لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 60
اندازه گذاری و تلرانس گذاری هندسی (GD and T )
Geometric dimensioning and to lerancing
تلرانس گذاری بصورت مثبت و منفی ( اندازه اسمی + حد بالا و پایین ) نمی تواند به طور کامل تمام جزئیات ساخت یک قطعه را در نقشه نشان می دهد و در بسیاری موارد سازنده را دچار ابهام می کند . مثال زیر این نکته را روشن می نماید .
همانطور که در شکل دیده می شود برای تعیین موقعیت سوراخ باید مرکز آن نسبت به یک موقعیت معین مثلاً گوشه قطعه کار مشخص شود . فاصله مرکز از گوشه در راستای x و y برابر دو mm است . اما طبیعی است که این اعداد خود دارای تلرانسی هستند و نمی توانند اعداد و mm منظور گردند . لذا تلرانس آنها بصورت مثبت و منفی 005/0 mm تعیین شده است به این مفهوم که عدد mm 2 می تواند بین 995/1 الی 005/2 mm باشد بدین ترتیب مراکز سوراخ در یک محدوده مربعی شکل با ابعاد 010/0 در 010/0 mm جای می گیرد. به عبارت دیگر مرکز سوراخ دریلر بخشی از این مربع که قرار می گیرد ظاهرا قابل قبول است که البته این مشابه شبهه برانگیز است. نکته جالب تر اینکه دیگر اگر مرکز سوراخ روی محیط مربع قرار گیرد نیز ظاهرا باید مورد قبول باشد چنانچه این شرط را بپذیریم پس مرکز سوراخ می تواند روی گوشه های مربع نیز باشد که در این صورت فاصله آن از مرکز واقعی واصلی برابر یعنی 007/0 mm است که خارج از حد بالا و پایین تلرانس تعیین شده است. (005/0 ) کاملا واضح است که این نوع تلرانس است کافی ندارد و می تواند باعث سوالات زیادی شود؟
-آیا مرکز سوراخ می تواند در هر جایی در موقع تلرانسی قرار گیرد؟
- آیا مرکز سوراخ می تواند در روی محیط مربع تلرانسی نیز باشد؟
- آیا مرکز سوراخ می تواند در روی گوشه های مربع تلرانسی باشد؟
فرض کنید به جای آنکه از یک مربع برای تعیین محدوده تلرانسی استفاده نماییم از یک دایره برای این کار بهره ببریم. مثلا به نحوی روی مته مشخص نماییم که مرکز سوراخ می تواند هر جایی درون دایره ای به شعاع 005/0 اینچ باشد (طول مرکز اصلی سوراخ) بدین ترتیب چون دایره دارای ویژگی همان بودن تمام نقاط روی محیط آن است مشکل مربع و گوشه های آن حل خواهد شد. پس باید علاوه بر تلرانس های مثبت و منفی دوکار دیگر جهت تکمیل و روشن کردن موقعیت سوراخ انجام دهیم:
1-موقعیت دقیق مرکز سوراخ و محدوده تلرانسی آن را با یک علامت یا توضیح شرح دهیم
2-از تلرانس دایروی استفاده کنیم تا تلرانس گذاری مربعی شبهه برانگیز نباشد.
GD and T همین مطلب را دنبال می کند که اولا تلرانس گذاری دایروی را در نقشه اعمال کنیم ثانیا ویژگی های بخش های مختلف نقشه را کامل تر تعیین نماییم (نظیر موقعیت یک سوراخ و ...) این کار از طریق علائم و نشانه های استانداردی انجام می شود که در مبحث GD and T مورد بررسی قرار می گیرد.
تلرانس گذاری دایره ای که مبنای تلرانس گذاری در GD and T است جزئی ازاستانداردهای نظامی بوده است که درسال 1956 منتشر و توسط صنایع نظامی آمریکا مورد پذیرش قرار گرفت. این تکنیک اکنون با احتساب سال 2006 پنجاه سال است که بکار می رود. تدوین و کاربرد استاندارد GD and T فقط مختص کشور آمریکا نبود. امروزه استانداردهای GD and T درکشورهای مختلف صاحب صنعت بررسی و منتشر شده اند که اکثر علائم تلرانس گذاری در این استانداردها مشابه هستند وتنها در روش تعیین مبنا یا کاربرد علائم در نقشه ها با یکدیگر تفاوت هایی دارند. تعدادی از معروفترین این استانداردها عبارتند از: ( که مربوط به GD and T هستند)
انجمن استانداردهای ملی آمریکا (استاندارد GD and T )→ ANSI Y 14.5
انجمن استانداردهای انگلیس (استاندارد GD and T )→ BS 308 Part 111
انجمن استانداردهای کانادا (استاندارد GD and T )→ CSA B 78.2
سازمان بین المللی استانداردها (استاندارد GD and T )→ ISO R 1101
انجمن استانداردهای استرالیا ( استانداردهای GD and T )→ AS CZI Secti8
خلاصه مطلب آنکه هر نقشه ساخت حداقل باید شامل 3 داده اصلی زیر باشد :
1-شکل ومشخصات دقیق هندسی ( و در نتیجه تلرانسهای هندسی یعنی GD and T )
2-ابعاد و اندازه قطعه (و در نتیجه تلرانسهای ابعادی)
3-جنس مورد استفاده
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 7
اندازه گیری مقاومت به روش پل و تستون و پل تار
منظور آزمایش :
شناسایی پل و تستون و پل تار و اندازه گیری مقاومت به وسیله آنها
وسایل مورد نیاز :
یک منبع تغذیه جریان مستقیم – یک عدد آوومتر – یک جعبه مقاومت یا (مقاومتهای مختلف ) کلید قطع و وصل – مقاومت مجهول – مقاومت معلوم – پل تار – سیمهای رابط
مقدمه :
پل وتستون برای اندازه گیری سریع و دقیق مقاومت مجهول یک جسم و یا یک وسیله الکتریکی متداول است . این مقدار در سال 1843 بوسیله دانشمند انگلیسی (چارلز وتستون) طرح گردید . مقاومتهای R1 و R2 معلوم بوده و مقدار مقاومت R3 را می توان بدلخواه تغییر داد و منظور اندازه گیری مقاومت RX می باشد ( برای انجام آزمایش و بکار بردن پل وتستون باید پس از سوار نمودن مدار آنقدر مقاومت متغیر را تغییر داده تا آمپرمتر A درجه صفر را نشان دهد) در این هنگام پتانسیل نقاط C و D برابر بوده داریم.
( برای به خاطر سپردن این رابطه دقت کنید که حاصلضرب مقاومتهای روبرو مساوی هستند ) بنابراین با داشتن مقادیر مقاومت های R1 و R2 و R3 مقدار مقاومت مجهول RX را می توان معین نمود.
پل تار :
پل وتستون را می توان به صورت ساده تری که پل تار نام دارد سوار نمود . شکل(2) یک پل تار را نشان می دهد که یک رشته سیم یکنواخت است و معمولا یک متر می باشد .
برای اندازه گیری مقاومت مجهول با استفاده از پل تار مداری مطابق شکل (3) می بندیم .
R مقاومت معلوم و RX مقاومت مجهولی است که باید اندازه گیری شود.
برای کار با پل تار لغزنده را که می تواند روی سیم حرکت کند ، بقدری در طول سیم حرکت می دهند تا از آمپرمتر جریانی عبور نکند در این صورت مقاومتهای R و RX و سیم های L1 و L2 مانند چهار شاخه پل و تستون هستند که به حالت تعادل باشند و بنابر رابطه ای که اثبات آن در پل وتستون گذشت.
روش آزمایش :
1- مدار شکل (1) را با قرار دادن دو مقاومت ثابت معلوم بجای R1 و R2 ( مقاومت بزرگتر را R2 فرض کنید ) و نصب جعبه مقاومت و یا مقاومتهای مختلف به جای R3 و مقاومت مجهول بجای R2 سوار نموده و سپس کلید S را بسته و مقاومت متغیر را آنقدر تغییر دهید تا جریانی از آمپرمتر عبور نکند.
2- مقدار مقاومت R3 را خوانده و با قرار دادن در رابطه (7) ، مقاومت مجهول را پیدا کنید .
3- این آزمایش را برای دو مقاومت مجهول دیگر تکرار کرده و نتایج را در جدول شماره (1) درج نمائید .
پل تار :
4- مدار شکل (3) را با قرار دادن مقاومت 10 اهمی بجای R و مقاومت مجهولی بجای RX سوار نموده و سپس آنقدر محل لغزنده را در روی سیم هادی تغییر دهید تا آمپرمتر جریانی را نشان ندهد.
5- دو طول L1 و L2 را در روی خط کش اندازه گرفته و با قرار دادن در رابطه (10) مقدار مقاومت مجهول را پیدا نمائید .
6- این آزمایش را برای همان مقاومتهای مجهول که در آزمایش قبل بکار بردید تکرار کرده و نتایج را در جدول شماره (2) بنویسید .
7- برآورد بیراهی ها
با در نظر گرفتن دقت وسائل سنجنده ای که در این آزمایش به کار رفته است بیراهی نسبی را در اندازه گیری یک مقاومت به روش پل وتستون و یک مقاومت به روش پل تار محاسبه نمائید .
هدف آزمایش :
1) مطالعه قانون اهم در یک مدار ساده الکتریکی
2) بررسی رابطه بین مقاومت و جریان در مدارهایی که شامل تعدادی مقاومت بطور سری و موازی میباشد.
تئوری آزمایش : 1) اندازهگیری اختلاف پتانسیل و جریان در یک مدار الکتریکی 2) بستن مقاومتها بطور سری و موازی 3) بستن مقاومتها به صورت مختلط 4) تحقیق قانون اهم
وسایل آزمایش : یک منبع تغذیه با ولتاژ متغیر- آوومتر A.V.Oـ 3 مقاومت با مقادیر متفاوت ـ چند رشته سیم رابط.
روش آزمایش : به وسیله دستگاه A.V.O سنجی که در اختیار داریم میتوان اختلاف پتانسیل الکتریکی بر حسب ولت V و مقدار مقاومت را بر حسب اهم ( ) و بر شدت جریان را برحسب آمپر (A ) نشان میدهد.
با عوض کردن سیمهای وصل شونده به دستگاه میتوانیم آمپرمتر یا ولتمتر یا اهم متر داشته باشیم که برای اندازهگیری اختلاف پتانسیل بین دو نقطه ولتمتر باید به صورت موازی بین 2 نقطه و برای اندازهگیری شدت جریان، آمپرمتر باید به صورت سری در مدار قرار گیرد.
بستن مقاومتها به صورت سری و موازی :
اگر دو سر ابتدا و انتهایی 2 مقاومت را به منبع تغذیه وصل کنیم گوییم مقاومتها به صورت موازی بسته شده است که در این حالت اختلاف پتانسیل 2 در تمام مقاومتها با سیم برابر میباشد و شدت جریان کل مدار برابر با مجموع شدت جریان 2 در تکتک مقاومتها میباشد و اگر مقاومتها را پشت سر هم به هم وصل کنیم و بعد سر ابتدا و انتهایی را به منبع تغذیه وصل کنیمم در این حالت گوییم مقاومتها را به صورت سری بستهایم و در این حالت گوییم مقاومتها را به صورت سری بستهایم و در این حالت شدت جریان تک تک مقاومتها با هم برابر و مجموع اختلاف پتانسیل 2 در مقاومتهای به هم وصل شده برابر اختلاف پتانسیل کل صادر می باشد. بستن مقاومتها به صورت مختلط ( سری و موازی ) برای نمونه 2 مقاومت را به صورت موازی بسته و مقاومت سوم را به صورت سری به مقاومت سوم میبندیم، بور به وسیلهی آوومتر اختلاف پتانسیل مقاومتهای موازی را اندازه و بعد اختلاف پتانسیل دو سر مقاومت سری را اندازه گرفته و بعد اختلاف پتانسیل کل مدار را اندازه گرفته و میبینیم که اختلاف پتانسیل مقاومت سری به اضافه مقاومت موازی برابر اختلاف پتانسیل کل مدار میشود.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 8
اندازه گیری مقاومت به روش پل و تستون و پل تار
منظور آزمایش :
شناسایی پل و تستون و پل تار و اندازه گیری مقاومت به وسیله آنها
وسایل مورد نیاز :
یک منبع تغذیه جریان مستقیم – یک عدد آوومتر – یک جعبه مقاومت یا (مقاومتهای مختلف ) کلید قطع و وصل – مقاومت مجهول – مقاومت معلوم – پل تار – سیمهای رابط
مقدمه :
پل وتستون که برای اندازه گیری سریع و دقیق مقاومت مجهول یک جسم و یا یک وسیله الکتریکی متداول است . این مقدار در سال 1843 بوسیله دانشمند انگلیسی (چارلز وتستون) طرح گردید . مقاومتهای R1 و R2 معلوم بوده و مقدار مقاومت R3 را می توان بدلخواه تغییر داد و منظور اندازه گیری مقاومت RX می باشد ( برای انجام آزمایش و بکار بردن پل وتستون باید پس از سوار نمودن مدار آنقدر مقاومت متغیر را تغییر داده تا آمپرمتر A درجه صفر را نشان دهد)
( برای به خاطر سپردن این رابطه دقت کنید که حاصلضرب مقاومتهای روبرو مساوی هستند ) بنابراین با داشتن مقادیر مقاومت های R1 و R2 و R3 مقدار مقاومت مجهول RX را می توان معین نمود.
پل تار :
پل وتستون را می توان به صورت ساده تری که پل تار نام دارد سوار نمود . شکل(2) یک پل تار را نشان می دهد که یک رشته سیم یکنواخت است و معمولا یک متر می باشد .
برای اندازه گیری مقاومت مجهول با استفاده از پل تار مداری مطابق شکل (3) می بندیم .
R مقاومت معلوم و RX مقاومت مجهولی است که باید اندازه گیری شود.
برای کار با پل تار لغزنده را که می تواند روی سیم حرکت کند ، بقدری در طول سیم حرکت می دهند تا از آمپرمتر جریانی عبور نکند در این صورت مقاومتهای R و RX و سیم های L1 و L2 مانند چهار شاخه پل و تستون هستند که به حالت تعادل باشند و بنابر رابطه ای که اثبات آن در پل وتستون گذشت
روش آزمایش :
1- مدار شکل (1) را با قرار دادن دو مقاومت ثابت معلوم بجای R1 و R2 ( مقاومت بزرگتر را R2 فرض کنید ) و نصب جعبه مقاومت و یا مقاومتهای مختلف به جای R3 و مقاومت مجهول بجای R2 سوار نموده و سپس کلید S را بسته و مقاومت متغیر را آنقدر تغییر دهید تا جریانی از آمپرمتر عبور نکند.
2- مقدار مقاومت R3 را خوانده و با قرار دادن در رابطه (7) ، مقاومت مجهول را پیدا کنید .
3- این آزمایش را برای دو مقاومت مجهول دیگر تکرار کرده و نتایج را در جدول شماره (1) درج نمائید .
پل تار :
4- مدار شکل (3) را با قرار دادن مقاومت 10 اهمی بجای R و مقاومت مجهولی بجای RX سوار نموده و سپس آنقدر محل لغزنده را در روی سیم هادی تغییر دهید تا آمپرمتر جریانی را نشان ندهد.
5- دو طول L1 و L2 را در روی خط کش اندازه گرفته و با قرار دادن در رابطه (10) مقدار مقاومت مجهول را پیدا نمائید .
6- این آزمایش را برای همان مقاومتهای مجهول که در آزمایش قبل بکار بردید تکرار کرده و نتایج را در جدول شماره (2) بنویسید .
7- برآورد بیراهی ها
با در نظر گرفتن دقت وسائل سنجنده ای که در این آزمایش به کار رفته است بیراهی نسبی را در اندازه گیری یک مقاومت به روش پل وتستون و یک مقاومت به روش پل تار محاسبه نمائید .
به پرسشهای زیر پاسخ دهید :
1- نشان دهید هنگامیکه پل وتستون در حال تعادل باشد و جریانی از آمپرمتر عبور ننماید اگر جای آمپرمتر و منبع تغذیه را با هم عوض کنیم در این حالت نیز جریانی از آمپرمتر عبور نخواهد کرد.
2- در صورتیکه رابطه پل وتستون را ثابت شده قبول کنیم چگونه از این رابطه به رابطه پل تار می رسید و با زبان ساده تر ،رابطه پل تار را با کمک رابطه پل وتستون بدست آورید.
3- الف : آیا در شکل (4) جریانی از آمپرمتر عبور می کند ، چرا ؟
ب: اگر بخواهیم از آمپرمتر جریانی عبور نکند چه تغییری در این شکل باید بدهیم ؟
هدف آزمایش :
1) مطالعه قانون اهم در یک مدار ساده الکتریکی
2) بررسی رابطه بین مقاومت و جریان در مدارهایی که شامل تعدادی مقاومت بطور سری و موازی میباشد.
تئوری آزمایش : 1) اندازهگیری اختلاف پتانسیل و جریان در یک مدار الکتریکی 2) بستن مقاومتها بطور سری و موازی 3) بستن مقاومتها به صورت مختلط 4) تحقیق قانون اهم
وسایل آزمایش : یک منبع تغذیه با ولتاژ متغیر- آوومتر A.V.Oـ 3 مقاومت با مقادیر متفاوت ـ چند رشته سیم رابط.
روش آزمایش : به وسیله دستگاه A.V.O سنجی که در اختیار داریم میتوان اختلاف پتانسیل الکتریکی بر حسب ولت V و مقدار مقاومت را بر حسب اهم ( ) و بر شدت جریان را برحسب آمپر (A ) نشان میدهد.
با عوض کردن سیمهای وصل شونده به دستگاه میتوانیم آمپرمتر یا ولتمتر یا اهم متر داشته باشیم که برای اندازهگیری اختلاف پتانسیل بین دو نقطه ولتمتر باید به صورت موازی بین 2 نقطه و برای اندازهگیری شدت جریان، آمپرمتر باید به صورت سری در مدار قرار گیرد.
بستن مقاومتها به صورت سری و موازی :
اگر دو سر ابتدا و انتهایی 2 مقاومت را به منبع تغذیه وصل کنیم گوییم مقاومتها به صورت موازی بسته شده است که در این حالت اختلاف پتانسیل 2 در تمام مقاومتها با سیم برابر میباشد و شدت جریان کل مدار برابر با مجموع شدت جریان 2 در تکتک مقاومتها میباشد و اگر مقاومتها را پشت سر هم به هم وصل کنیم و بعد سر ابتدا و انتهایی را به منبع تغذیه وصل کنیمم در این حالت گوییم مقاومتها را به صورت سری بستهایم و در این
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 7
اندازه گیری بار الکترون توسط میلیکان
تاریخچه الکتریسته
علم الکتریسته به دوران باستان بر میگردد که تاریخ دقیق آن مشخص نیست. اما برخی تولد آن را به مشاهده معروف تالس ملطی (Thales of Miletus) در 600 سال قبل از میلاد ارجاع میدهند. که در آن زمان تالس متوجه شد که یک تکه کهربای مالش داده شده خرده های کاه را میرباید، یا اینکه در یک تجربه عادی دیدهایم که وقتی یک شانه کائوچویی سخت را با پارچه پشمی مالش دهیم، شانه ریزههای کوچک کاغذ را جذب میکند. در اثر مالش این دو جسم به یکدیگر هم کائوچو و هم پشم خاصیت جدیدی پیدا میکنند. یعنی باردار میشوند، از این آزمایش برای معرفی مفهوم بار الکتریکی استفاده میشود.
منشأ الکتریسته :
طبق نظریه الکترونی اتم ، یک اتم از ذرات کوچکتری به نامهای الکترون ، پروتون و نوترون تشکیل شده است، که الکترونها دارای بار منفی و پروتونها دارای بار مثبت و نوترونها بدون بار هستند. تعداد الکترونها و پروتونهای یک اتم در حالت عادی برابر است. بنابراین ، اتم در حالت عادی از نظر بار الکتریکی خنثی است.در اثر تماس ، نزدیکی و یا برخورد اجسام بر همدیگر میان اجسام اندازه حرکت خطی مبادله میشود. در اثر تغییر اندازه حرکت ، نیروهایی ایجاد میشود. چگونگی شکل گیری این نیروها به ساختار اتمی تشکیل دهنده اجسام برمیگردد. به عبارتی این نیروها منشأ الکتریکی و مغناطیسی دارند.در اثر مالش اجسام بر همدیگر ، جسمی که در اتمهای تشکیل دهنده خود اتمی از نوع دهنده الکترون داشته باشد، الکترون خود را به جسم دیگر که نسبت به آن خاصیت الکترونگاتیوی بیشتری دارد میدهد و مبادله الکترون بین اتمها و در نهایت اجسام منجر به تولید الکتریسته میشود.
تقسیمات الکتریسته :
الکتریسته ساکن :
اگر یک میله شیشهای را به پارچه پشمی مالش دهیم، هر دو جسم الکتریسته دار میشوند. زیرا شیشه تعدادی الکترون از دست میدهد و پارچه الکترون میگیرد. پس شیشه دارای بار مثبت و پارچه به همان مقدار دارای بار منفی میگردد. بار ایجاد شده در شیشه و پارچه در محل تماس باقی میماند.
الکتریسته القایی :
اگر میله با بار منفی را به دو کره فلزی بدون باری که باهم در تماس بوده و توسط پایههای عایقی از زمین جدا شده باشند، نزدیک کنیم. قبل از دور کردن میله ، بدون دست زدن به پوسته کرات آنها را از هم جدا کنیم. کره نزدیک به میله دارای بار مثبت و کره دور از آن دارای منفی خواهد بود، که مقدار بار روی کرات برابرند. این نوع باردار شدن را باردار شدن به روش القا یا مجاورت مینامند.
الکتریسته جاری :
عبور پیوسته الکترون از یک هادی را الکتریسته جاری گویند. خلاف جهت حرکت الکترون را جهت قراردادی جریان الکتریکی (جریان الکترونی) انتخاب میکنند. عامل برقراری جریان ثابت ، اختلاف پتاسیل ثابتی میباشد، که در دو سر هادی برقرار است و وسایل تولید این اختلاف پتاسیل ثابت پیلهای شیمیایی ، ژنراتورها و دیناموها میباشند.
اجسام رسانا و نارسانا :
بعضی از اجسام مانند فلزات که الکتریسته را به خوبی از خود عبور میدهند، رسانا نامیده میشوند. در این نوع اجسام الکترونهای آزاد اتم به راحتی در شبکه بلوری اجسام حرکت میکنند و عمل رسانایی را انجام میدهند.اجسامی که الکترونهای آزاد ( برای هدایت الکترون ) ندارند و نمیتوانند الکتریسته را از خود عبور دهند، نارسانا یا عایق نامیده میشود. باید توجه نمود که رسانایی یا نارسانایی یک کمیت نسبی است.
توزیع بار الکتریکی در اجسام رسانا :
اگر جسم رسانایی بر روی پایه عایقی قرار گیرد و در اثر مالش باردار شود، بار تولید شده در آن در سطح خارجیاش پخش میشود، بطوری که در لبهها و قسمتهای نوک تیز چگالی سطحی بار بیشتر از سایر قسمتها میباشد.
بار الکتریکی :
میزان باری که ذره بنیادی الکترون دارد را مبنا قرار میگیرد و چون مبادله بار از طریق الکترون صورت میگیرد شمارش تعداد الکترونهای مبادله شده بار الکتریکی جسم را به ما میدهد. به عبارتی اگر جسمی n تا الکترون دریافت نماید، بار الکتریکی آن از نوع منفی بوده (چون الکترون گرفته) و مقدارش n برابر بار الکترون خواهد بود. اگر بار الکتریکی را با علامت q و بار الکترون را با e نمایش دهیم، مقدار بار الکتریکی هر جسم از رابطه q = ne تبعیت مینماید. واحد بار الکتریکی به افتخار اولین قانون الکتریسته (قانون کولن) که آقای کولن کشف نمود، کولن نام دارد. بار الکتریکی یک الکترون در دستگاه برحسب کولن برابر است با:
e = 1.06 x 10-19 c
اثر بارهای الکتریکی بر همدیگر :
بر طبق قانون کولن دو بار الکتریکی همنام همدیگر را دفع و دو بار الکتریکی غیر همنام همدیگر را جذب میکنند. مقدار نیروی جاذبه یا دافعه بین بارها بر طبق قانون کولن با حاصلضرب اندازه بارها نسبت مستقیم و با مجذور فاصله بارها نسبت عکس دارد. این نیرو به جنس محیطی که بارها در آن واقع شده نیز وابسته است (بستگی نیرو به
برای اندازه گیری بار الکترون در آزمایش میلیکان بار یونهایی اندازه گیری می شود که در اثر تخلیه الکتریکی در درون گازها بوجود می آیند . برای انجام تخلیه الکتریکی در این طریقه از اثر فتوالکتریک استفاده می شود . اشعه x دارای طول موج بسیار کوتاه و در نتیجه انرژی زیاد است و هنگام تابش به یک گاز یونش ایجاد می نماید . جهت اندازه گیری بار یونهایی که به این ترتیب بوجود می آیند از پدیده مهمی استفاده می شود و آن اینستکه اگر در شرایط مناسب قطراتی از مایع در یک محیط یونی گازی شکل وارد شوند مرکز تجمع یونها خواهند شد و هر قطره تعدادی از یونها را تحت تاثیر نیروهای سطحی بخود جلب و جذب می نماید ذره ای جدید بدست می آید که بار الکتریکی آن مساوی یا چند برابر بار یونها خواهد بود و اساس آزمایش میلیکان عبارتست از مطالعه حرکت این قطره ها تحت اثر یک میدان الکتریکی
دستگاهی که در آزمایش میلیکان بکار می رود عبارتست از یک اطاقک پر شده از هوا یا گازی دیگر . در بالای اطاقک قطره چکان مخصوص قرار دارد که مایع مورد آزمایش را بصورت قطره های بسیار ریز در فضای داخلی اطاق وارد می نماید در زیر این قطره چکان و در قسمت پایین اطاقک یک سطح با دو جوشن p1 و p2 قرار دارد جوشن بالاییp1 دارای گذرگاهی برای عبور قطره ها می باشد . قطره ها می توانند ضمن سقوط از این گذرگاه بگذرند وداخل فضای خازن شوند در پایین اطاقک و در هر طرف پنجره ای وجود دارد . از یکی از این دو پنجره مثلا پنجره F1 اشعه X بداخل اطاقک تابیده می شود تا گاز داخل اطاقک یونیزه شود پنجره دیگر F2 برای روشن کردن داخل اطاقک می باشد از همین قسمت بوسیله یک تلسکوپ می توان داخل اطاقک را تماشا کرد و حرکت قطره را بدقت ملاحظه کرد از طرف دیگر مجموع دستگاه فوق بیک پمپ خلا و یک فشار سنج وصل شده تا بتوان فشار گاز داخل اطاقک را کنترل و تنظیم نمود . برای اینکه بتوان در درجه حرارت ثابت این آزمایش را انجام داد اطاقک را در داخل یک حمام روغنی قرار می دهند.
در ابتدا در این آزمایش از قطره های آب استفاده می شده ا ولی از آنجاییکه قطره های آب در اثر تبخیر وزن و حجمشان تغییر می کرد بجای آب از روغنهای مایع استفاده می شود بدیهی است هر چه قطره ها ریزتر انتخاب شوند وزن آنها کمتر و سرعت سقوط کوچکتر خواهد بود و بنابراین حرکت آنها با دقت بیشتری مورد مطالعه قرار خواهد گرفت .
در صورتیکه بین دو جوشن خازن اختلاف پتانسیلی برقرار نکرده باشند قطره ها پس از خروج از قطره چکان سقوط آزاد را شروع خواهند نمود در این حالت هر قطره تحت اثر دو نیرو قرار می گیرد یکی نیروی وزن ظاهری قطره که سبب سقوط قطره از بالا به پایین می شود دیگری نیروی مقاومت محیطی که قطره در آن سقوط می کند . نیروی مقاومت محیط در جهت عکس نیروی اول می باشد . نیروی مقاومت محیط بستگی بسرعت سقوط ویسکوزیته محیط و شعاع قطره دارد. اگر قطره باندازه کافی ریز باشد بزودی نیروی وزن ظاهری قطره و نیروی مقاومت محیط با یکدیگر برابر شده در نتیجه قطره بسرعت حد خواهد رسید . یعنی از آن لحظه به بعد با سرعت ثابت سقوط خواهد کرد و حرکتی یکنواخت خواهد داشت .
حال اگر بین دو جوشن p1 و p2 خازن بوسیله یک باطری و یا وسیله دیگری اختلاف پتانسیل معینی برقرار کنیم یک میدان الکتریکی بوجود می آید و قطره باردار از گذرگاه جوشن p1 وارد فضایخازن شود نیرویی از طرف میدان بر قطره وارد می شود و سبب می گردد که حرکت آن بر حسب اینکه نیروی وارده در جهت یا در خلاف جهت نیروی وزن اثر کند تندتر یا کندتر شود. بنابراین ملاحظه می شود که خازن وسیله خوبی برای تغییر دادن سرعت سقوط قطره می باشد بطوریکه حتی ممکن است سرعت قطره را به صفر رسانید که در این صورت قطره در میدان دید تلسکوپ بخوبی قابل مشاهده می باشد . اکنون آنچه را در فوق ذکر نمودیم با محاسبات مربوطه تکرار می کنیم .
1) سقوط آزاد اگر جرم قطره m و جرم هوای هم حجمش m' باشد نیروی وزن قطره که سبب سقوط آن می شود برابراست با :
P = (m – m' ) g
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 23
1-4-2- اندازه کیفیت علوفه
به طور کلی سه روش برای اندازه گیری پارامترهای تعیین کننده کیفیت علوفه وجود دارد، (نظری سامانی، 1378):
روشهای آزمایشگاهی (In-Vitro)
میکروبیولوژی (In-Siro)
بیولوژی (In-Vivo)، (روش مستقیم).
در روش مستقیم با حضور دام و خوراندن علوفه به آن کیفیت مورد ارزیابی قرار می گیرد آماده سازی و دورة آزمایش وقت گیر و پرهزینه است، از سوی دیگر روش میکروبیولوژی مستلزم امکانات ویژه است لذا روشهای آزمایشگاهی را معمولاً بعنوان کاراترین روشها مورد استفاده قرار می دهند. در این روش مقدار کمی علوفه جهت انجام آزمایشات و تعیین پارامترهای تعیین کننده کیفیت علوفه مورد نیاز است. باید توجه داشت که در روشهای آزمایشگاهی اندازه گیری کلیه ترکیبات شیمیایی پرهزینه و وقت گیر است لذا باید فاکتورهایی را مد نظر قرار داد. که از یک سو هزینه و زمان کمتری برای انجام آن صرف گردد و از سوی دیگر برآورد خوبی از کیفیت علوفه ارائه دهد، فاکتورهای مورد توجه در این راستا عبارتند از:
1-4-2-1- پروتئین خام (CD)
پروتئین ها نخستین ماکرو مولکولهای حیاتی هستند که مورد شناسایی قرار گرفته اند و متنوع ترین پلی مرهای زیستی در طبیعت را نیز شامل می شوند که بیش از 50 درصد وزن خشک سلولها را تشکیل می دهند.
پروتئ ین خام مجموع پروتئین های واقعی و نیتروژن غیر پروتئینی است. در واقع برای اندازه گیری پروتئین خام ابتدا مجموع نیتروژن در گیاه محاسبه شده و با حاصلضرب آن در عدد 25/6 مجموع پروتئین خام به دست می آید، (جی می، 1996). «N% × 6.25 = CP%»
میزان پروتئین خام در مراحل مختلف رشد گیاه متغیر است و بطور کلی با افزایش سن گراس ها و لگومها از میزان پروتئین خام علوفه آنها کاسته می شود ولی بر میزان فیبر افزوده می گردد و لذا زمان برداشت علوفه بر میزان پروتئین خام تأثیر زیادی دارد. در گراسها حداکثر پروتئین خام در ظهور خوشه و در گلومها هنگامی است که 15-10 درصد به گل نشسته اند، (ارزانی، 1377).
1-4-2-2- قابلیت هضم ماده خشک گیاهی (DMD)
هضم عبارتست از مجموعه ای از اعمال حیاتی شامل فعالیتهای مکانیکی، شیمیایی و میکروبی برروی مواد غذایی مصرف شده که سبب شکسته شدن مولکولهای بزرگ مواد غذایی به مواد ساده تر شده و منجر به قابل جذب شدن آنها می گردد. بنابراین هضم پذیری عبارتست از تفاضل بین مقدار مادة مغذی در خوراک و مقدار مادة مغذی در ضایعات دفعی حیوانات؛ حال اگر مقدار هضم شده نسبت به مقدار خورده شده سنجیده شود قابلیت هضم آن ماده به دست می آید، (قابلیت هضم ظاهری). هضم پذیری علوفه رابطه مستقیمی با ویژگیهای دیواره سلولی دارد چرا که ساختار شیمیایی دیواره سلولی با رشد گیاهان تغییر نموده و با کهولت گیاه محتویات فیبر در کل گیاه افزایش می یابد، (پینکرتون، 1996). دیواره سلول در ابتدای تشکیل بسیار نازک است ولی با رشد سلول و تشکیل لایه های جدیدی از مادة دیواره ای بتدریج بر ضخامت آن افزوده می شود، (ابراهیم زاده، 1377). دیواره سلولی عمدتا از کربوهیدراتهای ساختمان تشکیل یافته که قابلیت هضم آنها بر حسب میزان لیگنینی شدن تغییر می یابد بنابراین با پیشرفت مراحل رشد گیاه که افزایش نسبت کربوهیدراتهای ساختمانی را به دنبال دارد از قابلیت هضم علوفه کاسته می شود. درصد ماده خشک قابل هضم (DMD) بر اساس فرمول پیشنهادی اودی و همکارانش (1983) محاسبه می گردد. در این روش بری محاسبه DMD از دو فاکتور «درصد ازت علوفه» و «دیوارة سلولی منهای همی سلولز» استفاده می گردد.
1-4-2-3- ماده خشک
اندازه گیری ماده خشک از اهمیت به سزایی در مطالعه ارزش غذایی برخوردار است به گونه ای که ماده خشک را اساس تنظیم جیره غذایی دام می دانند، (هوروکز والنتاین، 1999). اندازه گیری ماده خشک بر اساس تخمین میزان رطوبت ماده انجام می پذیرد. رطوبت شامل آب و برخی از مواد فرار علوفه (نظیر اسیدها و بازها) است، مک دونالد، 1998). جهت اندازه گیری ماده خشک، نمونه ها را به مدت 24-12 ساعت در دمای 105-100 درجه سانتی گراد قرار میدهند و کاهش وزن آنها را اندازه گیری می نمایند، (نیکخواه، 1374).
1-4-2-4- خاکستر
خاکستر همان موالد غیرآلی نمونه می باشد که پس از سوزاندن آن باقی می ماند. بطور کلی شامل مواد معدنی به شکل اکسیدها، کربناتها و سولفاتها می باشد و درصد کل وزنی خاکستر بالاتر از مجموع مواد معدنی است که در نمونه وجود دارد، هرچند برخی لز موادی که به سرعت تبخیر می شوند در خاکستر وجود ندارند، (آندروود و ساتل 1999).
1-3-2-5- دیواره سلول عاری از همی سلولز (ADF)
امروزه در بیشتر آزمایشات در ارزشیابی علوفه تعیین دیواره سلولی از همی سلولز مورد توجه قرار دارد، (هال، 2001). دیواره سلولی منهای همی سلولز و دیواره جهت تفکیک دقیقتر هیدارتهای کربن نامحلول ابتدا توسط ون سوست (1963) مورد توجه قرار گرفتند. از آنجا کگه دیواره سلولی با