لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 20
دیگ بخار
راهنمای راه اندازی و نگهداری دیگ های بخارلوله دودی:
ساختار دیگ های بخار:
دیگ های بخار معمولا، شامل بدنه اصلی، صفحه- لوله های جلو و عقب ، کوره و اطاقک برگشت می باشد که پس از مونتاژ و جوشکاری کامل ابتدا مورد آزمایش های غیر مخرب (پرتونگاری ، اولتراسونیک ، مایع نافذ و...) قرارگرفته وسپس عملیات تنش گیری آنها در کوره مخصوص انجام می گیرد. دیگ های فوق دارای دو پاس لوله اند که همراه کوره، جمعاً دارای سه پاس حرارتی می باشند.
پاس اول شامل کوره می باشد که به صفحه – لوله جلو دیگ و جلو محفظه برگشت اکسپند و جوشکاری شده است . پاس دوم شامل لوله هایی که از اطافک برگشت به صفحه – لوله جلو دیگ و پاس سوم شامل لوله هایی از صفحه – لوله جلوبه صفحه لوله عقب می باشد. شعله در کوره تشکیل می گردد و مواد حاصل از احتراق با عبور از لوله های پاس 2و3 و جعبه دودهای جلو عقب ، از طریق دودکش خارج می شود و درطی این مسیر، آب در اثر جذب انرژی گرمای حاصل از احتراق سوخت ، به بیشترین درجه حرارت ممکن می رسد.
در بدنه دیگ های بخار دریچه های دست رو، آدم رو، لایروبی وجود دارند که هر کدام دارای یک درب متحرک بوده و توسط واشر گرانیتی آب بندی می گردند.
جعبه دودهای جلو و عقب دیگ برای تعمیر، تعویض یا تمیز کاری لوله ها پیش بینی شده اند. لوله های پاس 2و3 با روش گشادکردن انتهای لوله ها، آب بندی می گردند و سپس دیگ را تحت آزمایش هیدرواستاتیک تا 5/1 برابر فشار طراحی قرار می دهند.
پس از نصب دیگ روی شاسی و مونتاژ جعبه دودها، کلیه سطوح خارجی پس از سند پلاست با لایه ای از ضد زنگ نسوز پوشش داده می شود و سپس عایق کاری آن توسط پشم سنگ با ضخامتی حداقل برابر 50 میلیمتر با لایه ای از ورق محافظ صورت می پذیرد.
پس از پایان این مراحل، بخشهای مختلف توسط واحدهای کنترل کیفی مورد بازرسی دقیق قرار می گیرند و تأییدیه لازم را دریافت می نمایند.
در مراحل بعد، نصب شیرها، مشعل ، سیستم برق و کنترل دیگ انجام می گردد و پس از آزمایش بخار (تست گرم) و تنظیم نهایی، دیگ رنگ آمیزی شده به انبار انتقال می یابد.
نگهداری وتعمیرات دیگ بویژه در قسمتهای که بدانها اشاره خواهد شد دارای حساسیتی خاص بوده و لازم است در مراحل مختلف دقت لازم معمول گردد.
مکان و شرایط نصب :
ابعاد دیگخانه باید با در نظرگرفتن ابعاد دیگ بخار با درهای باز ونیز تجهیزات مرتبط با آن، همانند دستگاه های سختی گیر، هوازدا، منبع تغذیه آب، کالکتور، شیرها و موارد مشابه ، طراحی و ساخته شود.
دیگ بخار باید در محلی نصب گردد که دارای هوای لازم جهت سیستم و نیز فضای کافی برای تمیز کردن لوله ها و مکان مناسب جهت نگهداری وسایل کنترل تجهیزات جانبی باشد و به همین سبب، باید در دیگخانه، سکویی مناسب با وزن، اندازه ها و متعلقات دیگ، بشرح مندرج درجدول شماره یک، ایجاد گردد.
این سکو باید حداقل 30 سانتیمتراز طول و عرض ( از هر طرف 15 سانتیمتر) بیشتر و با اندازه 15 سانتیمتر هم از کف دیگخانه بلندتر باشد. در اطراف سکو باید مجرایی برای هدایت آب کف دیگخانه به چاه و یا سیستم فاضلاب در نظر گرفته شود و حوضچه ای نیزدرنزدیکی شیر تخلیه دیگ بخار ایجاد شود که همواره پر ازآب بوده وقسمت بالای آن به چاه یا مجرای خروجی آب راه داشته باشدو لوله تخلیه جهت خفه شدن بخار، به داخل آن هدایت و با درب متحرک پوشانده شود (چاه بلودان)
چنانچه مسیر کابل کشی از درون کانال صورت گرفته است، برای جلوگیری از بروز هر گونه اشکال الکتریکی، لازم است نکات ایمنی با دقت کامل رعایت گردد. پوشش روی کانال باید سبک و در مقابل وزنهای سنگین دارای مقاومت کافی باشد. توصیه می شود دیگ بنحوی روی سکو استقرار یابد که قسمت جلویی آن مقابل درب ورودی دیگخانه قرارگیرد. وجود وسایل اطفاء حریق در دیگخانه الزامی بوده و ضرییب ایمن سازی دستگاه را در مقابل آتش سوزی های احتمالی بالا می برد.
شرایط نصب دودکش:
دیگ های بخارساخت معمولا مجهز به دمنده مناسب بوده و بدون دودکش هم می تواند کارکند، ولی مواد حاصل از احتراق باید بنحوی از محل دیگخانه به فضای بیرون هدایت شوند، که این کار توسط دودکش صورت می گیرد. ارتفاع دودکش بستگی به شرایط محلی دارد ولی موقعیتهایی مانند ساختمانهای بلتد مجاور، جهت باد و عوامل جغرافیایی دیگر بر آن مؤثر خواهد بود . حداقل ارتفاع دودکش 12 متر است ولی بهر حال باید بلندی آن بنحوی باشد که افت فشار مسیرهای فرعی را جبران نماید.
سیستم هدایت سوخت:
- تعبیه شیر بمنظور امکان قطع سریع سیستم هدایت سوخت در هنگام آتش سوزی ، الزامی است.
- در مسیر رفت سوخت از مخزن به پمپ باید یک شیر یک طرفه تعبیه گردد.
- سمت مکش پمپ سوخت باید دارای فشار مثبت باشد.
- منابع سوخت زیر زمینی را باید با فشار حداکثر 15 پوند بر اینچ مربع به مشعل پمپاژ نمود.
- قطر لوله برای سوخت های با گرانروی 200 ثانیه و بالاتر، نباید کمتر از 2 اینچ باشد.
- نباید از لوله های گالوانیزه در سیستم استفاده نمود. بجای زانویی باید از روش خمکاری لوله ها استفاده گردد.
- پمپ سوخت باید دارای صافی بوده و چنانچه فیلترهای اضافی درمسیر لوله ها بکاربرده می شود، باید از توری مدور استفاده گردد.
- حجم مخزن برای تأمین سوخت دیگ بایستی دارای گنجایش کافی باشد.
- نصب یک شیر تخلیه در پایینترین نقطه مخزن جهت خروج آب هایی که احتمالاً در آن وجود دارد، ضروری است.
- نصب تجهیزاتی از قبیل نشانگرهای ارتفاع سوخت و خروج هوا از مخزن الزامی است.
- حتماً در اطراف مخازنی که در ارتفاع قراردارند، باید تجهیزات ایمنی و آتش نشانی در نظر گرفته شود.
- مخزن باید دارای یک شیب 1% به سمت شیر تخلیه باشد، تا املاح و رسوبات به طرف ان هدایت شوند.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 41
سپتیک تانکها:
سپتیک تانکها مخازن بدون نشتی هستند که فاضلاب را در خود نگهداری کرده و موجب تجزیه آنها بوسیله باکتریها می شوند.
سپتیک تانکها بر خلاف چاهها بر رو ی فاضلاب عمل کرده و وسایل بهداشتی تری برای دفع فاضلاب محسوب می شوند. ساختمان و نصب سپتیک تانکها را بایستی با توجه به مقررات شهری انجام داد.
فاضلاب از طریق مجرای خروجی از منزل به سپتیک تانک داخل می شود در تانک مواد سنگین تر به ته آن نشست کرده و در آنجا تحت عمل باکتریها بحالت مایع در می آیند. مایعات از سپتیک تانکها خارج شده و از طریق مقسم ها به ناطقه تخلیه یا گودال جذب وارد می شوند در این جا فاضلاب جذب زمین می شوند.
طرز ساختن سپتیک تانکها:
سپتیک تانکها طوری ساخته می شوند که دارای یک ورودی و یک خروجی هستند محل نصب خروجی همیشه پائین تر از ورودی است تا از برگشتن فاضلاب بداخل جلوگیری بعمل آید . برای نظافت تناوبی تانک دریجه بر روی آن تعبیه شده است.
بعضی از عواملی را که بایستی در نصب یک سپتیک تانک و ساختن منطقه تخلیه در نظر داشت عبارتند از:
1-مقدار فاضلاب که بایستنی دفع شود.
2-خصوصیات زمین محل از نظر جذب آب .
3-شیب زمین برای ساختن و نصب سپتیک تانکها توصیه می شود به افراد یا موسساتی مراجعه کنیم که در این امر تخصص داشته و به مقررات شهری مربوط به این مورد آشنایی داشته باشند.
لوله ها و اتصالات :
برای سیستم های آبرسانی و فاضلاب منازل لوله های گوناگون و در کیفیت ها مختلفی وجود دارند و هر یک از این انواع مزایا و نواقص خاص خود را داراست.
برای انتخاب بهترین لوله ،آشنایی با انواع مختلف آن و هم چنین اتصالات و رابط های مختلف ضروری می باشد در لوله کشی منازل از چندین نوع لوله استفاده می شوند که در این نوع عبارتند از:لوله چدنی –لوله برنجی و فولادی-لوله مسی-لوله پلاستیکی.
لوله چدنی:
از لوله چدنی معمولا در سیستم فاضلاب منزل در محل مجرای اصلی و لوله هوا گیر اصلی استفاده می شود این نوع لوله گاهی در خطوط افقی فاضلاب نیز بکار برده می شوند.
لوله چدنی از آنجا که دوام فوق العاده زیادی را داراست برای لوله کشی در زیر زمین بسیار مناسب است اما بهرحال خیلی سنگین بوده و نصب آن نیز وقت گیر است.
سیستم های تخلیه یا فاضلاب :
سیستم فاضلاب منزل ،آب آلوده و مصرفی را از خانه دور ساخته و آنرا در فاضلاب عمومی یا چاه و یا سپتیک تانک خصوصی منزل تخلیه می کند.جریان فاضلاب صرفا بعلت فشار ناشی از ثقل زمین یا وزن آب صورت می گیرد.
سیستم فاضلاب از سیستم آب رسانی کاملا جدا است تا از آلودگی آب تازه شما جلوگیری بعمل آید اما بهر صورت مواردی هستند که احتمال آلودگی در آنها وجود دارد . این موارد به ارتباط بینی موسوم بوده و در فوق شرح داده شده اند.
در سیستم فاضلاب خانه ،آب و کثافات از محل وسایل مصرفی و آبریزگاه ها و از طریق لوله های فاضلاب فرعی بطرف لوله اصلی فاضلاب حرکت می کنند. لوله اصلی فاضلاب به مجرای تخلیه متصل می شود که فاضلاب از طریق آن خانه را ترک می کند. دریچه های درب دارای (سه راهی درب دار) هستند که معمولا در یکطرف هر خط افقی فاضلاب وجود دارند از محل این راه بازکن ها می توان در مواقع بند شدن فاضلاب به باز کردن آن مبادرت نمود.
هر وسیله مصرف آب به یک لوله هوا گیری وصل شده است که این به نوبه خود به یک هوا گیر پشت بام متصل است هواگیر اصلی خود ادامه قسمت بالای لوله فاضلاب اصلی است و بهمه توالت های خانه متصل می باشد . هوا گیر های به وسایل مصرف آب دیگر وصل هستند .هوا گیر ها گازهای فاضلاب را خارج ساخته و موجب می گردند که سیستم تخلیه منزل فشاری معادل فشار فضای آزاد داشته باشد.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 10
عوامل خوردگی کوره دیگ بخار:
یکی از مشکلات اساسی که می تواند باعث بروز مشکل برای کوره ها باشد، خوردگی در نقاط و وسایل مختلف آن است که ضمن هدر رفتن
مقدار زیادی انرژی، آسیب های مکانیکی متعددی به کوره وارد می
کند. از آنجا که هر کوره از بخش های متعددی همچون بدنه، اطاقک
احتراق (Fire Chamber)، دودکش، مشعل و سایر تجهیزات جانبی تشکیل
شده، لذا علل خوردگی و راه حل های پیشنهادی در هر یک از بخش ها
به طور مجزا مورد بحث و بررسی قرار می گیرد.
بدنه کوره :
معمولاً بدنه یا دیواره خارجی کوره ها را از ورقه استیل16/3 و کف
آن را از ورقه 4/1 می سازند.
در طراحی ها عموماً اتلاف حرارتی از بدنه کوره حدود 2 درصد منظور
می شود. نوع و ضخامت عایق کاری بدنه داخلی کوره باید طوری در نظر
گرفته شود که دمای سطح خارجی کوره بیش از (1800° F) نشود. اصولاً
عایق کاری و عایق های به کار رفته در کوره ها از نظر سرویس دهی
مناسب، عمر معینی دارند و به مرور زمان ساختمان کریستالی آنها
تغییر یافته و ضخامت آنها کم می شود و این تغییرات ساختمانی سبب
تغییر ضریب انتقال حرارت و اتلاف انرژی به بیرون خواهد بود.
مطالعات میکروسکپیک و کریستالوگرافیک چند نمونه عایق کار کرده،
با نوع تازه آن موید این مطلب است. در صورتی که عایق دیواره های
کوره بر اثر بنایی ناصحیح، عدم انجام صحیح Curing بر مبنای
دستورالعمل، حرارت زیاد و یا شوک های حرارتی ترک بردارد، نشت
گازهای حاصل از احتراق که عبارتند از: So x، No x، N2،Co2
(درصورتی که نفت کوره به عنوان سوخت مصرف شود) و بخار آب در
لابلای این ترک ها و تجمع آنها در لایه بین بدنه کوره و عایق
دیواره و سرد شدن تدریجی آنها تا دمای نقطه شبنم، باعث خوردگی
بدنه می شود.
تداوم این امر ضمن اتلاف مقدار بسیار زیاد انرژی (از طریق بدنه
کوره به محیط اطراف)، باعث ریختن عایق و در نتیجه اتلاف بیشتر
انرژی و گسترش خوردگی بر روی بدنه کوره و سایر نقاط آن خواهد شد.
در یک بررسی ساده بر روی کوره ای که چندین سال از عمر عایق آن می
گذشت ملاحظه شد که دمای اندازه گیری شده واقعی سطح کوره در اکثر
نقاط بسیار بیشتر از میزان طراحی است. این مقدار در بعضی از
موارد به (1800° F) نیز می رسید.
در این کوره ضمن جدا شدن عایق از دیواره کوره و گسترش خوردگی در
نقاط مختلف بدنه، گرم شدن بدنه کوره نیز موجب خم شدن دیواره ها
شده و سرعت خوردگی را افزایش داده و باعث خرابی قسمت های مختلف
کوره شده است. به طور کلی برای جلوگیری و یا کاهش مشکلات خورندگی
بر روی بدنه کوره لازم است به هنگام تعمیرات اساسی ضمن توجه به
عمر عایق دیواره در صورتی که عمر آنها از حد معمول گذشته باشد
(البته با توجه به درجه حرارتی که درهنگام کار کردن واحد درمعرض
آن بوده اند) آنها را با عایق مناسب و استاندارد تعویض کرد و در
صورت وجود ترک (قبل و یا بعد از بنایی)، محل ترک ها را با الیاف
مخصوص KAOWOOL پر کرد. همچنین در بنایی، عملیات Curing را مطابق
دستور العمل انجام داد تا پیوند هیدرولیکی در عایق های بکار رفته
در بنایی، به پیوند سرامیکی تبدیل شده و میزان رطوبت باقیمانده
در دیواره از 0.4 gr/m2 بیشتر نشود.
البته چنانچه Ceramic Fiber (الیاف سرامیکی) به عنوان عایق
دیواره کوره مورد استفاده قرار گیرد، بدلیل عدم نیاز به Curing و
Drying و سبکی وزن، مشکلات احتمالی استفاده از عایق های نیازمند
به Curing را نخواهیم داشت. ضمن این که عمر بیشتر و چسبندگی
بهتری به دیواره، نسبت به دیگر عایق های موجود دارند.
تیوب ها یا لوله های داخل کوره:
معمولاً کوره ها متشکل از دو بخش RADIATION و CONVECTION هستند
که بایستی ظرفیت گرمایی (DUTY) کوره از نظر درصد، تقریباً به
نسبت70 و30 درصد بین این دو بخش تقسیم شود.
از آنجا که لازم است سیال به اندازه دمای مورد نظرگرم شود بایستی
حرارت مورد نیاز خود را از طریق هدایتی از لوله ها و تیوب های
داخل کوره دریافت کند، این لوله ها نیز حرارت مورد نیاز برای این
انتقال حرارت را از طریق تشعشعی و جابجایی در اثر احتراق سوخت در
داخل کوره جذب می کنند. انتخاب آلیاژ مناسب جهت لوله با توجه به
نوع سیال و ترکیبات آن و میزان حرارت دریافتی توسط لوله و در
معرض شعله قرار گرفتن از اهمیت بسزایی برخوردار است.
مسائلی که به بروز مشکلاتی برای تیوب ها منجر می شود عبارتند از:
سرد و گرم شدن ناگهانی لوله، گرم شدن بیش از حد لوله و بالا رفتن
دمای تیوب از حداکثر مجاز آن، در معرض شعله قرار گرفتن و برخورد
شعله به لوله (impingement) ، ایجاد یک لایه کُک بر روی جداره
داخلی لوله، Carborization، Hogging، Bending، Bowing، Sagging،
Creeping، خوردگی جداره داخلی لوله بر اثر وجود مواد خورنده در
سیال عبوری، خوردگی جداره بیرونی لوله در اثر رسوبات حاصل از
احتراق سوخت مایع بر روی جداره خارجی لوله، کارکرد لوله بیش از
عمر نامی آن (80 هزار الی 110 هزار ساعت)
سرد و گرم شدن ناگهانی لوله، ممکن است به Creeping (خزش) که
نتیجه آن ازدیاد قطر لوله می باشد منجر شود که در این صورت
احتمال پارگی لوله و شکنندگی آن را افزایش می دهد. چنانچه در اثر
Creeping مقدار ازدیاد قطر از 2 درصد قطرخارجی لوله بیشتر شود،
لوله مزبور بایستی تعویض شود.
در یک اندازه گیری عملی که برای برخی از تیوب های هشت اینچی و شش
اینچی کوره (کوره تقطیر در خلا) H-151 در هنگام تعمیرات اساسی
صورت پذیرفت، محاسبات زیر بدست آمد:
برای تیوب "8
OD = 8.625 (اصلی)
OD = 8.75 (اندازه گیری شده)
(OD = (0.125 (افزایش قطر لوله)
(OD ALLOWABLE = (8.625x2%=0.1725
هنوز می توان از تیوب مزبور استفاده کرد.
برای تیوب "6
OD = 8.625 (اصلی)
OD = 8.675 (اندازه گیری شده)
(OD = (0.05 (افزایش قطر لوله)
(OD ALLOWABLE = (6.625x2%=0.1325
که هنوز می توان از تیوب شش اینچی مزبور استفاده کرد.
همان طور که مشخص است تیوب 8 حدوداً بیش از دو برابر تیوب 6
ازدیاد قطر داشته است.
برای لوله "6
کوره H-101 (اتمسفریک)
OD =6.625 (اصلی)
OD = 6.635 (اندازه گیری شده)
OD =0.01 (اندازه قطر لوله)
(OD ALLOWABLE = (6.625x2%=0.1325
بالا نگه داشتن دمای پوسته تیوب ها سبب کاهش مقاومت لوله ها و
کاهش عمر مفید و گارانتی حدود یکصد هزار ساعتی آنها می شود.
تجربه نشان داده است که اگر به مدت 6 هفته سطح خارجی (پوسته)
لوله ای 900°C بیش از مقدار طراحی در معرض حرارت قرار بگیرد، عمر
تیوب ها نصف می شود.
یکی دیگر از مشکلات پیش آمده برای لوله ها، برخورد شعله به لوله
(IMPINGEMENT) است، که باعث OVER HEATING کوره و در نهایت HOT
SPOT می شود. این امر می تواند ضمن لطمه زدن در محل برخورد شعله
به لوله، باعث تشدید عمل کراکینگ مواد داخل لوله شود و مواد
مزبور به دو قسمت سبک و سنگین تبدیل گردند.
مواد سنگین به جداره داخلی لوله چسبیده و کک ایجاد می کنند. به
ازای تشکیل یک میلی لیتر ضخامت کک با توجه به ضریب هدایتی کک که
برابر مقدار خاصی می باشد برای یک شارژ حرارتی معمول در قسمت
تشعشعی کوره H-101 (اتمسفریک) می باشد، معادل فرمول زیر است:
می بایستی 300°C دمای پوسته تیوب بالاتر رود تا سیال موجود در
تیوب به همان دمای موردنظر برسد. در این صورت ملاحظه می شود بالا
رفتن دمای تیوب به چه میزان اتلاف سوخت و انرژی، داشته و به طور
کلی به مرور زمان چه لطمه ها و آسیب هایی به کل کوره وارد می
شود. به عبارت دیگراختلاف دمای پوسته تیوب های کوره که در طراحی
عموماً 1000°F بالاتر از دمای متوسط سیال درون آن در نظر گرفته
می شود، به مرور زمان با تشکیل کک (با رسوبات بیرونی) بیشتر می
شود.
مشکل دیگر که به علت دمای بالا برای تیوب های کوره ها ایجاد می
شود خمیدگی در جهت های مختلف این تیوب هاست.
یکی دیگر از مسائلی که باعث خم شدن و شکستگی لوله ها می شود
پدیده کربوریزیشن (carborization) است که بر اثر ترکیب کربن با
آهن پدید می آید: این واکنش که باعث تولید کربور آهن خواهد شد در
دمای بالاتر از 7000°c ایجاد می شود 7000°C)تا 14000°C). این
حالت عمدتاً در زمان Curing و drying کوره پدید می آید. البته
Hot spot نیز بیشتر در این زمان ها اتفاق می افتد.
وجود ناخالصی های مختلف مثل فلزات سدیم، وانادیم، نیکل و غیر...،
فلزاتی مثل گوگرد و ازت به صورت ترکیبات آلی در سوخت های مایع،
مسائل عدیده ای را باعث می شوند، که از آن جمله کاهش انتقال
حرارت از طریق سطح خارجی تیوب به سیال درون تیوب است که به علت
تشکیل رسوبات مربوط به ناخالصی های مزبور بخصوص رسوبات فلزی بر
روی تیوب هاست. به همین دلیل برای رسیدن به دمای مورد نظر سیال
موجود در لوله، مجبور به مصرف سوخت بیشتر خواهیم شد. در نتیجه
مشکلات ایجاد گرمای بیشتر در کوره و مسائل زیست محیطی در اثر
تشکیل SOX، NOX و ... را خواهیم داشت. از طرفی به دلیل نشست این
رسوب ها بر روی تیوب ها مسئله خوردگی و سوراخ شدن پیش خواهد آمد.
علت این خوردگی که از نوعHigh temp corrosion می باشد پدیده
سولفیدیش است، که در دماهای بین630°C تا700°C بوقوع می پیوندد.
همان طور که گفته شد علت اصلی آن وجود عناصر وانادیم، گوگرد،
سدیم و نیکل به همراه گازهای حاصل از احتراق سوخت است.
فلزات ذکر شده (بصورت اکسید) به کمک این گازها بالا رفته و بر
روی تیوب های قسمت تشعشع و جابه جایی می نشینند. خوردگی و سوراخ
شدن تیوب، بر اصل اکسید شدن و ترکیب عناصر مزبور باآلیاژ تیوب
استوار بوده که باعث ایجاد ترکیبات کمپلکس با نقطه ذوب پایین می
شود.
ترکیب اولیه پس از Na2SO4، سدیم وانادایت به فرمول Na2O6V2O5 است
که نقطه ذوب آن 6300°C می باشد. عمده ترکیبات دیگر که شامل
کمپلکسی از ترکیب پنتا اکسید وانادیم و سدیم است در شرایطی به
مراتب ملایم تر و درجه حرارتی پایین تر ذوب می شوند. برای مثال
مخلوط وانادیل وانادیت سدیم به فرمول Na2OV2O411V2O5 و
متاوانادات سدیم به فرمول Na2OV2O5 در 5270°C ذوب می شوند. ذوب
این کمپلکس ها شرایط مساعدی را برای تسریع خوردگی بوجود می آورد.
در اینجا ترکیبات حاصل از احتراق نه تنها به نوع ناخالصی بلکه به
نسبت آنها نیز بستگی کامل دارد و در مورد وانادیم میزان سدیم از
اهمیت خاصی برخوردار است.
البته سدیم وانادیل وانادایت پس از تولید و ذوب شدن، با فلز
آلیاژ مربوط به تیوب، ترکیب شده و بر اثر سیال بودن از سطح آلیاژ
کنار رفته و سطوح زیرین تیوب مربوطه در معرض ترکیب جدید قرار می
گیرد. ادامه این وضع به کاهش ضخامت تیوب و در نهایت سوراخ شدن و
از کار افتادن آن منجر می شود.
مشعل ها و سوخت:
نقش کیفیت نوع سوخت و نوع مشعل ها شاید از همه عوامل یاد شده در
کارکرد مناسب، راندمان بیشتر و کاهش خوردگی بیشتر برخوردار باشد.
چنانچه از مشعل های Low excess air و یا نوع مرحله سوز (stage
burning) استفاده شود، هوای اضافی مورد نیاز به میزان قابل توجهی
کاهش یافته و به حدود 3 و 5 درصد می رسد که ضمن کاهش و به حداقل
رساندن گازهای خورنده و مضر زیست محیطی مثل NOx، Sox، در بالا
بردن راندمان کوره بسیار موثر خواهد بود. این امر باعث کاهش مصرف
سوخت شده، و در نتیجه باعث کاهش گازهای حاصل از احتراق و آسیب
رساندن به تیوب ها، بدنه کوره و دود کش ها خواهد شد. وضعیت
عملکرد مشعل ها بایستی به طور مداوم زیر نظر باشد. بد سوزی مشعل
ها می تواند دلایل متضادی، همچون نامناسب بودن سوخت، عیب
مکانیکی، کک گرفتگی سرمشعل و یا بالعکس، رفتگی و سائیدگی
(Errosion) بیش از حد سر مشعل، کمبود بخار پودر کننده و ...
داشته باشد. وجود مواد آسفالتی، افزایش مقدار کربن باقیمانده
(carbon residue) ، بالا بودنِ مقادیر فلزات مثل سدیم، نیکل،
وانادیم و هم چنین سولفور در سوخت مسائل متعددی را در سیستم
احتراق ایجاد می کند که این مسائل به طور کلی به دو دسته تقسیم
می شوند.
الف - مسائل عملیاتی قبل از مشعل ها و احتراق:
این مسایل در اثر وجود آب و نمک ها و ته نشین شدن آنها در ذخیره
سازی نفت کوره بوجود می آیند. در این رابطه عدم تخلیه مداوم مخزن
ذخیره سازی، خوردگی و مشکلات ایجاد شده به طور خلاصه عبارتست از:
تشکیل لجن (sludge) در مخزن در اثر عدم استخراج کامل نفت کوره و
آب، انباشته شدن لجن در فیلترها در اثر محصولات ناشی از خوردگی و
پلیمریزاسیون هیدروکربورهای سنگین به علت اثر کاتالیزوری محصولات
ناشی از خوردگی، انباشته شدن لجن و صمغ های آلی در گرم کننده
سوخت، گرفتگی و خوردگی در نازل های پودر کننده نفت کوره
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 110
فصل اول : مشخصات روتور توربین بخار E-Type
1-1 آشنایی :
این روتور دارای شفتی به طول mm6239 می باشد که برروی این شفت 31 ردیف بلید از نوعهای مختلف می نشینند.
بلیدهای روتور به 3 دسته تقسیم می شوند.
1-TX blades
2-F blades
3-ND blades
بلیدهای TX که 28 ردیف اول را شامل می شوند.
بلیدهای F فقط ردیف 29 را شامل می شوند.
Nd blades with fir-Tree Root هم ردیف 30 و 31 را شامل می شوند.
ردیف 1-24 روتور را پوسته inner casing پوشش می دهد که آن( High pressure) گفته می شود. (طبق گفته EMD به آن IP می گویند).
و ردیف 25 تا 29 را پوسته quide blade carrier شامل می شود که به آن IP (Instermediate pressure)می گویند.
و ردیف 30-31 را پوسته Stationary blade ring شامل می شود که به LP (Low pressure) تقسیم بندی می شود.
2-1- قسمت های روتور:
1)کاورسر شفت Turning gear
2) دندانه های محیطی سرشفت
جهت سنور دور روتور
3) محل قرار گرفتن یاتاقان
4) محل قرار گرفتن سینگمنت outer casing
5) محل قرار گرفتن سینگمنت innner casing (استوانه بالانس)
6)24 ردیف پره های قسمت HP روتور (high pressure)
7)سوراخهای بالانسینگ
8) 5 ردیف پره های قسمت IP روتور (Inter mediate pressure)
9) دو ردیف پره های قسمت Lp روتور (low pressure)
10) محل سوراخهای بالانسینگ
11)شفت سیل shaft casing
12) برینگ سیل bering Casing
13) انتهای شفت نشیمنگاه یاتاقان
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 3
اولین آلایندههای هوا احتمالا دارای منشأ طبیعی بودهاند. دود، بخار بدبو، خاکستر و گازهای متصاعد شده از آتشفشانها و آتش سوزی جنگلها، گرد و غبار ناشی از توفانها در نواحی خشک، در نواحی کم ارتفاع مرطوب و مههای رقیق شامل ذرات حاصل از درختهای کاج و صنوبر در نواحی کوهستانی، پیش از آنکه مشکلات مربوط به سلامت انسانها و مشکلات ناشی از فعالیتهای انسانی محسوس باشند، کلا جزئی از محیط زیست ما به شمار میرفتهاند. به استثنای موارد حاد، نظیر فوران آتشفشان.
آلودگیهای ناشی از منابع طبیعی معمولا ایجاد چنان مشکلات جدی برای حیات جانوران و یا اموال انسانها نمیکنند. این در حالی است که فعالیتهای انسانی ایجاد چنان مشکلاتی از نظر آلودگی مینمایند که بیم آن میرود، بخشهایی از اتمسفر زمین تبدیل به محیطی مضر برای سلامت انسانها گردد.
تاریخچه آلودگی
دود یکی از قدیمیترین آلایندههای هوا است که برای سلامت بشر مضر است. زمانی که دود ناشی از آتش حاصله از سوختن چوب توسط ساکنین اولیه غارها جای خود را به دود ناشی از کورههای زغال سوز در شهرهای پر جمعیت داد، آلودگی هوا، بقدری افزایش یافت که زنگ خظر برای برخی از ساکنان آن شهرها وجود به صدا در آمد. در سال ۶۱ بعد از میلاد سنکا (Seneca) فیلسوف رومی از هوای روم بعنوان هوای سنگین و از دودکشهای هود با عنوان تولید کننده بوی بد نام برد. در سال ۱۲۷۳ میلادی ادوارد اول پادشاه انگلستان میگوید هوای لندن به حدی با دود و مه آلوده و آزار دهنده است که از سوختن زغال سنگ دریایی جلوگیری خواهد کرد.
علیرغم هشدار پادشاه مذکور، نابودی گسترده جنگلها، چوب را تبدیل به یک کالای کمیاب نمود و ساکنان لندن را وادار ساخت تا بجای کم کردن مصرف زغال سنگ به میزان بیشتری از آن استفاده کنند. تا سال ۱۶۶۱ میلادی یعنی بیش از یک قرن بعد، تغییر قابل ملاحظهای در آلودگی هوا بوجود نیامد. چاره جویی و پیشنهادات عبارت بودند از برچیدن تمامی کارخانههای دودزا از شهر لندن و بوجود آمدن کمربند سبز در اطراف شهر و بالاخره این چاره جوییها کارساز شد.
مشکلات آلودگی هوا
شواهدی دال بر علاقمندی جوامع انسانی در غلبه بر مشکل آلودگی هوا وجود دارند که از جمله آنها میتوان از تصویب و اجرای قوانین کنترل دود در شیگاگو سینسنیاتی به سال ۱۸۸۱ نام برد. ولی اجرای این قوانین و قوانی مشابه آنها با دشواریهایی مواجه گردید و برای تمیز نمودن هوا یا جلوگیری از آلودگی بیشتر آن تقریبا کاری انجام نشد. در سال ۱۹۳۰ در دره بسیار صنعتی میوز در کشور بلژیک در اثر پدیده وارونگی مه دود در یک فضای معین محبوس گردید. در نتیجه ۶۳ تن جان خود را از دست داده و چندین هزار تن دیگر بیمار شوند. حدود ۱۸ سال بعد در شرایط مشابهی در ایلات متحده آمریکا یکی از اولین و بزرگترین فاجعههای زائیده آلودگیها رخ داد، یعنی ۱۷ نفر جان خود را باختند و ۴۳ درصد جمعیت نورا، پنسلوانیا بیمار شدند.
درست سه سال بعد از فاجعه مه دود لندن در سال ۱۹۵۲، که نادیده گرفتن عواقب جدی آلودگی هوا غیر ممکن گردید. در روز سه شنبه ۴ دسامبر سال ۱۹۵۲ حجم عظیمی از هوای گرم به طرف قسمت جنوبی انگلستان حرکت کرده با ایجاد یک وارونگی دمایی سبب نشست یک مه سفید در لندن شد و این مه دود به دستگاه تنفسی انسان سخت آسیب رسانده بود و بیشتر مردم بزودی با مشکلاتی از قبیل قرمز شدن چشمها، سوزش گلو و سرفههای زیاد مواجه شدند و پیش از آنکه در ۹ دسامبر از سطح شهر دور شوند ۴۰۰ مورد مرگ مربوط به آلودگی هوا گزارش کردند. این تعداد تلفات برای متوجه ساختن افکار بریتانیاییها جهت تصویب قانون هوای تمیز در سال ۱۹۵۶ کافی بود.
قانون کنترل آلودگی هوا
این قانون در ایالات متحده امریکا قانون کنترل آلودگی هوا (قانون عمومی ۱۵۹_۸۴) به تصویب رسید. اما این مصوبه تنها موجب به تصویب رسیدن یک قانون مؤثرتر گردید. این قانون یکبار در سال ۱۹۶۰ و بار دیگر در سال ۱۹۶۲ بازنگری شد و به قانون هوای تمیز سال ۱۹۶۳ (قانون عمومی ۲۰۶_۸۸) که برنامههای ناحیهای محلی و ایالتی را برای کنترل هوا تشویق میکرد و در عین حال حق مداخله را برای دولت فدرال در صورت به خطر افتادن سلامت و رفاه اهالی ایالت در اثر آلودگی ناشی از ایالات دیگر محفوظ نگه میداشت، الحاق گردید. این قانون معیارهایی برای کیفیت هوا وضع کرد که بر اساس آنها استانداردهای کیفیت هوا و گازهای متصاعد شده در دهه ۱۹۶۰ میلادی پی ریزی شد.
اجرای قانون هوای تمیز
اجرای قانون هوای تمیز در سال ۱۹۷۰ به آژانس نو بنیاد حفاظت محیط زیست (EPA) محول گریدید. قانون به وضع استانداردهای درجه اول و دوم کیفیت هوای محیط زیست پرداخت. استانداردهای اولیه متکی بر معیارهای کیفیت هوا، برای حفظ سلامت عموم مردم، دامنه وسیعی از ایمنی را در نظر میگیرد. در حالی که استانداردهای ثانوی که آنها نیز متکی بر معیارهای کیفیت هوا باشند برای حفظ رفاه عموم انسانها، به علاوه گیاهان، جانوران، اموال و دارائی هستند.
اصطلاحات قانون هوای تمیز به سال ۱۹۷۷ به تقویت باز هم بیشتر قوانین موجود پرداخته است و ملتها را به تمیز نگهداشتن مورد ارزیابی و اصلاح دوباره قرار گرفتند. اگر چه این امکان وجود دارد که تغییرات بیشتری نیز انجام شود، کاملا متحمل است که کنترل آلودگی هوا برای ایجاد شرایطی که تحت آن هوا برای نسلهای آینده تمیزتر و سالمتر نگاهداشته شود، از حمایت بیشتر عامه مردم برخوردار شود.