لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 4
انرژی هسته ای
دل هر ذره را که بشکافى…
مهدى صارمى فراتم در زبان یونانى به معنى تقسیم ناپذیر است. این ایده، زاده تفکر دموکریتوس فیلسوف یونانى در ۲۳۰۰ سال پیش است. براى او این تصور محال بود که اجسام مادى بتوانند بى حد و حصر تقسیم شوند. اما «جان دالتون» شیمیدان بود که نخستین نظریه اتمى نوین را ارائه کرد. دالتون که کارش پژوهش در مورد هواشناسى بود، به ترکیب گازها علاقه مند شد و خیلى زود ایده تشکیل گازها از واحدهاى کوچک غیرقابل تقسیم در ذهنش شکل گرفت. او این نظریه را در سال ۱۸۰۸ تحت عنوان «سیستم جدید فلسفه شیمى» منتشر کرد. تا دهه پایانى قرن نوزدهم دو جنبه اساسى فیزیک کلاسیک یعنى مکانیک کلاسیک و الکترومغناطیس به خوبى شناخته شده بود و دانشمندان گمان مى کردند که طبیعت براساس دو نیروى گرانشى و الکترومغناطیسى ساخته شده است. درست در همین زمان بود که پدیده هایى مشاهده شد که طى دهه هاى ابتدایى قرن بیستم منجر به بزرگترین انقلاب هاى تاریخ علم یعنى نسبیت عام و مکانیک کوانتومى شدند.
2cb8c11db98bfdd5441da3290007a352
در سال ۱۸۹۶ آنتوان هانرى بکرل (Becquerel) فیزیکدان فرانسوى که از کشف اشعه X به وسیله رونتگن مطلع شده بود، به دنبال یک رشته آزمایش روى سنگ معدنى به نام اورانیل، فعالیت هاى پرتوافشانى خود به خودى خاصى را کشف کرد و آن را «رادیواکتیویته» نام گذاشت. پس از او مارى و پى یر کورى هم دو عنصر رادیوم و پولونیوم را کشف کردند که خاصیت رادیواکتیویته بسیار بیشترى داشتند. اما بیشتر پژوهش ها روى رادیواکتیویته به وسیله لرد رادرفورد انجام شد. او کشف کرد که خاصیت رادیواکتیویته ناشى از پراکنش سه نوع اشعه است:۱- اشعه آلفا که توسط یک برگ کاغذ متوقف مى شود. بار آن مثبت است و در حقیقت همان یون هاى هلیوم دو بار مثبت یا هسته اتم هلیوم است.۲- اشعه بتا که از ورقه چند میلى مترى آلومینیوم رد مى شود. بار آن منفى است. ماهیت این اشعه الکترون هاى پرانرژى است.۳- اشعه گاما که از صفحات سربى به ضخامت ده ها سانتى متر هم عبور مى کند، از لحاظ الکتریکى خنثى است. این اشعه فوتون هاى پرانرژى با طول موج بسیار کوتاه است.دانشمندان با توجه به مجموعه آزمایش هاى رادرفورد به این نتیجه رسیدند که اتم ها برخلاف نامشان از اجزاى کوچکترى هم تشکیل شده اند.
هسته
افتخار کشف هسته اتم نیز از آن رادرفورد است. او با کمک دو دانشجویش به نام گایگر و مارسدن با انجام آزمایشى که «پراکندگى» نام دارد، به وجود هسته پى برد. رادرفورد فکر مى کرد که اتم ها مثل مدل کیک کشمشى تامسون از تعدادى الکترون تشکیل شده اند که در یک فضاى پیوسته با بار مثبت قرار دارند. به همین دلیل ذرات آلفا را به سمت ورقه نازکى از طلا پرتاب کرد. اما پراکندگى این ذرات از هسته طلا نشان داد که بارهاى مثبت در ناحیه بسیار کوچکى در وسط اتم متمرکز شده اند. شعاع اتم حدود یک آنگسترم (۱۰-۱۰ متر) است ولى اندازه هسته حدود ۱۰ فرمى (۱۴ -۱۰ متر) است.
نیمه عمر
پس از اینکه رادرفورد ماهیت تشعشع رادیواکتیو را کشف کرد، دانشمندان پى بردند که رادیواکتیویته به علت تلاشى خودبه خود هسته هاى سنگین و تبدیل آنها به هسته هاى سبک تر است. در حین این تبدیل، ذرات آلفا، بتا و گاما ساطع مى شود. در حقیقت پس از خارج شدن این ذرات از هسته، ماهیت آن تغییر مى کند. تعداد هسته هایى که در هر لحظه متلاشى مى شوند با تعداد هسته ها در آن لحظه نسبت مستقیم دارد. زمانى را که نیمى از هسته هاى ماده ابتدایى متلاشى مى شوند، نیمه عمر ماده مى گویند. یعنى اگر در ابتدا یک گرم ماده رادیواکتیو داشته باشیم، پس از یک نیمه عمر نصف و پس از دو نیمه عمر، یک چهارم و پس از سه نیمه عمر، یک هشتم مقدار اولیه را خواهیم داشت. نیمه عمر مواد مختلف متفاوت است و از چند میلیاردیوم ثانیه تا چندین میلیارد سال تغییر مى کند. معمولاً هرچه نیمه عمر بیشتر باشد، انرژى ساطع شده از تلاشى رادیواکتیویته کمتر است. نیمه عمر اورانیوم ۵/۴ میلیارد سال است. نیمه عمر رادیوم ۱۵۹۰ سال و نیم عمر راکتانیوم کمتر از ۱۰ هزارم ثانیه است.
درون هسته
مدل اتمى رادرفورد بیانگر این مطلب بود که هسته در وسط اتم داراى بار مثبت است و الکترون ها با بار منفى در اطراف آن قرار دارند. مدل اتمى بور هم مدل رادرفورد را کامل کرد و سازوکار منظمى را براى استقرار الکترون ها در اطراف هسته تدوین کرد. اما تفسیر و توجیه رادیواکتیویته تردیدى به جاى نمى گذارد که هسته ها خود مجموعه مکانیکى پیچیده اى هستند که از اجراى سازنده متفاوتى تشکیل شده اند. این واقعیت که وزن اتمى ایزوتوپ هاى اتم هاى مختلف (بعضى از اتم ها درحالى که جرم اندکى متفاوت با هم دارند، خواص شیمیایى کاملاً یکسانى دارند، به این اتم ها ایزوتوپ مى گویند.) با اعداد صحیح (یا لااقل بسیار نزدیک به عدد صحیح) بیان مى شوند، نشان مى دهد که پروتون ها (حاملان بار مثبت) باید نقش یکى از اجزاى اصلى سازنده هسته را داشته باشند. ابتدا فرض مى کردند که درون هر هسته علاوه بر پروتون، الکترون هم هست. یعنى مثلاً کربن که جرم ۱۲ و بار ۶+ دارد، درون هسته خود ۱۲ پروتون و ۶ الکترون دارد و علاوه بر آن در بیرون هسته هم ۶ الکترون به دور آن مى چرخند اما این راه حل از لحاظ نظرى مشکلات عدیده اى را به همراه داشت. اما رادرفورد و بور پیشنهاد کردند که علاوه بر پروتون ذره دیگرى هم جرم آن ولى بدون بار درون هسته است. آنها نام نوترون را براى آن انتخاب کردند و این ذره در سال ۱۹۳۲ توسط چادویک کشف شد.
اسپین
اتم ها در اثر گرفتن انرژى، تابش مى کنند. این تابش ناشى از این است که الکترون هاى اطراف هسته، انرژى مى گیرند و بعد این انرژى را به صورت یک فوتون با طول موج معین بازمى تابانند. اما خود این طیف در مجاورت میدان الکترومغناطیسى، به چند طول موج جدا از هم تفکیک مى شود. علت این است که الکترون ها در اتم، اندازه حرکت زاویه اى هم دارند. اشترن و گرلاخ نشان دادند که الکترون ها علاوه بر این اندازه حرکت زاویه اى، خاصیت دیگرى هم دارند که فقط در حضور میدان مغناطیسى آن را بروز مى دهند. به دلیل شباهت این خاصیت به اندازه حرکت زاویه اى، نام آن را «اندازه حرکت زاویه اى ذاتى» یا اسپین نهادند. بعدها ثابت شد که علاوه بر الکترون، باقى ذرات بنیادى هم اسپین دارند. مهمترین ویژگى اسپین این است که یک خاصیت کاملاً کوانتومى است و مشابه کلاسیک ندارد. ذراتى که اسپین نیم صحیح دارند (یک دوم، سه دوم، …) فرمیون مى نامند، مثل الکترون، پروتون، نوترون و… این ذرات تشکیل دهنده ماده هستند. در مقابل ذراتى که اسپین صحیح دارند(صفر، ۱ ، ۲ و…) بوزون گفته مى شوند، مثل فوتون، مزون، گلوتون و… این ذرات حامل نیروها هستند.
ایزواسپین و نیروى هسته اى
هنگامى که نوترون توسط چادویک کشف شد، این واقعیت مسلم شد که علاوه بر نیروى گرانش و الکترومغناطیسى، حداقل یک نیروى دیگر در طبیعت وجود دارد و این نیرو است که عامل پیوند نوکلئون ها (پروتون ها و نوترون ها) درون هسته است. زیرا در صورت عدم وجود این نیرو، در اثر دافعه شدید بارهاى مثبت پروتون ها بر هم، هسته از هم مى پاشد. از این مثال برمى آید که اولاً این نیرو باید جاذبه اى باشد تا در مقابل دافعه پروتون ها بایستد و ثانیاً برد آن باید خیلى کوتاه باشد و از ابعاد هسته بیشتر نباشد. زیرا نیروى الکترومغناطیسى (در مدل بوهر) آرایش الکترون ها در مدارهاى اتمى را به خوبى توضیح مى داد. اما واقعیت مهم و جالب تر این است که باید براى این نیرو، پروتون و نوترون به یک شکل دیده شوند و فارغ از اختلاف بار الکتریکى این دو ذره یک شکل باشند. هایزنبرگ با استفاده از این واقعیت و با ایده گرفتن از نظریه اسپین، مفهوم ریاضى جدیدى به نام «ایزوتوپ اسپین» یا ایزواسپین را معرفى کرد. او پیشنهاد کرد که همان طور که در حضور میدان الکتریکى خطوط طیفى یکى هستند و با ظهور میدان مغناطیسى به چند خط دیگر شکافته مى شوند، نوکلئون ها (پروتون و نوترون) هم در حقیقت در مقابل نیروى هسته اى یک ذره هستند اما هنگام ظهور نیروهاى الکترومغناطیسى به دو ذره با ایزواسپین متفاوت تبدیل مى شوند.
نیروى هسته اى قوى
یوکاوا فیزیکدان ژاپنى در سال ۱۹۳۵ براى توضیح نیروى هسته اى گفت: این نیرو باید در اثر مبادله ذره اى به نام پیون (مزون پى) بین نوکلئون ها به وجود بیاید. چون این ذره نسبتاً سنگین است، اصل عدم قطعیت هایزنبرگ ایجاب مى کند که برد این نیرو کوتاه باشد، به این ترتیب ایده مبادله ذره، توانست تمام ویژگى هاى نیروى هسته اى را توضیح بدهد. پیون ها هم مثل نوکلئون ها براى نیروى هسته اى یک ذره به شمار مى روند اما ایزواسپین آنها یک است یعنى در مقابل نیروى الکترومغناطیسى ۳ حالت پیون با بار مثبت و با بار منفى و خنثى را دارند. یک پروتون، با از دست دادن یک پیون مثبت به نوترون تبدیل مى شود و این پیون مثبت خود یک نوترون دیگر را به پروتون تبدیل مى کند. دوتا نوترون یا دوتا پروتون هم مى توانند با هم پیون خنثى (صفر) مبادله کنند. یک نوترون هم با از دست دادن یک پیون منفى به پروتون تبدیل مى شود و این پیون منفى با یک پروتون دیگر، یک نوترون تولید مى کند. به این ترتیب با مبادله این ذرات، نوکلئون ها در هسته پایدار مى مانند.
نیروى هسته اى ضعیف
یکى از ویژگى هاى بارز نوترون نیم عمر آن است. نوترون در حالت آزاد پس از ۱۸ دقیقه متلاشى و به یک پروتون و یک الکترون تبدیل مى شود. این مدت بسیار طولانى تر از تمام پدیده هایى است که با نیروى قوى سروکار دارد. نیرو هاى الکترومغناطیسى هم بر نوترون بدون بار عمل نمى کنند. پس واضح است که تلاشى نوترون، ناشى از یک نیروى جدید در طبیعت است. به علت ضعیف بودن این نیرو نسبت به نیروى هسته اى آن را نیروى هسته اى ضعیف نام گذاشتند. تلاشى هسته که نتیجه آن تولید پرتو بتا است هم ریشه در این نیرو دارد.• شکافتفرمى در فاصله کمى بعد از کشف نوترون در سال ۱۹۳۲ بررسى هسته اتم هاى سنگین بمباران شده به وسیله نوترون را آغاز کرد و از انجام این آزمایش ها با اورانیوم نتایج عجیبى به دست آمد. اتوهان و اشتراسمن در سال ۱۹۳۹ این معضل را حل کردند.آنها کشف کردند وقتى که اورانیوم با نوترون بمباران مى شود، هسته هایى مثل باریو تولید مى شوند که عدد اتمى آنها خیلى کوچک تر از عدد اتمى اورانیوم است. لیز میتنر فیزیکدان آلمانى که در سوئد زندگى مى کرد، این پدیده را به دقت بررسى کرد و نام شکافت را براى آن انتخاب کرد. بور و ویلر با ارائه مقاله اى فهم نظرى شکافت را به طور کامل ممکن کردند و پس از ارائه مقاله آنها کلیه پژوهش هاى علمى در مورد شکافت هسته اى تا به امروز جزء اسناد فوق العاده سرى، طبقه بندى مى شود.
گداخت
هسته هاى خیلى سبک مثل هیدروژن یا هلیوم انرژى بستگى کمترى نسبت به هسته هاى سنگین دارند. اگر دو هسته سبک در هم ادغام شوند، هسته سنگین ترى را به وجود مى آورند و مقدار زیادى انرژى به صورت انرژى جنبشى آزاد مى شود. براى انجام گداخت باید هسته ها را بسیار به هم نزدیک کرد. دافعه الکترواستاتیکى مانع بزرگى براى این فرآیند است. این واکنش با افزایش انرژى جنبشى هسته هاى اولیه انجام مى شود. دسترسى به چنین انرژى هایى در شتاب دهنده ها آسان است اما براى اینکه این واکنش خودنگهدار باشد، به دمایى حدود ۱۰۸ کلوین نیاز است. (دماى سطح خورشید شش هزار کلوین است.) چنین وضعیتى تنها در حالت پلاسمایى ماده پیش مى آید که در آن هسته ها و الکترون ها از هم جدا هستند. پژوهش ها به روى گداخت هسته اى همچنان ادامه دارد و قرار است در رآکتور Iter در فرانسه براى نخستین بار چنین فرآیند خود نگهدارى اى ایجاد شود. اما شاید رسیدن به این هدف چند دهه طول بکشد.منابع:۱۹۹۴ ۱-H.Frauenfeldor, E.Henley, Subatomic Physics, ۱۹۸۷ ۲-D.Griffithe, Elementary Particles, ۱۹۸۶ ۳-L.Rayder, Elementary Particles and Symmetries, ,1994 ۳ ۴-R.Feynman, Feynman Lecture on Physics,Vo
روزنامه شرق
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 12
انرژی هسته ای از معدن تا نیروگاه
استفاده از انرژی هستهای برای تولید برق روشی پیچیده اما کارامد برای تامین انرژی مورد نیاز بشر است. به طور کلی برای بهرهبرداری از انرژی هستهای در نیروگاههای هستهای، از عنصر اورانیوم غنی شده به عنوان سوخت در راکتورهای هستهای استفاده میشود که ماحصل عملکرد نیروگاه، انرژی الکتریسته است. عنصر اورانیوم که از معادن استخراج میشود به صورت طبیعی در راکتورهای نیروگاهها قابل استفاده نیست و به همین منظور باید آن را به روشهای مختلف به شرایط ایده عال برای قرار گرفتن درون راکتور آماده کرد. اورانیوم یکی از عناصر شیمیایی جدول تناوبی است که نماد آن Uو عدد اتمی آن ۹۲است. این عنصر دارای دمای ذوب هزار و ۴۵۰درجه سانتیگراد بوده و به رنگ سفید مایل به نقرهای، سنگین، فلزی و رادیواکتیو است و به رغم تصور عام، فراوانی آن در طبیعت حتی از عناصری از قبیل جیوه، طلا و نقره نیز بیشتر است.
عنصر اورانیوم در طبیعت دارای ایزوتوپهای مختلف از جمله دو ایزوتوپ مهم و پایدار اورانیوم ۲۳۵و اورانیوم ۲۳۸است. برای درک مفهوم ایزوتوپهای مختلف از هر عنصر باید بدانیم که اتم تمامی عناصر از سه ذره اصلی پروتون، الکترون و نوترون ساخته میشوند که در تمامی ایزوتوپهای مختلف یک عنصر، تعداد پروتونهای هسته اتمها با هم برابر است وتفاوتی که سبب بوجود آمدن ایزوتوپهای مختلف از یک عنصر میشود ، اختلاف تعداد نوترونهای موجود در هسته اتم است. به طورمثال تمامی ایزوتوپهای عنصر اورانیوم در هسته خود دارای ۹۲ پروتون هستند اما ایزوتوپ اورانیوم ۲۳۸در هسته خود دارای ۱۴۶نوترون ( (۹۲+۱۴۶=۲۳۸و ایزوتوپ اورانیوم ۲۳۵دارای ۱۴۳نوترون( (۹۲+۱۴۳=۲۳۵در هسته خود است.
اورانیوم ۲۳۵مهمترین ماده مورد نیاز راکتورهای هستهای(برای شکافته شدن و تولید انرژی) است اما مشکل کار اینجاست که اورانیوم استخراج شده از معدن ترکیبی از ایزوتوپهای ۲۳۸و ۲۳۵بوده که در این میان سهم ایزوتوپ ۲۳۵بسیار اندک(حدود ۰/۷درصد) است و به همین علت باید برای تهیه سوخت راکتورهای هستهای به روشهای مختلف درصد اوانیوم ۲۳۵را در مقایسه با اورانیوم ۲۳۸بالا برده و بسته به نوع راکتور هستهای به ۲تا ۵درصد رساند و به اصطلاح اورانیوم را غنیسازی کرد.
درون راکتورهای هستهای، هسته اورانیوم ۲۳۵به صورت کنترل شده شکسته شده که در این فرایند مقداری جرم به انرژی تبدیل میشود. همین انرژی سبب ایجاد حرارت(اغلب از این حرارت برای تبخیر آب استفاده میشود) و در نتیجه چرخیدن توربینها و در نهایت چرخیدن ژنراتورهای نیروگاه و تولید برق میشود.
در نیروگاههای غیر هستهای، از سوزاندن سوختهای فسیلی از قبیل نفت و یا زغال سنگ برای گرم کردن آب و تولید بخار استفاده میشود که یک مقایسه ساده میان نیروگاههای هستهای و غیر هستهای، صرفه اقتصادی قابل توجه نیروگاههای هستهای را اثبات میکند.
به طور مثال، برای تولید ۷۰۰۰مگاوات برق حدود ۱۹۰میلیون بشکه نفت خام مصرف میشود که استفاده از سوخت هستهای برای تولید همین میزان انرژی سالیانه میلونها دلار صرفه جویی به دنبال دارد و به علاوه میزان آلایندگی زیست محیطی آن نیز بسیار کمتر است.
کافی است بدانیم که مصرف این ۱۹۰میلیون بشکه نفت خام برای تولید ۷۰۰۰مگاوات برق، ۱۵۷هزار تن گاز گلخانهای دی اکسید کربن، ۱۵۰تن ذرات معلق در هوا، ۱۳۰تن گوگرد و ۵تن اکسید نیتروژن در محیط زیست پراکنده میکند که نیروگاههای هستهای این آلودگیها را ندارند. پس از آشنایی با مفاهیم کلی انرژی هستهای و مزایای آن، ابتدا با مراحل مختلف چرخه سوخت هستهای آشنا میشویم و سپس نحوه استفاده از سوخت هستهای درون راکتور را مرور میکنیم.
چرخه سوخت هستهای عبارت است از:
۱ - فراوری سنگ معدن اورانیوم
2- تبدیل و غنیسازی اورانیوم
3- تولید سوخت هستهای
4- بازفرآوری سوخت مصرف شده.
در حال حاضر چند کشور صنعتی جهان هر کدام در یک، چند و یا همه چهار مرحله یاد شده از چرخه سوخت هستهای فعالیت میکنند.
هم اکنون به لحاظ صنعتی، کشورهای فرانسه، ژاپن، روسیه، آمریکا و انگلیس دارای تمامی مراحل چرخه سوخت هستهای در مقیاس صنعتی هستند و در مقیاس غیرصنعتی، کشورهای دیگری مثل هند نیز به لیست فوق اضافه میشوند.
کشورهای کانادا و فرانسه در مجموع دارای بزرگترین کارخانههای تبدیل اورانیوم(مرحله پیش از غنیسازی ) هستند که محصولات آنها شاملUO3,UO2,UF6 غنی نشده میباشد و پس از آنها به ترتیب کشورهای آمریکا، روسیه و انگلستان قرار دارند. در زمینه غنیسازی نیز، دو کشور آمریکا و روسیه دارای بزرگترین شبکه غنیسازی جهان هستند.
آمریکا هم اکنون بزرگترین تولیدکننده سوخت هستهای(مرحله بعد از غنی سازی) در جهان است و پس از آمریکا، کانادا تولیدکننده اصلی سوخت هستهای در جهان محسوب میشود. پس از آمریکا و کانادا، کشورهای انگلیس، روسیه، ژاپن، فرانسه، آلمان، هند، کره جنوبی و سوئد از تولیدکنندگان اصلی سوخت هستهای جهان هستند. آمریکا بیشترین سهم بازفراوری سوخت مصرف شده هستهای در جهان را داراست و پس از آن فرانسه، انگلیس، روسیه، هند و ژاپن قرار دارند. درحال حاضر بین کشورهای جهان سوم، هندوستان پیشرفتهترین کشور در زمینه دانش فنی چرخه سوخت هستهای است.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 52
نگاهى به مبانى نظرى انرژى هسته اى
دل هر ذره را که بشکافى...
اتم در زبان یونانى به معنى تقسیم ناپذیر است. این ایده، زاده تفکر دموکریتوس فیلسوف یونانى در ۲۳۰۰ سال پیش است. براى او این تصور محال بود که اجسام مادى بتوانند بى حد و حصر تقسیم شوند. اما «جان دالتون» شیمیدان بود که نخستین نظریه اتمى نوین را ارائه کرد. دالتون که کارش پژوهش در مورد هواشناسى بود، به ترکیب گازها علاقه مند شد و خیلى زود ایده تشکیل گازها از واحدهاى کوچک غیرقابل تقسیم در ذهنش شکل گرفت. او این نظریه را در سال ۱۸۰۸ تحت عنوان «سیستم جدید فلسفه شیمى» منتشر کرد. تا دهه پایانى قرن نوزدهم دو جنبه اساسى فیزیک کلاسیک یعنى مکانیک کلاسیک و الکترومغناطیس به خوبى شناخته شده بود و دانشمندان گمان مى کردند که طبیعت براساس دو نیروى گرانشى و الکترومغناطیسى ساخته شده است. درست در همین زمان بود که پدیده هایى مشاهده شد که طى دهه هاى ابتدایى قرن بیستم منجر به بزرگترین انقلاب هاى تاریخ علم یعنى نسبیت عام و مکانیک کوانتومى شدند.
•رادیواکتیویته
در سال ۱۸۹۶ آنتوان هانرى بکرل (Becquerel) فیزیکدان فرانسوى که از کشف اشعه X به وسیله رونتگن مطلع شده بود، به دنبال یک رشته آزمایش روى سنگ معدنى به نام اورانیل، فعالیت هاى پرتوافشانى خود به خودى خاصى را کشف کرد و آن را «رادیواکتیویته» نام گذاشت. پس از او مارى و پى یر کورى هم دو عنصر رادیوم و پولونیوم را کشف کردند که خاصیت رادیواکتیویته بسیار بیشترى داشتند. اما بیشتر پژوهش ها روى رادیواکتیویته به وسیله لرد رادرفورد انجام شد. او کشف کرد که خاصیت رادیواکتیویته ناشى از پراکنش سه نوع اشعه است:۱- اشعه آلفا که توسط یک برگ کاغذ متوقف مى شود. بار آن مثبت است و در حقیقت همان یون هاى هلیوم دو بار مثبت یا هسته اتم هلیوم است.۲- اشعه بتا که از ورقه چند میلى مترى آلومینیوم رد مى شود. بار آن منفى است. ماهیت این اشعه الکترون هاى پرانرژى است.
۳- اشعه گاما که از صفحات سربى به ضخامت ده ها سانتى متر هم عبور مى کند، از لحاظ الکتریکى خنثى است. این اشعه فوتون هاى پرانرژى با طول موج بسیار کوتاه است.دانشمندان با توجه به مجموعه آزمایش هاى رادرفورد به این نتیجه رسیدند که اتم ها برخلاف نامشان از اجزاى کوچکترى هم تشکیل شده اند.
• هسته
افتخار کشف هسته اتم نیز از آن رادرفورد است. او با کمک دو دانشجویش به نام گایگر و مارسدن با انجام آزمایشى که «پراکندگى» نام دارد، به وجود هسته پى برد. رادرفورد فکر مى کرد که اتم ها مثل مدل کیک کشمشى تامسون از تعدادى الکترون تشکیل شده اند که در یک فضاى پیوسته با بار مثبت قرار دارند. به همین دلیل ذرات آلفا را به سمت ورقه نازکى از طلا پرتاب کرد. اما پراکندگى این ذرات از هسته طلا نشان داد که بارهاى مثبت در ناحیه بسیار کوچکى در وسط اتم متمرکز شده اند. شعاع اتم حدود یک آنگسترم (۱۰-۱۰ متر) است ولى اندازه هسته حدود ۱۰ فرمى (۱۴ -۱۰ متر) است.
• نیمه عمر
پس از اینکه رادرفورد ماهیت تشعشع رادیواکتیو را کشف کرد، دانشمندان پى بردند که رادیواکتیویته به علت تلاشى خودبه خود هسته هاى سنگین و تبدیل آنها به هسته هاى سبک تر است. در حین این تبدیل، ذرات آلفا، بتا و گاما ساطع مى شود. در حقیقت پس از خارج شدن این ذرات از هسته، ماهیت آن تغییر مى کند. تعداد هسته هایى که در هر لحظه متلاشى مى شوند با تعداد هسته ها در آن لحظه نسبت مستقیم دارد. زمانى را که نیمى از هسته هاى ماده ابتدایى متلاشى مى شوند، نیمه عمر ماده مى گویند. یعنى اگر در ابتدا یک گرم ماده رادیواکتیو داشته باشیم، پس از یک نیمه عمر نصف و پس از دو نیمه عمر، یک چهارم و پس از سه نیمه عمر، یک هشتم مقدار اولیه را خواهیم داشت. نیمه عمر مواد مختلف متفاوت است و از چند میلیاردیوم ثانیه تا چندین میلیارد سال تغییر مى کند. معمولاً هرچه نیمه عمر بیشتر باشد، انرژى ساطع شده از تلاشى رادیواکتیویته کمتر است. نیمه عمر اورانیوم ۵/۴ میلیارد سال است. نیمه عمر رادیوم ۱۵۹۰ سال و نیم عمر راکتانیوم کمتر از ۱۰ هزارم ثانیه است.
• درون هسته
مدل اتمى رادرفورد بیانگر این مطلب بود که هسته در وسط اتم داراى بار مثبت است و الکترون ها با بار منفى در اطراف آن قرار دارند. مدل اتمى بور هم مدل رادرفورد را کامل کرد و سازوکار منظمى را براى استقرار الکترون ها در اطراف هسته تدوین کرد. اما تفسیر و توجیه رادیواکتیویته تردیدى به جاى نمى گذارد که هسته ها خود مجموعه مکانیکى پیچیده اى هستند که از اجراى سازنده متفاوتى تشکیل شده اند. این واقعیت که وزن اتمى ایزوتوپ هاى اتم هاى مختلف (بعضى از اتم ها درحالى که جرم اندکى متفاوت با هم دارند، خواص شیمیایى کاملاً یکسانى دارند، به این اتم ها ایزوتوپ مى گویند.) با اعداد صحیح (یا لااقل بسیار نزدیک به عدد صحیح) بیان مى شوند، نشان مى دهد که پروتون ها (حاملان بار مثبت) باید نقش یکى از اجزاى اصلى سازنده هسته را داشته باشند. ابتدا فرض مى کردند که درون هر هسته علاوه بر پروتون، الکترون هم هست. یعنى مثلاً کربن که جرم ۱۲ و بار ۶+ دارد، درون هسته خود ۱۲ پروتون و ۶ الکترون دارد و علاوه بر آن در بیرون هسته هم ۶ الکترون به دور آن مى چرخند اما این راه حل از لحاظ نظرى مشکلات عدیده اى را به همراه داشت. اما رادرفورد و بور پیشنهاد کردند که علاوه بر پروتون ذره دیگرى هم جرم آن ولى بدون بار درون هسته است. آنها نام نوترون را براى آن انتخاب کردند و این ذره در سال ۱۹۳۲ توسط چادویک کشف شد.
• اسپین
اتم ها در اثر گرفتن انرژى، تابش مى کنند. این تابش ناشى از این است که الکترون هاى اطراف هسته، انرژى مى گیرند و بعد این انرژى را به صورت یک فوتون با طول موج معین بازمى تابانند. اما خود این طیف در مجاورت میدان الکترومغناطیسى، به چند طول موج جدا از هم تفکیک مى شود. علت این است که الکترون ها در اتم، اندازه حرکت زاویه اى هم دارند. اشترن و گرلاخ نشان دادند که الکترون ها علاوه بر این اندازه حرکت زاویه اى، خاصیت دیگرى هم دارند که فقط در حضور میدان مغناطیسى آن را بروز مى دهند. به دلیل شباهت این خاصیت به اندازه حرکت زاویه اى، نام آن را «اندازه حرکت زاویه اى ذاتى» یا اسپین نهادند. بعدها ثابت شد که علاوه بر الکترون، باقى ذرات بنیادى هم اسپین دارند. مهمترین ویژگى اسپین این است که یک خاصیت کاملاً کوانتومى است و مشابه کلاسیک ندارد. ذراتى که اسپین نیم صحیح دارند (یک دوم، سه دوم، ...) فرمیون مى نامند، مثل الکترون، پروتون، نوترون و... این ذرات تشکیل دهنده ماده هستند. در مقابل ذراتى که اسپین صحیح دارند(صفر، ۱ ، ۲ و...) بوزون گفته مى شوند، مثل فوتون، مزون، گلوتون و... این ذرات حامل نیروها هستند.
• ایزواسپین و نیروى هسته اى
هنگامى که نوترون توسط چادویک کشف شد، این واقعیت مسلم شد که علاوه بر نیروى گرانش و الکترومغناطیسى، حداقل یک نیروى دیگر در طبیعت وجود دارد و این نیرو است که عامل پیوند نوکلئون ها (پروتون ها و نوترون ها) درون هسته است. زیرا در صورت عدم وجود این نیرو، در اثر دافعه شدید بارهاى مثبت پروتون ها بر هم، هسته از هم مى پاشد. از این مثال برمى آید که اولاً این نیرو باید جاذبه اى باشد تا در مقابل دافعه پروتون ها بایستد و ثانیاً برد آن باید خیلى کوتاه باشد و از ابعاد هسته بیشتر نباشد. زیرا نیروى الکترومغناطیسى (در مدل بوهر) آرایش الکترون ها
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 20
انرژی هسته ای
استفاده اصلی از انرژی هستهای، تولید انرژی الکتریسته است. این راهی ساده و کارآمد برای جوشاندن آب و ایجاد بخار برای راهاندازی توربینهای مولد است. بدون راکتورهای موجود در نیروگاههای هستهای، این نیروگاهها شبیه دیگر نیروگاهها زغالسنگی و سوختی میشود. انرژی هستهای بهترین کاربرد برای تولید مقیاس متوسط یا بزرگی از انرژی الکتریکی بهطور مداوم است. سوخت اینگونه ایستگاهها را اوانیوم تشکیل میدهد.
چرخه سوخت هستهای تعدادی عملیات صنعتی است که تولید الکتریسته را با اورانیوم در راکتورهای هستهای ممکن میکند.
اورانیوم عنصری نسبتاً معمولی و عادی است که در تمام دنیا یافت میشود. این عنصر بهصورت معدنی در بعضی از کشورها وجود دارد که حتماً باید قبل از مصرف به صورت سوخت در راکتورهای هستهای، فرآوری شود.
الکتریسته با استفاده از گرمای تولید شده در راکتورهای هستهای و با ایجاد بخار برای بهکار انداختن توربینهایی که به مولد متصلاند تولید میشود.
سوختی که از راکتور خارج شده، بعداز این که به پایان عمر مفید خود رسید میتواند به عنوان سوختی جدید استفاده شود.
فعالیتهای مختلفی که با تولید الکتریسیته از واکنشهای هستهای همراهند مرتبط به چرخه سوخت هستهای هستند. چرخه سوختی انرژی هستهای با اورانیوم آغاز میشود و با انهدام پسماندههای هستهای پایان مییابد. دوبار عملآوری سوختهای خرج شده به مرحلههای چرخه سوخت هستهای شکلی صحیح میدهد.
اورانیوم
اورانیوم فلزی رادیواکتیو و پرتوزاست که در سراسر پوسته سخت زمین موجود است. این فلز حدوداً 500 بار از طلا فراوانتر و به اندازه قوطی حلبی معمولی و عادی است. اورانیوم اکنون به اندازهای در صخرهها و خاک و زمین وجود دارد که در آب رودخانهها، دریاها و اقیانوسها موجود است. برای مثال این فلز با غلظتی در حدود 4 قسمت در هر میلیون (ppm4) در گرانیت وجود دارد که 60 درصد از کره زمین را شامل میشود، در کودها با غلظتی بالغ بر ppm400 و در تهمانده زغالسنگ با غلظتی بیش از ppm100 موجود است. اکثر رادیو اکتیویته مربوط به اورانیوم در طبیعت در حقیقت ناشی از معدنهای دیگری است که با عملیات رادیواکتیو به وجود آمدهاند و در هنگام استخراج از معدن و آسیاب کردن به جا ماندهاند.
چند منطقه در سراسر دنیا وجود دارد که غلظت اورانیوم موجود در آنها به قدر کافی است که استخراج آن برای استفاده از نظر اقتصادی به صرفه و امکانپذیر است. این نوع مواد غلیظ، سنگ معدن یا کانه نامیده میشوند.
استخراج اورانیوم
هر دو نوع حفاری و تکنیکهای موقعیتی برای کشف کردن اورانیوم به کار میروند، حفاری ممکن است به صورت زیرزمینی یا چالهای باز و روی زمین انجام شود.
در کل، حفاریهای روزمینی در جاهایی استفاده میشود که ذخیره معدنی نزدیک به سطح زمین و حفاریهای زیرزمینی برای ذخیرههای معدنی عمیقتر به کار میرود. بهطور نمونه برای حفاری روزمینی بیشتر از 120 متر عمق، نیاز به گودالهای بزرگی بر سطح زمین است؛ اندازه گودالها باید بزرگتر از اندازه ذخیره معدنی باشد تا زمانی که دیوارههای گودال محکم شوند تا مانع ریزش آنها شود. در نتیجه، تعداد موادی که باید به بیرون از معدن انتقال داده شود تا به کانه دسترسی پیدا کند زیاد است.
حفاریهای زیرزمینی دارای خرابی و اخلالهای کمتری در سطح زمین هستند و تعداد موادی که باید برای دسترسی به سنگ معدن یا کانه به بیرون از معدن انتقال داده شوند بهطور قابل ملاحظهای کمتر از حفاری نوع روزمینی است.
مقدار زیادی از اورانیوم جهانی از (ISL) (In Sitaleding) میآید. جایی که آبهای اکسیژنه زیرزمینی در معدنهای کانهای پرمنفذ به گردش میافتند تا اورانیوم موجود در معدن را در خود حل کنند و آن را به سطح زمین آورند. (ISL) شاید با اسید رقیق یا با محلولهای قلیایی همراه باشد تا اورانیوم را محلول نگهدارد، سپس اورانیوم در کارخانههای آسیابسازی اورانیوم، از محلول خود جدا میشود.
در نتیجه انتخاب روش حفاری برای تهنشین کردن اورانیوم بستگی به جنس دیواره معدن کانه سنگ، امنیت و ملاحظات اقتصادی دارد.
در غالب معدنهای زیرزمینی اورانیوم، پیشگیریهای مخصوصی که شامل افزایش تهویه هوا میشود، لازم است تا از پرتوافشانی جلوگیری شود.
آسیاب کردن اورانیوم
محل آسیاب کردن معمولاً به معدن استخراج اورانیوم نزدیک است. بیشتر امکانات استخراجی شامل یک آسیاب میشود. هرچه جایی که معدنها قرار دارند به هم نزدیکتر باشند یک آسیاب میتواند عمل آسیابسازی چند معدن را انجام دهد. عمل آسیابسازی اکسید اورانیوم غلیظی تولید میکند که از آسیاب حمل میشود. گاهی اوقات به این اکسیدها کیک زرد میگویند که شامل 80 درصد اورانیوم میباشد. سنگ معدن اصل شاید دارای چیزی در حدود 1/0 درصد اورانیوم باشد.
در یک آسیاب، اورانیوم با عمل سنگشویی از سنگهای معدنی خرد شده جدا میشود که یا با اسید قوی و یا با محلول قلیایی قوی حل میشود و به صورت محلول در میآید. سپس اورانیوم با تهنشین کردن از محلول جدا میشود و بعداز خشک کردن و معمولاً حرارت دادن به صورت اشباع شده و غلیظ در استوانههای 200 لیتری بستهبندی میشود.
باقیمانده سنگ معدن که بیشتر شامل مواد پرتوزا و سنگ معدن میشود در محلی معین به دور از محیط معدن در امکانات مهندسی نگهداری میشود. (معمولاً در گودالهایی روی زمین).
پسماندههای دارای مواد رادیواکتیو عمری طولانی دارند و غلظت آنها کم خاصیتی سمی دارند. هرچند مقدار کلی عناصر پرتوزا کمتر از سنگ معدن اصلی است و نیمه عمر آنها کوتاه خواهد بود اما این مواد باید از محیط زیست دور بمانند.
تبدیل و تغییر
محلول آسیاب شده اورانیوم مستقیماً قابل استفاده بهعنوان سوخت در راکتورهای هستهای نیست. پردازش اضافی به غنیسازی اورانیوم مربوط است که برای تمام راکتورها لازم است.
این عمل اورانیوم را به نوع گازی تبدیل میکند و راه بهدست آوردن آن تبدیل کردن به هگزا فلورید (Hexa Fluoride) است که در دمای نسبتاً پایین گاز است.
در وسیلهای تبدیلگر، اورانیوم به اورانیوم دیاکسید تبدیل میشود که در راکتورهایی که نیاز به اورانیوم غنی شده ندارند استفاده میشود.
بیشتر آنها بعداز آن که به هگزافلورید تبدیل شدند برای غنیسازی در کارخانه آماده هستند و در کانتینرهایی که از جنس فلز مقاوم و محکم است حمل میشوند. خطر اصلی این طبقه از چرخه سوختی اثر هیدروژن فلورید (Hydrogen Fluoride) است.
غنی سازی اورانیم
سنگ معدن اورانیوم موجود در طبیعت از دو ایزوتوپ ۲۳۵ به مقدار ۷/۰ درصد و اورانیوم ۲۳۸ به مقدار ۳/۹۹ درصد تشکیل شده است. سنگ معدن را ابتدا در اسید حل کرده و بعد از تخلیص فلز، اورانیوم را به صورت ترکیب با اتم فلئور (F) و به صورت مولکول اورانیوم هکزا فلوراید UF6 تبدیل می کنند که به حالت گازی است. سرعت متوسط مولکول های گازی با جرم مولکولی گاز نسبت عکس دارد این پدیده را گراهان در سال ۱۸۶۴ کشف کرد. از این پدیده که به نام دیفوزیون گازی مشهور است برای غنی سازی اورانیوم استفاده می کنند.در عمل اورانیوم هکزا فلوراید طبیعی گازی شکل را از ستون هایی که جدار آنها از اجسام متخلخل (خلل و فرج دار) درست شده است عبور می دهند. منافذ موجود در جسم متخلخل باید قدری بیشتر از شعاع اتمی یعنی در حدود ۵/۲ انگشترم (۰۰۰۰۰۰۰۲۵/۰ سانتیمتر) باشد. ضریب جداسازی متناسب با اختلاف جرم
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 11
انرژی نورودانشمندا ن این عرصه درطی قرون
گالیله
گالیلئو گالیله در سال 1564 در پیزا واقع در ایتالیا متولد شد وی تا 19 سالگی تمام مطالعات خود را در ادبیات متمرکز کرده بود تا یانکه روزی در یکی از مراسم مذهبی کلیسا مشاهده چهل چراغی که در بالای سرش نوسان می کرد توجه او را جلب کرد او هنگام مشاهده توجه کرد که هر چند دامنه نوسان هر بار کوتاهتر می شود لیکن زمان نوسان همواره ثابت باقی می ماند اغلب انسانها شاید در این مشاهده چیز خاصی را نمی یافتند ولی گالیله از روح کنجکاوی و پژوهشگر دانشمندان برخوردار بود او از آن لحظه شروع به اجرای یک رشته آزمایشهای عملی کرد به این ترتیب که وزنه هایی را به یک ریسمان بست و از محلی آویزان نمود و آنها را به این سو و آن سو به نوسان درآورد در آن دوران هنوز ساعتهای دقیق با عقربه ثانیه شمار نبود و بنابراین گالیله برای اندازه گیری زمان حرکات وزنه های آویزان و در حال نوسان از ضربات نبض خود سود می جست او دریافت که مشاهداتش در کلیسای جامع پیزا صحت دارد. اگر چه دامنه نوسان هر بار کوتاهتر می شد اما هر نوسان زمان مشابه نوسانهای قبلی را در بر می گرفت به این ترتیب گالیله قانون آونگ را کشف کرده بود قانون آونگ گالیله امروزه همچنان در امور گوناگون به کار می رود مثلاٌ برای اندازه گیری حرکات ستارگان و یا مهار روند کار ساعتها از این قانون استفاده می کنند آزمایشهای او در باره آونگ آغاز فیزیک دینامیک جدید بود واکنشی که قوانین حرکت و نیروهایی را که باعث حرکت می شوند در بر می گیرد گالیله در سال 1588 در دانشگاه پیزا مدرک دکتری(استادی) گرفت و در همانجا برای تدریس ریاضیات باقی ماند. او در 25 سالگی دومین کشف بزرگ علمی خود را به انجام رسانید کشفی که باعث از بین رفتن یک نظریه به جا مانده دو هزار ساله شد و دشمنان زیادی برایش افرید در دوران گالیله بخش بسیاری از علوم بر اساس فرضیه های فیلسوف بزرگ یونانی – ارسطو که در قرن 4 پیش از میلاد می زیست بنا شده بود اثر او به عنوان مرجع و سرچشمه تمامی علوم به شمار می آمد هر کس که به یکی از قانونها و قواعد ارسطو شک می کرد انسان کامل و عاقلی به شمار نمی آمد یکی از قواعدی که ارسطو بیان کرده بود این ادعا بود که اجسام سنگین تندتر از اجسام سبک سقوط می کنند گالیله ادعا می کرد که این قاعده اشتباه است به طوری که می گویند او برای اثبات این خطا از استادان هم دانشگاهی خود دعوت به عمل آورد تا به همراه او به بالاترین طبقه برج مایل پیزا بروند گالیله دو گلوله توپ یکی به وزن 5 کیلو و دیگری به وزن نیم کیلو با خود برداشت و از فراز برج پیزا هر دو گلوله را به طور همزمان به پایین دها کرد در کمال شگفتی تمام حاضران در صحنه مشاهده کردند که هر دو گلوله به طور همزمان به زمین رسیدند گالیله به این ترتیب یک قانون فیزیکی مهم را کشف کرد(سرعت سقوط اجسام به وزن آنها بستگی ندارد). در همین موقع گالیله مشغول مطالعه بود که ناگهان شایع شد که در سوئیس عدسیها را با هم ترکیب کرده اند وتوانسته اند اجسام را از مسافات دور مشاهده نمایند از این موضوع اطلاع صحیحی در دست نیست ولی اینطور مشهور است که زاخاری یانسن که در میدلبورک عینک ساز بود اولین دوربین نزدیک کننده اشیاء را بین سالهای 1590 و 1609 ساخته بود ولی عینک ساز دیگری بنام هانس یپرشی اختراع او را با تردستی از او می رباید و در اکتبر 1608 امتیاز آن را به نام خود ثبت می نماید گالیله هم در این موقع موفق به ساختن دوربین مشابهی گردید ولی این دستگاه قدرت زیادی نداشت اما مطلب مهم این بود که اصل اختراع کشف شده بود و ساختن دوربین قوی تر فقط کار فنی بود. این دوربین به رئیس حکومت ونیز تقدیم شد و در کنار ناقوس سن مارک گذاشته شد سناتورها و تجار ثروتمند در پشت دوربین قرار گرفتند و همگی دچار حیرت و تعجب شدند چون آنها خروج مؤمنین را از کلیسای مجاور و کشتیهایی را که در دورترین نقاط افق در حرکت بودند مشاهده نمدند ولی گالیله فوراٌ دوربین را به طرف آسمان متوجه ساخت مشاهده مناظری که تا آن زمان هیچ چشمی قادر به تماشای آن نبود شور و شعفی فراوان در گالیله به وجود آورد گالیله مشاهده نمود که ماه بر خلاف گفته ارسطو که آن را کره ای صاف و صیقلی می دانست پوشیده از کوه ها و دره هایی است که نور خورشید برجستگی های آنها را مشخص تر می سازد به علاوه ملاحظه نمود که چهار قمر کوچک به دور سیاره مشتری در حرکت هستند و بالاخره لکه های خورشید را به چشم دید دانشمند بزرگ در سال 1610 تماماین نتایج را در جزوه ای به نام کتاب قاصد آسمان انتشار داد که موجب تحسین و تمجید بسیار گشت ولی انتشار کتاب قاصد آسمان قط تحسین و تمجید همراه نداشت بلکه جمعی از مردم بر او اعتراض کردند و از او می پرسیدند چرا تعداد سیارات را 7 نمی داند و حال آنکه تعداد فلزات 7 است و شمعدان معبد 7 شاخه دارد ودر کله آدمی 7 سوراخ موجود است گالیله در جواب تمام سؤالات فقط گفت با چشم خود در دوربین نگاه کنید تا از شما رفع اشتباه شود. مشاهدات و پژوهشهای گالیله او را به این وادی رهنمون شدند که فرضیه های علمی را که بر اساس آنها زمین در مرکزیت عالم قرار داشت و خورشید و سارگان به دور آن می گشتند مردود می شمرد. نزدیک به نیم قرن پیش از آن کوپرنیک اثر بزرگ خود را که طی آن ثابت کرد خورشید در مرکز دستگاه ستاره ای ما نیست و زمین و سیاره ها به دور آن می گردند- در معرض اذهان عموم قرار داده بود. این فرضیه کوپرنیک مورد لعن و نفرین کلیسا قرار گرفته بود و زمانی که گالیله اشکارا اعلام داشت که این فرضیه صحت دارد و او با آن موافق است، نظریه کوپرنیک بدست فراموشی سپرده شده بود اعلامیه گالیله اعتراضات شدید را برانگیخت روحانیون عالی مقام کلیسای کاتولیک دوباره خشمگینانه فرضیه کوپرنیک را به شدت محکوم کردهو آن را مطرود شمردند گاللیه با شخصیتهای بزرگی مانند کاردینال بلارین و کاردینال باربرینی سابقه دوستی داشت که از او حمایت می کردند ولی این شخصیتهای بزرگ نتوانستند مانع آن نبود و روحانیون برای هر چیز غیر از کتاب مقدس و ارسطو ارزش قائل نبودند و کلیسا هرگز اجازهنمی داد که یک فرد غیر روحانی کتاب مقدس را به مطابق میل خود تغییر دهد. چون این کار ممکن نبود طبعاٌٌ می بایست گاللیه محکوم شود و حتی اگر خود پاپ هم صمیم قلب معتقد به عقاید کوپرنیک بود محاکمه گالیله و محکومیت او اجتناب ناپذیر بود در سال 1632 که دوست کاردینال باربرینی بنام اوربن هفتم پاپ شده بود از موقعیت استفاده کرد و ضربت بزرگی را وارد نمود وی کتابی به زبان ایتالیایی منتشر کرد که در آن سه نفر مشغول گفتگو هستند یکی از آنها بطلمیوس و دو نفر دیگر از کوپرنیک دفاع می کنند. با انتشار این کتاب خشم و غضب روحانیون چند صد برابر گشت و بدتر از همه اینکه برای شخص پاپ این سوءتفاهم ایجاد شد که شخص ابله واحمقی در مکالمات از بطلمیوس دفاع می کند خود اوست. گالیله را به رم احضار کردند و او را در منزل یکی از اعضای عالی رتبه دیوان تفتیش عقاید جای دادند در همین اوقات دختر پدر مقدس مشغول تهیه ادعانامه او بود و در روز 20 ماه ژوئن 1633 محکوم را به آنجا احضار کردند و در 22 ژوئن وادارش نمودند که توبه نامه زیر را امضاء کند.
در هفتادمین سال زندگی در مقابل شما به زانو درآمده ام و در حالی که کتاب مقدس را پیش چشم دارم و با دستهای خود لمس می کنم توبه می کنم و ادعای خالی از حقیقت حرکت زمین را انکار می کنم و آنرا منفور و مطرود می نمایم.
گالیله بعد از محاکمه در منزل دوستش پیکولومینی اسقف شهر سین محبوس شد ولی بعد از مدتی به او اجازه داده شد تا در خانه ییلاقی خود واقع در آرستری اقامت کند.
گالیله تا دم مرگ بر اعتقاد خویش پای برجا ماند او به طور پنهانی به آزمایشهای تجربی خود ادامه داد و پیش از آنکه در سال 1642 در آستری در حومه فلورانس دار فانی را وداع گوید دو کتاب ارزشمند دیگر را نیز به رشته تحریر درآورد آثار او نخست در سال 1835 از سوی کلیسای کاتولیک از لیست سیاه،(لیست کتابهای ممنوعه) خارج شد و اجازه انتشار یافت امروزه ما به گالیله به عنوان یک پژوهشگر سخت کوش که بشریت بسیار به او مدیون است احترام می گذاریم او به جهان نشان داد که یک دانشمند باید آزادی را داشته باشد که نظریه هایی را که اشتباه هستند نقد کند و نظریه های جدیدی را بنیان گذارد او همچنین نشان داد که یک دانشمند نباید خود را گرفتار دستورها و یا روایات دینی تحریف شده کند.
کریستین هویگنس
تا اینجا معلوم شد که نور سرعت معینی دارد و بنابر این در محیط های مختلف با سرعت های متفاوتی حرکت میکنداما مدت ها طول کشید تا نادرستی فرضیه نیوتون دراین مورد که نور در محیط های غلیظ تر سریع تر سیر می کند روشن شود دراین هنگام دید دیگری نسبت نور مطرح شد که بر اساس ان نور نیز مانند صوت نوعی ارتعاش به شمار می امد هو یگنس فیزیک دان بزرگ هلندی که هم روزگار نیوتون بود و علی رغم وضعیت جنگی میان هلند و فرانسه در فرهنگستان فرانسه کار می کرد مدافع این دیدگاه بود.نیو تون در مورد چگونگیه غبور نور از یک روزنه و ایجاد مجموعه موج ما نند چگونه فکر می کرد. البته خود نیوتون به هیچ وجه این پدیده را موج به حساب نمی اورد بلکه انرا مجموعه ای از ذرات میدانست که حالت های مختلفی داشتند.
در نخستین ازمونی که در مورد این دو نظریه به عمل می امد خواص ماده جالبی اسپارت آیسلند یا اسپارت ایسلند که توسط بارتولین bartolin کانی شناس مشهور ان دوران کشف شده بود به روشن شدن نتایج کمک کرد این ماده شفاف بلورین خواص معجزه آسایی داشت مثلا اگر بر روی یک نوشته گذاشته میشد حروف را به صورت مضاعف نشان میداد و اگر آنرا به حرکت در می آوردند تصویر های دو گا نه حروف نسبت به هم تغییر موقعیت می دادند یعنی حرکت یکی از انها بیشتر از دیگری به نظر می امد پرتویی که این تصویر را به وجود می اورد پرتو غیر عادی و پرتویی که تصویر دیگر را ایجاد میکرد و تابع قوانین پراش نور بود پرتوعادی نامیده میشد تمام تلاشهای نیو تون برای حل این مساله و ارائه توجیه معقولی از آن با شکست روبرو شد در واقع با اتکا به نظریه ماده ذره ای بودن نور اصولا این مسیله قابل حل نبود . اما نیو تون در جریان حل ان مطلب جالبی عنوان کرد که امروز دارای اهمیت فراوان است. این مطلب حاکی از ان است که پرتو نور متقارن نیست یعنی در جوانب مختلف وجه ان با هم فرق دارد و همان است که امروز باریکه قطببیده (پولاریزه) خوانده میشود از این نکته که بگذریم نیو تون نتوانست تعبیر دقیقی در مورد خاصیت اسپار آیسلند به دست دهد اما این گره به دسته هویگنس گشوده شد .
هویگنس برای توضیح قوانین معمولی شکست نور نموداری عرضه کرد که امرو.ز هم جالب است زیرا براگ و سایر کسانی که در زمینه