصل جمع دو عدد اول است. ( این موضوع در گلچین ریاضی هم آمده) تا عصر حاضر این حدس به یقین مبدل نشده است و ریاضیدانان موفق به اقامه ی برهان برای آن نشده اند. صحت این حکم برای اعداد طبیعی زوج کوچکتر از 108 محقق شده است. ( تا سال 1968)
با بکار بردن ماشینهای الکتریکی محاسبه ، می توان آمارهایی فراهم آورد برای نشان دادن اینکه به چند طریق می توان یک عدد زوج مانند 2n به صورت حاصل جمع دو عدد اول نوشت ، عده ی طرق با بزرگ شدن n بزرگ می شوند. در حال حاضر ریاضیدانان روسی « ایوان ماتویویچ ویورگرادوف» ثابت کرده است که هر عدد طبیعی فرد بقدر کافی بزرگ ، قابل نمایش به صورت حاصل جمع سه عدد اول است. فرمولی که بوسیله آن بتوان هر عدد اول بقدر کافی بزرگ را به دست آورد، وجود ندارد. البته عبارت هایی در دست است که از روی آن می توان عده ای از اعداد اول را تعیین کرد. به عنوان مثال فرمول اویلر در دست است که از روی آن می توان عده ای از اعداد اول را تعیین کرد. به عنوان مثال فرمول اویلر به ازای اعداد اول متمایزی به دست می دهد . همچنین معلوم نیست که تعدادی نامتناهی از اعداد اول دوقلو ، یعنی اعداد اولی که تفاضل آنها 2 باشد مانند 5و7 ، 11و13، 29و31 و غیره وجود دارد یا نه. اینها نمونه هایی هستند از مسائلی ساده در اعداد اول که بطور طبیعی مطرح می شوند و اگر چه صورت ظاهری آنها ساده به نظر می رسد، اثبات آنها غالباً دشوار است و این امکان وجود دارد که با معلومات ریاضی عصر ما ثابت نگردند.
اما در مورد حکمی که اخیراً ذکر شد، اطلاعاتی در دست است. به عنوان مثال، معلوم گشته که رشته ی اعداد اول به صورت 4k+1 و4k+3 نامتناهی است. به طور کلی ثابت شده که در تصاعد حسابی ak+b،که در این a وb نسبت به هم اولند و k=1,2,3,… یک تعداد نامتناهی عدد اول وجود دارد.
قضایای اعداد اول
اعداد اول اعدادی طبیعی هستند که بر هیچ عددی بجز خودشان و عدد ۱ بخشپذیر نباشند. تنها استثنا عدد ۱ است که جزو این اعداد قرار نمیگیرد. اگرعددی طبیعی
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 13 صفحه
قسمتی از متن .doc :
فیبوناچی رشته ای از اعداد سری فیبوناچی رشته ای از اعداد است که توسط لئونارد فیبوناچی دا پیزا ریاضی دان قرن سیزدهم کشف شد (در اصل پس از یک دانشمند ایرانی دوباره کشف شد.) ما کمی از پیشینه تاریخی این مرد اعجاب انگیز نقل می کنیم و بعد از آن در مورد این سری که باعث شهرت او شد صحبت می کنیم. زمانی که اسم کوچک الیوت مشغول تدوین تئوری خود بود مبنای محاسبات خود را سری ریاضی فیبوناچی قرارداد و این سری پایه قواعد موج شد. در اوایل سال های 1200 لئونارد فیبوناچی از شهر پیزا کتاب معروف خود - کتاب محاسبات - را چاپ کرد که بزرگ ترین کشف تاریخ تا آن زمان را به اروپاییان نشان می داد. در این کتاب سیستم ده دهی برای اولین بار نامگذاری شد و عدد صفر به عنوان مبدا در این مقیاس به کار گرفته شد. قبل از این تاریخ عددگذاری و شمارش با سیستم یونانی و رومی انجام شد که جمع و تفریق کردن و ضرب و تقسیم آن کار ساده ای نبود. مخصوصاً زمانی که محاسبه گر با اعداد بزرگی سروکار داشت. در پی تلاش های فیبوناچی و همین طور ساده تر شدن محاسبات با این سیستم سرانجام سیستم رومی با سیستم محاسباتی هند و عربی جدید جایگزین شد. معرفی سیستم جدید به اروپا اولین دستاورد ریاضی از زمان سقوط رم باستان در 700 سال قبل بود. اگرچه بعدها تاریخ فیبوناچی را فراموش کرد اما این ادعای درستی است که بگوییم فیبوناچی بزرگ ترین ریاضی دان قرون وسطی بود. سری فیبوناچی در کتاب لیبرآباکی معمایی حل شده که جواب آن رشته اعدادی به این شرح است: 1 و 1و 2 و 3و 5 و 8 و 13و 21 و 34 و 55 و 89 و 144و الی بی نهایت که امروزه به عنوان سری فیبوناچی شناخته می شود. معما به این شرح بوده است: در یک محیط بسته از یک جفت خرگوش چند جفت خرگوش می توان به دست آورد. اگر هر جفت در هر ماه یک جفت دیگر به دنیا بیاورد و هر جفت تولیدمثل را از ماه دوم زندگی خود آغاز کند؟ برای حل معما باید متوجه باشیم که هرجفت خرگوش یک ماه طول می کشد تا به حد بلوغ برسد و دوران بارداری نیز یک ماه طول می کشد پس تعداد خرگوش ها در دو ماه اول ثابت می ماند (یک ماه برای به بلوغ رسیدن و یک ماه طول دوره بارداری) پس سری به صورت 1و 1 تا آخر ماه دوم می شود. این جفت طی ماه دوم باردار می شوند و در ابتدای ماه سوم یک جفت دیگر به دنیا می آورند. پس تعداد جفت ها در ماه سوم برابر با 2 است همین جفت در ماه آینده نیز جفت دیگری را به دنیا می آورند جفت دیگر نیز طی این ماه به بلوغ می رسد. پس تا انتهای ماه چهارم سری به صورت 1و1و2و3 می شود تا انتهای ماه پنجم از سه جفت حاضر دو جفت قبلی دوباره باردار می شوند و دو جفت جدید به دنیا می آورند پس تعداد جفت های خرگوش ها به 5 می رسد و سری به صورت 1 و 1و 2و3 و5 می شود. در ماه بعدی سه جفت از خرگوش ها فرزند به دنیا می آورند و سری به صورت 1و 1و 2و3 و5 و8 در می آید و به همین ترتیب پیش می رود. برخی از جذابیت های ریاضی سری فیبوناچی 1- حاصل جمع هر دو عضو پیاپی در این سری عضو بعدی (بزرگ تر) در این سری می شود. به ترتیب 1 به علاوه یک می شود 2 که دو به علاوه یک می شود سه که سه به علاوه 2 می شود پنج و باز پنج به علاوه 3 می شود 8 و به همین ترتیب ادامه می یابد. 2- یکی از ویژگی های این سری این است که هر عضو به توان دو برابر است با عضو قبلی ضرب در عضو بعدی به علاوه یا منهای 1: .....،55،34،21،13،8،5،3،2،1،1 1+8*3= 5 T5 1-3 1*5= 8 8 T 1+12*8 = 13* 13 .....، 3- عدد فی، نسبت طلایی: بعد از پشت سر گذاشتن چند عضو از اعضای سری نسبت هر عضو به عضو بزرگ تر بعدی مانند نسبت 0618/0 به 1 می شود و هر عضو نسبت به عضو کوچک تر قبلی مانند نسبت 1618/1 به 1 می
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 14 صفحه
قسمتی از متن .doc :
نظریة اعداد شاخه ای است از ریاضیات که از خواص اعداد درست ، یعنی 1،2،3،4،5 و …
که اعداد شمار یا اعداد صحیح مثبت نیز نام دارند ، سخن می گوید .
شک نیست که اعداد صحیح مثبت نخستین اختراع ریاضی بشر است . به سختی می توان انسانی را مجسم کرد که ، لااقل در سطحی محدود ، قدرت شمارش نداشته باشد . یادداشتهای تاریخی نشان می دهند که سومریان باستان حدود 5700 ق . م تقویم داشته اند و از اینرو باید نوعی حساب می داشته اند.
حدود 2500 ق . م سومریها ، با استفاده از عدد 60 به عنوان پایه ، دستگاه اعدادی ابداع کردند . این دستگاه نصیب بابلیها شد که به مهارتهای والایی در حساب رسیدند . لوحهایی گلی بدست آمده از بابلیها شامل جداول ریاضی کاملی هستند و قدمتشان به 2000 ق . م می رسد .
وقتی تمدنهای باستان به سطحی رسیدند که اوقات فراغت برای تدقیق در اشیاء بدست آمد ، برخی به تفکر در سرشت و خواص اعداد پرداختند . این کنجکاوی به نوعی تصوف یا علم معانی رمزی اعداد منجر شد و حتی امروزه نیز اعدادی نظیر 3،7،11،13 نشانة خوش شانسی یا بدشانسی هستند.
بیش از 5000 سال قبل از آنکه کسی به فکر بررسی خود اعداد به طور اصولی باشد ، اعداد برای حفظ محاسبات و معاملات تجاری بکار رفته اند. اولین روش علمی برای بررسی اعداد صحیح ، یعنی مبدا، اصلی نظریة اعداد ، را عموماً به یونانیان نسبت می دهند.
حدود 600 ق . م ، فیثاغورس و پیروانش بررسی نسبتاً جامعی از اعداد صحیح کردند . آنان اولین کسانی بودند که اعداد صحیح را به طرق مختلف رده بندی کردند :
اعداد زوج : 2،4،6،8،10،12و…
اعداد فرد : 1،3،5،7،9،11 و …
اعداد اول : 2،3،5،7،11،13،17،19،23،29،31،37،41،43،47،53،59،61،67،71،73،79، و …
اعداد مرکب : 4،6،8،9،10،12،14،15،16،18،20 و …
یک عدد اول عددی است بزرگتر از 1 که تنها مقسوم علیه های آن 1 و خود عدد باشند . اعدادی که اول نباشند مرکب نام دارند . جز عدد 1 که نه اول گرفته می شود نه مرکب .
فیثاغوریان ، اعداد را به هندسه نیز مربوط ساختند . آنان مفهوم اعداد چند ضلعی را معرفی کردند : اعداد مثلثی ، اعداد مربعی ، اعداد مخمسی و … دلیلی این نامگذاری هندسی با نمایش اعداد به وسیله نقاط به شکل مثلث ، مربع ، مخمس و … بوده است .
رابطة دیگر اعداد با هندسه ناشی از قضیة معروف فیثاغورس است ، که می گوید : در هر مثلث قائم الزاویه مربع وتر مساوی مجموع مربعات دو ضلع دیگر است . فیثاغوریان به مثلثهای قائمی نظر داشتند که همانند شکل اضلاعشان اعدادی صحیح باشند .
این نوع مثلثها را امروزه مثلثهای فیثاغوری می نامند . سه تایی (x,y,z ) نظیر که نمایشگر طول اضلاع است یک سه تایی فیثاغوری نام دارد .
یک لوح بابلی ، متعلق به حدود 1700 ق. م پیدا شده که شامل صورت مبسوطی از سه تایی های فیثاغوری است و بعضی از اعداد آن نسبتاً بزرگ می باشند . فیثاغوریان نخستین کسانی بودند که روشی برای تعیین بی نهایت سه تایی عرضه کردند . این روش را می توان با نمادهای جدید چنین بیان کرد : فرض کنیم n یک عدد فرد بزرگتر از 1 باشد و
سه تایی (x,y,z) حاصل همیشه یک سه تایی فیثاغوری است که در آن z=y+1 . چند نمونه از آن عبارتند از :
19
17
15
13
11
9
7
5
3
X
180
144
112
84
60
40
24
12
4
Y
181
145
113
85
1
41
25
13
5
Z
علاوه بر اینها ، سه تاییهای فیثاغوری دیگری نیز وجود دارند ؛ به عنوان مثال :
20
16
12
8
X
99
63
35
15
Y
101
65
37
17
Z
در این مثالها داریم z=y+2 . افلاطون (349-430 ق. م) روشی برای تعیین همة این سه تایی ها بدست آورد ؛ این سه تایی ها در نمادگذاری جدید با فرمولهای زیر بیان می شوند :
حدود 300 ق م واقعة مهمی در تاریخ ریاضیات رخ داد. ظهور اصول اقلیدس ، مجموعه ای مرکب از 13 کتاب ، ریاضیات را از علم معانی رمزی اعداد به یک علم استنتاجی بدل ساخت . اقلیدس اولین کسی بود که حقایق ریاضی را همراه با برهانهای دقیق آنها عرضه کرد. سه کتاب از سیزده کتاب (کتابهای X , IX , VII ) به نظریة اعداد اختصاص دارند. در کتاب IX اقلیدس وجود بینهایت عدد اول را ثابت می کند. اثباتش هنوز در کلاسهای درسی تدریس می شود. او در کتاب X روشی برای بدست آوردن همة سه تاییهای فیثاغوری ارائه می دهد، اما دلیلی بر اینکه روشش جمیع آنها را بدست می دهد نمی آورد. این روش را می توان در فرمولهای زیر خلاصه کرد :
x = t(a2-b2), y = 2tab, z = t (a2+b2),
که در آنها b , a , t اعداد صحیح مثبت دلخواهی هستند بطوری که a>b ، a , b عامل اول مشترک ندارند و یکی از a , b فرد و دیگری زوج است .
همچنین ، اقلیدس در مسئلة دیگری که فیثاغوریان طرح کرده بودند و آن یافتن همة اعداد تام بود تحقیقات مهمی انجام داد . عدد 6 را یک عدد تام می گفتند زیرا 6 = 3 + 2 + 1 ، یعنی مساوی مجموع تمام مقسوم علیه های واقعی خود ( یعنی ، مجموع تمام مقسوم علیه های کوچکتر از 6 ) بود . مثالی دیگر از اعداد تام 28 است . زیرا 28 = 1+2+4+7+14 و 1،2،4،7و14 مقسوم علیه های 28 هستند که از 28 کوچکترند . یونانیان مقسوم علیه های واقعی یک عدد را "فرازهای" آن عدد می خواندند . آنان 6 و 28 را اعداد تام می گفتند ، از آن جهت که هر یک مساوی مجموع فرازهای خود می باشد .
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 23 صفحه
قسمتی از متن .doc :
اعداد اول
اعداد اول اعدادی طبیعی هستند که بر هیچ عددی بجز خودشان و عدد ۱ بخشپذیر نباشند. تنها استثنا عدد ۱ است که جزو این اعداد قرار نمیگیرد. اگرعددی طبیعی وبزرگتر از ۱ اول نباشد مرکب است.
عدد یکان اعداد اول بزرگتر از ۱۰ فقط ممکن است اعداد ۱، ۳، ۷، ۹ باشد.
پیدا کردن ضابطه ای جبری برای اعداد اول جزو یکی از معماهای ریاضی باقیمانده است و هنوز کسی به فرمولی برای آنها به دست نیاورده است.
دنبالهٔ اعداد اول به این صورت شروع میشود: ۲، ۳، ۵، ۷، ۱۱، ۱۳، ۱۷، ۱۹ ...
قضیه ۱: تعداد اعداد اول بینهایت است.
برهان: حکم را به روشی که منسوب به اقلیدس است اثبات میکنیم: فرض کنید تعداد اعداد اول متناهی و تعداد آنها n تا باشد. حال عدد M را که برابر حاصلضرب این اعداد به علاوه ۱ را در نظر بگیرید. این عدد مقسومعلیهی غیر از آن n عدد دارد که با فرض در تناقض است.
قضیه ۲ (قضیه اساسی حساب): هر عدد طبیعی بزرگتر از ۱ را می توان به شکل حاصلضرب اعدادی اول نوشت.
قضیه ۳ (قضیه چپیشف):اگر n عددی طبیعی و بزرگتر از ۳ باشد، حتما" بین n و ۲n عدد اولی وجود دارد. قضیه ۴ هر عدد زوج را میتوان بصورت جمع سه عدد اول نوشت.
قضیه ۵ هر عدد فرد (شامل اعداد اول) را میتوان به صورت جمع سه عدد اول نوشت (اثبات بر پایه قضیه ۴)
قضیه 6-هر عدد فرد را میتوان به صورت دو برابر یک عدد اول بعلاوه یک عدد اول دیگر نوشت (برهان آن را بنویسد).
خواص اعداد اول:
1- هر عدد اول برابر است با 6n+1 یا 6n-1 که n یک عدد صحیح است.
2-مجذور هر عدد اول برابر است با 24n+1.
3-تفاضل مجذورهای دو عدد اول مضربی از 24 است.
4-حاصلضرب هر دو عدد اول بجز 2و3 مضربی از 6 بعلاوه یا منهای یک است.
توان چهارم هر عدد اول بجز 2و3 مضربی از 240 بعلاوه یک است.
بزرگترین عدد اول کشف شده برابر دو به توان ۳۰میلیون و ۴۰۲هزار و ۴۵۷منهای یک است.این عدد یک عدد مرسن است. عدد مرسن عددی است که برابر 2 به توان n منهای یک است.
لازم به ذکر است که تعداد 3000 عدد اول در سایت مگاسندر www.megasender.org وجود دارد و افرادی که مایل به دریافت بیشتر این اعداد هستند می توانند با سایت مذکور تماس گرفته و تعداد بیشتری از آنها را بر روی لوح فشرده دریافت نمایند و طراحان این سایت خودشان این اعداد را محاسبه نموده اند
تاریخچه اعداد اول
در سال ۲۰۰۱دو تن از دانشجویان او یعنی کایال و سکسنا به یک نکته بسیار حساس و فنی توجه کردند. ابتدا این مساله سبب شد تا گروه سه نفره در آبهای عمیق نظریه اعداد غوطه ور شوند، اما اندک اندک برایشان روشن شد که تنها یک مانع در راه تکمیل روشی جهت آزمودن دقیق و سریع اعداد اول وجود دارد. مانع از این قرار بود که روش آنان تنها در صورتی کار میکرد که عدد اول مورد نظر که با pنمایش داده میشود همواره در محدوده خاصی جای داشته باشد که با اعدادی که در آزمون شرکت داده میشوند مرتبط باشد. مشخصه ویژه این مانع آن است که عدد " p-1 " باید یک مقسوم علیه یا بخشیاب بسیار بزرگ باشد. گروه سه نفر ریاضی دانان هندی برای غلبه بر مشکل به هر دری زدند و با بررسی مقالات مختلف بالاخره دریافتند که در سال ۱۹۸۵یک ریاضیدان فرانسوی به نام اتن فووری از دانشگاه پاریس ۱۱این نکته را به صورت ریاضی اثبات کرده است. به این ترتیب آخرین بخش معما حل شد و آلگوریتم پیشنهادی این سه نفر با موفقیت پا به عرصه گذارد. اما این موفقیت "مشروط" بود. به این معنی که این روش برای اعداد اولی که انسان در حال حاضر میتوان به سراغ آنها برود از کارآیی چندانی برخوردار نیست. در روایت اولیه روش پیشنهادی، زمان لازم برای محاسبات که متناسب با ارقام عدد اول مورد نظر بود، با آهنگ ۱۰۱۲ازدیاد پیدا می کرد. در روایتهای بهبود یافته اخیر این روش، سرعت ازدیاد زمان لازم برای محاسبات به ۱۰۷.۵کاهش یافته اما حتی در این حالت نیز این روش در مقایسه با روش آ پی آر تنها در هنگامی موثر تر خواهد بود که تعداد ارقام عدد اولی که قصد شکار و یافتن آن را داریم در حدود ۱۰۱۰۰۰باشد. اعدادی تا این اندازه بزرگ در حافظه هیچ کامپیوتر جای نمیگیرند و حتی آن را نمیتوان در کل کیهان جای داد. اما حال که ریاضی دانان توانستهاند یک طبقه خاص از آلگوریتمهای توانی را برای شناسایی اعداد اول مشخص کنند، این امکان پدید آمده که به دنبال نمونههای بهتر این روش بگردند. پومرانس و هندریک لنسترا از دانشگاه کالیفرنیا در برکلی با تلاش در همین زمینه توانستهاند زمان لازم برای محاسبات را از توان ۷.۵به توان ۶کاهش دهند. این دو از همان استراتژی کلی گروه هندی موسسه کانپور استفاده کردند اما تاکتیهای دیگری را به کار گرفتند. اگر فرضیههای دیگری که درباره اعداد اول مطرح شده درست از کار درآید آنگاه میتوان زمان محاسبه را از توان ۶به توان ۳تقلیل داد که در این حد این روش کارآیی عملی پیدا خواهد
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 18 صفحه
قسمتی از متن .doc :
اعداد اول
* لئوپولد کرونکر ریاضیدان آلمانی اظهار داشته است که خداوند اعداد صحیح را آفرید و بشر باقی ریاضیات را. *
درباره ی اعداد اول
در بین اعداد طبیعی بزرگتر از یک یعنی ...و 4و3و2 اعدادی وجود دارند که تنها بر یک و خود بخش پذیرند، این اعداد را اعداد اول می نامند. اعداد اول مبنایی برای همه ی عددهای طبیعی است ، به این معنی که هر عدد طبیعی به صورت حاصل ضرب توانی از اعداد اولی است که مقسوم علیه های این عددند. به عنوان مثال . نخستین هفت عدد اول متمایز عبارتند از: 2و3و7و11و13و17. اینک این سؤال پیش می آید که آیا این رشته از اعداد مختوم است یا اینکه تا بی شمار ادامه دارد. به عبارت دیگر آیا بزرگترین عدد اول وجود دارد یا نه. جواب این است که بزرگترین عدد اول وجود ندارد. این موضوع از عصر طلائی یونانیان مکشوف بوده و توسط اقلیدس در سه قرن قبل از میلاد به اثبات رسیده است. استدلال وی بی اندازه ساده و مبرهن است و هنوز هم تازگی خود را حفظ کرده. پس از اثبات نامتناهی بودن مجموعه ی اعداد اول سؤالاتی دیگر در مورد این اعداد مطرح می شود، که به بعضی از آنها پاسخ داده شده ، ولی برخی هم همچنان بی جواب باقی مانده اند. در این جا چند نمونه از این سؤالات مورد بررسی قرار می گیرند، و ضمناً برهان اقلیدس نیز ارائه خواهد گردید.
معلوم نیست که مفهوم اول برای اولین بار در چه زمانی طرح شده است و چه مدتی سپری گشته تا از مطالعه در خواص اولیه چنین اعدادی به نامتناهی بودن آن پی برده شود. شاید پس از نخستین ملاحظات تجربی و نیز مطالعه ی عملی در خواص اعدادی چون 2و3و11و17 این سؤال طبعاً پیش آمده است.
برهان ذیل، برای اثبات نامتناهی بودن رشته ی اعداد اول هنوز هم از ساده ترین برهان ها در این زمینه است. فرض کنیم که چنین نباشد در این صورت ، عدد اولی مانند p وجود دارد که از هر عدد اول دیگر بزرگتر است. اینک را در نظر می گیریم این عدد بر هیچ یک از اعداد ()بخشپذیر نیست . چون m یک عامل اول دارد و این عامل در بین اعداد ()نیست پس عامل اولی به غیر از اعداد یاد شده دارد و این با فرض ما در تناقض است. این نتیجه ی ظریف و زیبای اقلیدسی ، که ضمناً برهانش هم بسیار ساده است ، یکی از اولین نمونه ی برهانهای مشهود ریاضی است که به طریقه ی برهان خلف صورت گرفته است. پس ازبررسی این حکم سؤالات تازه ای مطرح می شود، و پاسخ به این سؤالات منجر به نتایج و ملاحظات دیگری می گردد. به عنوان مثال ، با بکار بردن مفهوم « فاکتوریل» می توان متقاعد شد که همواره یک رشته ی بقدر کافی طولانی از اعداد طبیعی متوالی که اول نباشد وجود دارد. در واقع به ازای هر n مفروض می توان n عدد متوالی ، با در نظر گرفتن اعداد طبیعی : n!+2,n!+3,n!+4,…,n!+n به دست آورد؛ این اعداد جملگی مرکب اند (غیر اول). زیرا اولی بر 2 ودومی 3 و سومی 4 و n امی برn بخش پذیر است.
هر گاه موضوع را بیشتر تعقیب کنیم، به شگفتی این اعداد و خصیصه ی مسائل مربوط به آن پی خواهیم برد، به تدریج مسائل جدید مطرح می شوند و این مسائل ، مسائل جدید دیگری را پیش می آورند که عموماً پاسخ به بعضی از آنها چندان هم ساده نیست.
از بین مسائل معروف اعداد اول ، مقدماتی ترین آنها مسئله ذیل است: در مورد اعداد طبیعی زوج به امتحان ملاحظه شده است که قابل نمایش به صورت حاصل جمع دو عدد اول است. « کریستیان گلدباخ» ریاضیدان آلمانی حالت کلی را حدس زد. یعنی به حدس اظهار داشت که هر عدد طبیعی زوج بزرگتر از 2 قابل نمایش به صورت حاصل جمع دو عدد اول است. ( این موضوع در گلچین ریاضی هم آمده) تا عصر حاضر این حدس به یقین مبدل نشده است و ریاضیدانان موفق به اقامه ی برهان برای آن نشده اند. صحت این حکم برای اعداد طبیعی زوج کوچکتر از 108 محقق شده است. ( تا سال 1968)
با بکار بردن ماشینهای الکتریکی محاسبه ، می توان آمارهایی فراهم آورد برای نشان دادن اینکه به چند طریق می توان یک عدد زوج مانند 2n به صورت حاصل جمع دو عدد اول نوشت ، عده ی طرق با بزرگ شدن n بزرگ می شوند. در حال حاضر ریاضیدانان روسی « ایوان ماتویویچ ویورگرادوف» ثابت کرده است که هر عدد طبیعی فرد بقدر کافی بزرگ ، قابل نمایش به صورت حاصل جمع سه عدد اول است. فرمولی که بوسیله آن بتوان هر عدد اول بقدر کافی بزرگ را به دست آورد، وجود ندارد. البته عبارت هایی در دست است که از روی آن می توان عده ای از اعداد اول را تعیین کرد. به عنوان مثال فرمول اویلر در دست است که از روی آن می توان عده ای از اعداد اول را تعیین کرد. به عنوان مثال فرمول اویلر به ازای اعداد اول متمایزی به دست می دهد . همچنین معلوم نیست که تعدادی نامتناهی از اعداد اول دوقلو ، یعنی اعداد اولی که تفاضل آنها 2 باشد مانند 5و7 ، 11و13، 29و31 و غیره وجود دارد یا نه. اینها نمونه هایی هستند از مسائلی ساده در اعداد اول که بطور طبیعی مطرح می شوند و اگر چه صورت ظاهری آنها ساده به نظر می رسد، اثبات آنها غالباً دشوار است و این امکان وجود دارد که با معلومات ریاضی عصر ما ثابت نگردند.
اما در مورد حکمی که اخیراً ذکر شد، اطلاعاتی در دست است. به عنوان مثال، معلوم گشته که رشته ی اعداد اول به صورت 4k+1 و4k+3 نامتناهی است. به طور کلی ثابت شده که در تصاعد حسابی ak+b،که در این a وb نسبت به هم اولند و k=1,2,3,… یک تعداد نامتناهی عدد اول وجود دارد.
قضایای اعداد اول
اعداد اول اعدادی طبیعی هستند که بر هیچ عددی بجز خودشان و عدد ۱ بخشپذیر نباشند. تنها استثنا عدد ۱ است که جزو این اعداد قرار نمیگیرد. اگرعددی طبیعی