لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 27
الکتریسیته
تاریخچه الکتریسیته
اگرچه که الکتریسته به عنوان نتیجه واکنش شیمیاییای که در یک پیل الکترولیک از زمانی که الساندرو ولتا در سال۱۸۰۰م این آزمایش را انجام داد، شناخته میشده است، اما تولید آن به این روش گران بوده و هست. در سال ۱۸۳۱م، میشل فارادی ماشینی ابداع کرد که از حرکت چرخشی تولید الکتریسته میکرد، اما حدود پنجاه سال طول کشید تا این فن آوری از نظر اقتصادی مقرون به صرفه شود. در سال ۱۸۷۸م، توماس ادیسون جایگزین عملی تجاری ای را برای روشناییهای گازی و سیستمهای حرارتی ایجاد کرد و به فروش رساند که از الکتریسته جریان مستقیمی استفاده میکرد که بطور منطقهای تولید و توزیع شده بود، استفاده میکرد. در سیستم جریان مستقیم ادیسون، ایستگاههای تولید توان اضافی میبایست نصب میشدند. بدلیل اینکه ادیسون قادر نبود سیستمی را تولید کند که به ژنراتورهای چندگانه اجازه بدهد که به یکدیگر متصل شوند، گسترش سیستم او نیاز داشت که تمامی ایستگاههای تولید جدید مورد نیاز ساخته شوند.
نیاز به نیروگاههای اضافی ابتدا توسط قانون اهم بیان شده است: بدلیل اینکه تلفات با مربع جریان یا بار و با خود مقاومت متناسب است، بکار بردن کابلهای طولانی در سیستم ادیسون به مفهوم داشتن ولتاژهای خطرناک در برخی نقاط یا کابلهای بزرگ و گران قیمت و یا هر دوی اینها بود.
نیکولا تسلا که مدت کوتاهی برای ادیسون کار میکرد و تئوری الکتریسته را بگونهای درک کرده بود که ادیسون درک نکرده بود، سیستم جایگزینی را ابداع کرد که از جریان متناوب استفاده میکرد. تسلا بیان داشت که دو برابر کردن ولتاژ جریان را نصف میکند و منجر به کاهش تلفات به میزان ۴/۳ میشود و تنها یک سیستم جریان متناوب اجازه انتقال بین سطوح ولتاژ را در قسمت های مختلف آن سیستم ممکن میسازد. او به توسعه و تکمیل تئوری کلی سیستم اش ادامه داد و جایگزین تئوری و عملی ای را برای تمامی ابزارهای جریان مستقیم آن زمان ابداع کرد و ایده های بدیعش را در سال ۱۸۸۷م در ۳۰ حق انحصاری اختراع به ثبت رساند.
در سال ۱۸۸۸م کار تسلا مورد توجه جرج وستینگهاوس که حق انحصاری اختراع یک ترانسفورماتور را در اختیار داشت و یک کارخانه روشنایی را از سال ۱۸۸۶م در گریت بارینگتون، ماساچوست راه اندازی کرده بود، قرار گرفت. اگرچه که سیستم وستینگهاوس میتوانست از روشناییهای ادیسون استفاده کند و دارای گرم کننده نیز بود، اما این سیستم دارای موتور نبود. توسط تسلا و اختراع ثبت شده اش، وستینگهاوس یک سیستم قدرت برای یک معدن طلا در تلورید، کلورادو در سال ۱۸۹۱ ساخت که دارای یک ژنراتور آبی ۱۰۰ اسب بخار(۷۵ کیلو وات) بود که یک موتور ۱۰۰ اسب بخار (۷۵ کیلو وات) را در آنسوی خط انتقالی به فاصله ۵/۲ مایل (۴ کیلومتر) تغذیه میکرد. سپس در یک قرارداد با جنرال الکتریک که ادیسون مجبور به فروش آن شده بود، شرکت وستینگهاوس اقدام به ساخت یک نیرگاه در نیاگارا فالس کرد که دارای سه ژنراتور تسلای ۵۰۰۰ اسب بخار بود که الکتریسته را به یک کوره ذوب آلومینیوم در نیاگارا ، نیویورک و به شهر بوفالو، نیویورک به فاصله ۲۲ مایل (۳۵ کیلومتر) انتقال میداد. نیروگاه نیاگارا در ۲۰ آوریل ۱۸۹۵م شروع به کار کرد.
منشا الکتریسیته:
طبق نظریه الکترونی اتم، یک اتم از ذرات کوچکتری به نامهای الکترون، پروتون و نوترون تشکیل شده است. که الکترونها دارای بار منفی و پروتونها دارای بار مثبت و نوترونها بدون بار هستند. تعداد الکترونها و پروتونهای یک اتم در حالت عادی برابر است. بنابراین، اتم در حالت عادی از نظر بار الکتریکی خنثی است.
در اثر تماس، نزدیکی و یا برخورد اجسام بر همدیگر میان اجسام اندازه حرکت خطی مبادله میشود. در اثر تغییر اندازه حرکت نیروهائی ایجاد میشود. چگونگی شکلگیری این نیروها به ساختار اتمی تشکیل دهنده اجسام برمیگردد. به عبارتی این نیروها منشا الکتریکی و مغناطیسی دارند. در اثر مالش اجسام برهمدیگر، جسمی که در اتمهای تشکیل دهنده خود اتمی از نوع دهنده الکترون داشته باشد، الکترون خود را به جسم دیگر که نسبت به آن خاصیت الکترونگاتیوی بیشتری دارد میدهد و مبادله الکترون بین اتمها و در نهایت اجسام منجر به تولید الکتریسته میشود.
تقسیمات الکتریسیته:
الکتریسته ساکن (الکتریسیته مالشی):
اگر یک میله شیشهای را به پارچه پشمی مالش دهیم، هردو جسم دارای بار میشوند. زیرا شیشه تعدادی الکترون از دست میدهد. و پارچه الکترون میگیرد. پس شیشه دارای بار مثبت و پارچه به همان مقدار دارای بار منفی میگردد. بار ایجاد شده در شیشه و پارچه درمحل تماس باقی میماند.
الکتریسته القائی:
اگر میله با بار منفی را به دو کره فلزی بدون باری که با هم در تماس بوده و توسط پایههای عایقی از زمین جدا شده باشند، نزدیک کنیم. قبل از دور کردن میله، بدون دست زدن به پوسته کرات آنها را از هم جدا کنیم. کره نزدیک به میله دارای بار مثبت و کره دور از آن دارای منفی خواهد بود که مقدار بار روی کرات برابر هستند. این نوع بار دارشدن را باردار شدن به روش القا یا مجاورت مینامند.
الکتریسته جاری:
عبور پیوسته الکترون از یک هادی را الکتریسته جاری گویند. خلاف جهت حرکت الکترون را جهت قراردادی جریان الکتریکی جریان الکترونی) انتخاب میکنند. عامل برقراری جریان ثابت، اختلاف پتاسیل ثابتی میباشد، که در دو سر هادی برقرار است. و وسایل تولید این اختلاف پتاسیل ثابت پیلهای شیمیائی، ژنراتورها و دیناموها میباشند.
اجسام رسانا و نارسانا:
بعضی از اجسام مانند فلزات که الکتریسته را به خوبی از خود عبور میدهند، رسانا نامیده میشوند. در این نوع اجسام الکترونهای آزاد اتم بهراحتی در شبکه بلوری اجسام حرکت میکنند. و عمل رسانائی را انجام میدهند. اجسامی که الکترونهای آزاد (برای
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 14
دبیرستان امیر کبیر
موضوع تحقیق:
الکتریسیته و مغناطیس
دبیر مربوطه:
جناب آقای طاهری
تهیه کننده :
محمد دواتگر رضوان
کلاس 2/3 ریاضی
برگرفته شده از:
کتاب فیزیک پایه
و
الکتریسیته
مدار جاری و لامپ روشن میشود. لازم نیست که چند دقیقه، یا حتی چند ثانیه صبر کنیم تا آثار جریان را در مدار مشاهده کنیم. ضمناُ به نظر میرسد که فاصلة بین کلید و لامپ، که معمولاً خیلی بیشتر از cm10 است، بر زمان بروز آثار الکتریکی تأثیر محسوسی ندارد.
نکته آن است که برای اینکه فیلامان به جریان پاسخ دهد، لازم نیست صبر کنید تا یک الکترون معین از سر باتری به لامپ برسد. وقتی که کلید را میبندیم، همة توزیع بار درون رسانات، تقریباً بلافاصله، به حرکت درمیآید؛ این موضوع شبیه ان است که آب درون یک لولة دراز بلافاصله پس از بازکردن شیر جاری میشود.
20-3 مقاومت و مقاومت ویژه
اگر سیمی بین دو قطب باتری ببندیم، بارهای مثبت از داخل این مدار خارجی جاری میشوند و از قطب مثبت به قطب منفی، یعنی، مطابق شکل20-7، از نقطة با پتانسیل بیشتر به نقطة با پتانسیل کمتر میروند. در داخل باتری جریانبارهای مثبت از قطب منفی به قطب مثبت، یعنی در خلاف جهت میدان الکتریکی، است؛ در داخل باتری، عامل حرکت بارها میدان الکترواستاتیکی نیست بلکه واکنش شیمیایی باتری است. در مدار خارجی، عامل حرکت بارها مبدان E است. به عنوان نمونهای مشابه با جریان بار در مدارهای الکتریکی میتوان از جریان آب در سیستمهای هیدرولیکی نام برد. آب در میدان گرانشی همیشه به پایین جاری میشود؛ اما ابزارهایی – مثل تلمبه – وجود دارد که با گرفتن انرژی از سایر منبعها، آب را به بالا میرانند.
اگر سیم بین قطبهای باتری، یک رسانای کامل و ایدهآل باشد که بر بارهای متحرک آن هیچ نیرویی جز نیروی الکتروستاتیکی خارج وارد نمیآید، این بارها بر اثر میدان E به طور یکنواخت شتاب میگیرند. درنتیجه، سرعت متوسط حاملهای بار در طول زمان به طور پیوسته زیاد میشود، و به همین ترتیب، جریان نیز افزایش مییابد. اما عملاً چنین نیست. جریان به سرعت به مقداری ثابت میرسد که متناسب با اختلاف پتانسیل دو سر سیم است. علت این امر آن است که سیم در برابر حرکت حاملهای بار مقاومت میکند و درنتیجه حالت پایا دست میدهد.
بنابر تعریف، مقاومت سیم عبارت است از نسبت ولتاژ به جریان؛ یعنی:
(20-5)
که R مقاومت، I جریانی که از این مقاومت میگذرد، و V افت پتانسیل در طول این مقاومت است؛ یعنی V اختلاف پتانسیل دو سر عنصر مقاومتی در شرایطی است که جریان I از آن میگذرد. واحد مقاومت اهم ، به نام گئورک سیمون اهم (1787-1854) است. هر اهم برابر است با یک ولت بر آمپر. هر عنصر مداری را که فقط مقاومت وارد مدار کند، مقاومت (خالص) مینامند.
در اکثر موارد، مقاومت عناصر مداری، دست کم در گسترهای وسیع از جریان، از جریان داخل آن مستقل است. معادلة (20-5) یا رابطة معادل آن.
(20-6)
را که R ثابت فرض میشود، قانون اهم مینامند.
مثال 20-2 یک مقاومت را به قطبهای یک باتری V10 بستهاند. جریان در این مقاومت چه قدر است؟
حل: از معادلة تعریف کنندة R، یعنی معادلة (20-5)، داریم
بدینسان:
قانوه اهم، برخلاف قوانین حرکت نیوتون، قانون دوم ترمودینامیک، یا قوانین پایستگی انرژی و اندازة حرکت، از جملة قوانین بنیادی طبعت محسوب نمیشود. بسیاری از سیستمهای مقاومتی از قانون اهم پیروی نمیکنند. این سیستمها در الکترونیک حالت جامد نقشی کلیدی بازی میکنند. اما قانون اهم
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 3
الکتریسیته و مغناطیس
اثرهای ساده الکتریکی و مغناطیسی را از زمانهای قدیم میشناختند. حدود ۶۰۰ سال قبل از میلاد یونانیان میدانستند که آهنربا آهن را جذب میکند و کهربای مالیده به لباس چیزهای سبک مانند کاه را بسوی خود میکشد. با وجود این اختلاف بین جذبهای الکتریکی و مغناطیسی تعیین نشده بود و این پدیدهها را از یک نوع در نظر میگرفتند.
خط فاصل روشن بین این دو پدیده را گیلبرت (W. Gilbert) ، فیزیکدان و طبیعت شناس انگلیسی پیدا کرد. و نیز او کتابی درباره آهنربا ، “اجسام آهنربایی” و “زمین به عنوان آهنربای بزرگ” در سال ۱۶۰۰ منتشر کرد. کار وی شروع بررسی در پدیدههای الکتریکی را نشان میدهد. گیلبرت در این کتاب همه خواص آهنرباهای شناخته شده تا آن زمان را تشریح کرده و نتایج آزمایشهای خیلی مهم ، شخص خود را نیز آورده است. همچنین وی شماری از تفاوتهای اساسی بین جذبهای الکتریکی و مغناطیسی را مشخص نموده و اصطلاح “الکتریسیته“ را وضع کرده است.
سیر تحولی و رشد
* بعد از انتشار کارهای گیلبرت ، تمایز بین پدیدههای الکتریکی و مغناطیسی مسلم شد، اما به رغم اینکه اختلافها شماری از واقعیتها ارتباط ناگسستنی بین این پدیدهها را پدیدار ساخت. برجستهترین این واقعیتها مغناطیس اشیای آهنی و وارونی عقربه قطب نما بر اثر آذرخش بودند.* آراگو (D. F. Arago) ، فیزیکدان فرانسوی در کتاب خود به نام “تندر و آذرخش” ، شرح میدهد که چگونه در ژوییه سال ۱۶۸۱، در کشتی راین (reine) واقع در دریای آزاد حدود صدها مایل از ساحل بر اثر آذرخش دکلها ، بادبانها و غیره بطور جدی صدمه دیدند. وقتی که شب فرا رسید، از روی وضع ستارگان دریافت که از سه قطب نمای در دسترس دو تا بجای شمال به سمت جنوب ایستاده بودند، در حالی که یکی از آنها به سمت شمال بود، آراگو همچنین شرح میدهد که هرگاه آذرخش به خانه بخورد، کارد ، چنگال و سایر اشیای آهنی را به شدت آهنربا میکند.* در آغاز قرن هجدهم ثابت شد که آذرخش در واقع جریان الکتریکی شدیدی است که از هوا میگذرد. بنابراین به این نتیجه میرسیم که جریان الکتریکی خواص مغناطیسی دارد، اما این خواص جریان فقط در سال ۱۸۲۰ توسط اورستد (H. Oersted) فیزیکدان دانمارکی با آزمایش مشاهده و بررسی شد. همانطوری که نیروهای مؤثر بر بارهای الکتریکی نیروهای الکتریکی نام دارد، نیروهای مؤثر بر آهنرباهای طبیعی یا مصنوعی را نیروهای مغناطیسی میگویند.
منشأ میدان مغناطیسی
اگر در فضا نیروهای الکتریکی حاکم باشد و بر ذرات باردار نیروی الکتریکی وارد کند، میگوییم در این فضا میدان الکتریکی وجود دارد. از این رو آزمایش نشان میدهد که در فضای اطراف جریان الکتریکی ، نیروهای مغناطیسی ظاهر میشود، یعنی میدان مغناطیسی بوجود میآید.
اولین سوال اورستد
آیا ماده سیم روی میدان مغناطیسی بوجود آمده از جریان اثر دارد یا نه؟ اورستد دریافت که سیمهای اتصال را میتوان از چند سیم یا نوار باریک مختلف درست کرد و جنس فلز در نتیجه اثر نمیگذارد (احتمالا اگر بزرگ باشد اثر میگذارد). چون فلزات مختلف ، مقاومتهای الکتریکی متفاوتی دارند، اگر به باتری وصل شود، می توانند جریانهای متفاوت داشته باشند و در نتیجه اثر مغناطیسی این جریانها متفاوت خواهد بود.
اما باید بخاطر داشت که آزمایش اورستد پیش از وضع قانون اهم و دستیابی به مفهوم بستگی مقاومت رساناها به جنس ماده تشکیل دهنده آنها انجام گرفته است. اگر آزمایش اورستد با سیمهای پلاتین ، طلا ، نقره ، برنج ، و آهن یا نوارهای روی و قلع یا جیوه انجام گیرد، همین نتیجه اخیر بدست میآید. اورستد آزمایشاتش را با فلز ، یعنی رساناهایی با رسانش الکترونی ، انجام داد.
اثر مغناطیسی جریان الکترولیتی
اگر در آزمایش اورستد فلز رسانا را با لوله دارای الکترولیت یا لولهای که داخل آن تخلیه الکتریکی صورت میگیرد، استفاده شود. هر چند در این حالتها جریان الکتریکی از حرکت یونهای مثبت و منفی ناشی میشوند، ولی اثر آنها روی عقربه مغناطیسی با اثر رسانای فلزی یکسان است. بدون توجه به رسانای حامل جریان ، در فضای اطراف آن میدان مغناطیسی بوجود میآید. از اینرو میتوان گفت که در اطراف هر جریانی میدان مغناطیسی ظاهر میشود. این خاصیت اصلی جریان الکتریکی در اثرهای حرارتی و شیمیایی جریان الکتریکی نقش بازی میکند.
اثر مغناطیسی جریان و خواص الکتریکی رسانا
ایجاد میدان مغناطیسی معمولترین خاصیت از سه خاصیت جریان الکتریکی است. جریان الکتریکی فقط در یک نوع رسانا (الکترولیتها) اثر شیمیایی بوجود میآورد، نه در دیگران (فلزات). مقدار جریان آزاد شده توسط جریان ، بسته به مقاومت رسانا ، میتواند بیشتر یا کمتر باشد. در ابر رساناها ممکن است همراه جریان ، گرما آزاد می شود. از طرفی دیگر میدان مغناطیسی با جریان الکتریکی پیوندی جدایی ناپذیر دارد. این میدان به خواص مشخصی از رسانا بستگی ندارد و فقط شدت و جهت جریان آن را تعیین میکند. بیشترین کاربردهای صنعتی الکتریسیته نیز بوجود میدان مغناطیسی جریان وابسته میباشند.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 35
الکتریسیته
الکتریسیته، برگرفته شده از کلمه یونانی: ήλεκτρον ، اثری است که به دلیل موجودیت بار الکتریکی پدید میآید و همراه با مغناطیس یکی از نیروهای پایه در فیزیک به نام الکترومغناطیس را تشکیل میدهد.
مفاهیم اصلی
پتانسیل الکتریکی
جریان الکتریکی
میدان الکتریکی
انرژی الکتریکی
بار الکتریکی
مدار الکتریکی
ترانسفورماتور
تاریخچه
تاریخ الکتریسیته به ایران و بینالنهرین باستان در دوره اشکانیان برمیگردد و اولین باطری اختراع شده را به اشکانیان نسبت میدهند که به خاطر محل یافتش به باطری بغدادی شهرت گرفته است.[1]
الکتریسیته امروزی، تواناییهای خودش را بیشتر مدیون زحمات فیزیکدانانی همچون، الساندر ولت، آندره آمپر، نیکلا تسلا، جرج سیمون اهم، مایکل فارادی و توماس ادیسون (به عنوان مخترع) است
خواص خطوط میدان الکتریکی
خواص عمده خطوط میدان الکتریکی در مسائل الکترواستاتیک:
به خاطر اینک میدان الکتریکی در هر نقطه از فضا وجود دارد، در هر نقطه از فضا همواره می توان یک خط میدان کشید.
برای توزیع بار های اکتریکی معلوم ، در هر نقطه میدان الکتریکی دارای بزرگی و راستای کاملا مشخصی است. به این معنا که در هر نقطه خط نیروی الکتریکی را فقط می توان در یک راستای معین یعنی بصورت تک خط کشید. به بیان دیگر خط های نیرو همدیگر را قطع نمی کنند.
خط های نیرو ممکن است تنها در بار نقطه ای یکدیگر را قطع کنند.
خط های نیرو از بار مثبت (نقطه شروع خط های میدان) خارج و به بار منفی (انتهای خطوط نیرو) نزدیک می شوند. خط های میدان الکتریکی در هیچ نقطه ای به جز بار الکتریکی پایان نمی پذیرند (ختم خطوط میدان بر سطوح هادی ها به این دلیل است که بارها در سطوح هادی ها توزیع یافته اند). آنها از بار مثبت به سوی بار منفی اند و می توانند از میان نارسانا ها عبور کنند.
چون در داخل رساناها میدان الکتریکی وجود ندارد (صفر است)، بارهای آنها در حالت تعادل به سر می برند. در داخل رساناها خط میدان الکتریکی وجود ندارد. به عبارتی خط های میدان الکتریکی از داخل رسانا ها عبور نمی کنند. و این خطوط از سطح رسانا ها شروع و به سطحشان ختم می شوند.چون بارهای الکتریکی نقطه شروع و پایان خطوط میدان الکتریکی هستند، بارهای مثبت روی سطوحی واقع اند که خط میدان شروع می شود. در حالیکه بار های منفی روی سطوحی قراردارند، که خط میدان پایان می پذیرند.
خطوط میدان الکتریکی بر سطح رسانا عمودند:
بدیهی است خطوط میدان الکتریکی راستای نیرو های وارد بر بار را نشان می دهند. اگر این خطوط با سطح رسانا زاویه ای داشته باشند نیرو مؤلفه ای روی سطح خواهد داشت. در این صورت بارها با این مولفه روی سطح جابه جا خواهند شد. از این رو ترازمندی بارهای الکتریکی فقط هنگامی ممکن است. که خطوط میدان در امتداد عمود بر سطح رسانا ی مورد نظر باشند.
پتانسیل الکتریکی در رساناها:
چون داخل هر رسانا میدان الکتریکی صفر است، به عبارتی خطوط میدانی وجود ندارد. بنابر این بین هر دو نقطه از رسانا اختلاف پتاسیل الکتریکی صفر است. بر طبق رابطه زیر: E=U/d بنابراین U=Ed که در آن E میدان الکتریکی ، d فاصله نقطه میدان از مبدا و U اختلاف پتاسیل الکتریکی می باشد. این گفته در تمام نقاط روی رسانا نیز صدق می کند.در نتیجه سطح رسانا سطح هم پتاسیل است. سطوح تک تک رساناها، سطوح هم پتاسیل است اما احتمال دارد بین دو سطح رسانای مستقل از هم اختلاف پتاسیل وجود داشته باشد.
شار الکتریکی
تعداد خطوط میدان الکتریکی که از سطح عمود بر مسیر خطوط عبور میکنند، را شار
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 12
موضوع تحقیق: الکتریسیته و مغناطیس
برگرفته شده از:
کتاب فیزیک پایه
و
الکتریسیته
مدار جاری و لامپ روشن میشود. لازم نیست که چند دقیقه، یا حتی چند ثانیه صبر کنیم تا آثار جریان را در مدار مشاهده کنیم. ضمناُ به نظر میرسد که فاصلة بین کلید و لامپ، که معمولاً خیلی بیشتر از cm10 است، بر زمان بروز آثار الکتریکی تأثیر محسوسی ندارد.
نکته آن است که برای اینکه فیلامان به جریان پاسخ دهد، لازم نیست صبر کنید تا یک الکترون معین از سر باتری به لامپ برسد. وقتی که کلید را میبندیم، همة توزیع بار درون رسانات، تقریباً بلافاصله، به حرکت درمیآید؛ این موضوع شبیه ان است که آب درون یک لولة دراز بلافاصله پس از بازکردن شیر جاری میشود.
20-3 مقاومت و مقاومت ویژه
اگر سیمی بین دو قطب باتری ببندیم، بارهای مثبت از داخل این مدار خارجی جاری میشوند و از قطب مثبت به قطب منفی، یعنی، مطابق شکل20-7، از نقطة با پتانسیل بیشتر به نقطة با پتانسیل کمتر میروند. در داخل باتری جریانبارهای مثبت از قطب منفی به قطب مثبت، یعنی در خلاف جهت میدان الکتریکی، است؛ در داخل باتری، عامل حرکت بارها میدان الکترواستاتیکی نیست بلکه واکنش شیمیایی باتری است. در مدار خارجی، عامل حرکت بارها مبدان E است. به عنوان نمونهای مشابه با جریان بار در مدارهای الکتریکی میتوان از جریان آب در سیستمهای هیدرولیکی نام برد. آب در میدان گرانشی همیشه به پایین جاری میشود؛ اما ابزارهایی – مثل تلمبه – وجود دارد که با گرفتن انرژی از سایر منبعها، آب را به بالا میرانند.
اگر سیم بین قطبهای باتری، یک رسانای کامل و ایدهآل باشد که بر بارهای متحرک آن هیچ نیرویی جز نیروی الکتروستاتیکی خارج وارد نمیآید، این بارها بر اثر میدان E به طور یکنواخت شتاب میگیرند. درنتیجه، سرعت متوسط حاملهای بار در طول زمان به طور پیوسته زیاد میشود، و به همین ترتیب، جریان نیز افزایش مییابد. اما عملاً چنین نیست. جریان به سرعت به مقداری ثابت میرسد که متناسب با اختلاف پتانسیل دو سر سیم است. علت این امر آن است که سیم در برابر حرکت حاملهای بار مقاومت میکند و درنتیجه حالت پایا دست میدهد.
بنابر تعریف، مقاومت سیم عبارت است از نسبت ولتاژ به جریان؛ یعنی:
(20-5)
که R مقاومت، I جریانی که از این مقاومت میگذرد، و V افت پتانسیل در طول این مقاومت است؛ یعنی V اختلاف پتانسیل دو سر عنصر مقاومتی در شرایطی است که جریان I از آن میگذرد. واحد مقاومت اهم ، به نام گئورک سیمون اهم (1787-1854) است. هر اهم برابر است با یک ولت بر آمپر. هر عنصر مداری را که فقط مقاومت وارد مدار کند، مقاومت (خالص) مینامند.
در اکثر موارد، مقاومت عناصر مداری، دست کم در گسترهای وسیع از جریان، از جریان داخل آن مستقل است. معادلة (20-5) یا رابطة معادل آن.
(20-6)
را که R ثابت فرض میشود، قانون اهم مینامند.
مثال 20-2 یک مقاومت را به قطبهای یک باتری V10 بستهاند. جریان در این مقاومت چه قدر است؟
حل: از معادلة تعریف کنندة R، یعنی معادلة (20-5)، داریم
بدینسان:
قانوه اهم، برخلاف قوانین حرکت نیوتون، قانون دوم ترمودینامیک، یا قوانین پایستگی انرژی و اندازة حرکت، از جملة قوانین بنیادی طبعت محسوب نمیشود. بسیاری از سیستمهای مقاومتی از قانون اهم پیروی نمیکنند. این سیستمها در الکترونیک حالت جامد نقشی کلیدی بازی میکنند. اما قانون اهم برای اکثر عناصر سادة مداری، مانند سیم، گرمکن برقی و مانند آن، یا صادق است، یا دست کم تقریبی خوب به شمار میاید.
مقاومت رساناها به طول، l ، مساحت سطح مقطع، A، و یک خاصیت ذاتی مادة رسانا، یعنی مقاومت ویژه، بستگی دارد. رابطة بین مقاومت، R، و مقاومت ویژه، l، به این قرار است
(20-7)
واحد مقاومت ویژه اهم متر است.
گسترة مقدار مقاومت ویژة مواد در دمای اتاق وسیع است؛ از مقادیر کم برای فلزات بسیار خالص، مثل مس و نقره، گرفته تا مقادیر بسیار بزرگ برای نارساناهای خوب، مانند شیشه، تفلون، و میلار. مقاومت ویژة چند فلز خالص، آلیاژ، نیمرسانا و نارسانا در دمای ، در جدول 20-1 درج شدهاند. گسترة این مقادیر 25 دهه (مرتبه بزرگی) است.