لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 67
انتگرال تصادفی: (18)
فرآیند x(t)، انتگرال پذیر MS است اگر
(5-39)
قضیه: فرآیند x(t) انتگرال پذیر MS است اگر (5-40)
نتیجه: (5-41)
فصل ششم: زنجیرهای مارکف:
فرآیندهای مارکف یک تعمیم ساده برای فرآیندهای مستقل است برای مجاز کردن وابستگی برآمد فاصله به یکی از برآمدهای قبلی که به برآمدهای قبل از آن وابسته نباشد. بنابراین در فرآیند مارکف x(t) گذشته روی آینده بی تاثیر است اگر وضعیت فعلی فرآیند مشخص باشد. یعنی اگر آنگاه: (6-1)
و اگر آنگاه:
حالت خاصی از فرآیندهای مارکف، زنجیر مارکف است. هر دو فرآیند و زنجیر مارکف تبه به اینکه فضای حالتشان گفته یا پیوسته است، می توانند گسسته یا پیوسته باشند.
تعریف: زنجیر مارکف با زمان گسسته یک فرآیند تصادفی مارکف است که فضای حالت آن مجموعه ای شمارا یا شما را نامتناهی بوده و در آن که تعداد Lxn نتیجه آزمایش n ام می نامند.
تئوری زنجیرهای پیوسته(زنجیرهایی با فضای حالت ناشما را یا شما را نامتناهی) بوسیله کلوموگروف آغاز و پل به وسیله دوبلین- دوب- لوی و بسیاری دیگر اولویت یافت.
احتمالات انتقال: (20)
احتمال تغییر وضعیت یک مرحله ای برابر احتمال شرطی است که به صورت زیر تعریف می شود:
(6-3)
احتمال تغییر وضعیت یک مرحله ای برابر احتمال رفتن از حالت I به حالت j در یک دوره زمانی با آغاز از n بیان می شود.
این نماد تاکید می کند که در حالت کلی، احتمالات انتقال نه فقط توابعی از وضعیت ابتدایی و انتهایی اند، بلکه به زمان انتقال نیز بستگی دارند.
تعریف، وقتی احتمالات انتقال یک مرحله ای از متغیر زمان( یعنی مقدار n) منتقل باشند، آنگاه گوییم فرآیند مارکف دارای احتمالات انتقال مانا می باشد. ماتریس مارکف یا ماتریس احتمال انتقال یک آرایه مربعی نامتناهی به صورت. می باشد که در آن سطر(i+1) ام توزیع احتمال مقادیر Xn+1 تحت شرط(Xn=i) است.
هر گاه تغییر حالتها متناهی باشد آنگاه P یک ماتریس مربعی متناهی است که مرتبه اش( تعداد سطرها) مساوی تعداد حالتهاست. واضح است که Pij ما در شرایط زیر صدق می کنند:
سطر فرآیندی با مشخص بودن تابع احتمال انتقال یک مرحله ای و X0(به عنوان حالت آغازین فرآیند) کاملا معین است زیرا طبق تعریف احتمالات شرطی، داریم:
(6-5)
و اگر فضای حالت متوالی نباشد یا فرآیند فضای حالت را به گونه ای متوالی طی نکند می توان گفت:
(6-6)
نمونه هایی از زنجیره های مارکف: (20)
1) زنجیرهای مارکف همگن: (18)
تعریف: یک زنجیر مارکف را همگن در زمان نامنداگر(m,n) Pij فقط به تفاضل n-m بستگی داشته باشد. و اگر این احتمالات انتقال به زمان بستگی داشته باشند آنگاه فرآیند را ناهمگن می گوئیم. اگر زنجیر همگن باشد، احتمالات تغییر وضعیت را مانا می نامیم و (6-7)
که نشان دهنده احتمال شرطی یک زنجیر مارکف همگن است زمانی که زنجیر در n مرحله از حالتi به حالت j می رود.
مدت زمانی که زنجیر مارکف همگن y صدف می کند در رسیدن به یک حالت(زمان رسیدن) باید بی حافظه باشد، زمانی که حالت فعلی برای تعیین آینده کافیست. بنابراین در حالت گسسته اگر زمانهای جاری tn به طور یکنواخت در tn=nt قرار بگیرند، y رابطه زیر را برآورد می سازد که y یک متغیر تصادفی هندسی است.
(6-8)
بنابراین مدتی که یک زنجیر مارکف گسسته زمان همگن در هر حالتی می گذارند یک توزیع هندسی است.
زنجیره های مارکف همگن(فضایی) را در دو حالت بررسی کرده و در هر حالت فرض می کنیم:
یک متغیر تصادفی گسسته با مقدار صحیح نامنفی باشد
همچنین و
مشاهداتی مستقل از باشند و همچنین فضای فرآیند مجموعه اعداد صحیح نامنفی است.
الف) فرآیند به ازای را در نظر می گیریم که با تعریف شده است. ماتریس آن به شکل زیر می باشد. یکسان بودن سطرها
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 67
انتگرال تصادفی: (18)
فرآیند x(t)، انتگرال پذیر MS است اگر
(5-39)
قضیه: فرآیند x(t) انتگرال پذیر MS است اگر (5-40)
نتیجه: (5-41)
فصل ششم: زنجیرهای مارکف:
فرآیندهای مارکف یک تعمیم ساده برای فرآیندهای مستقل است برای مجاز کردن وابستگی برآمد فاصله به یکی از برآمدهای قبلی که به برآمدهای قبل از آن وابسته نباشد. بنابراین در فرآیند مارکف x(t) گذشته روی آینده بی تاثیر است اگر وضعیت فعلی فرآیند مشخص باشد. یعنی اگر آنگاه: (6-1)
و اگر آنگاه:
حالت خاصی از فرآیندهای مارکف، زنجیر مارکف است. هر دو فرآیند و زنجیر مارکف تبه به اینکه فضای حالتشان گفته یا پیوسته است، می توانند گسسته یا پیوسته باشند.
تعریف: زنجیر مارکف با زمان گسسته یک فرآیند تصادفی مارکف است که فضای حالت آن مجموعه ای شمارا یا شما را نامتناهی بوده و در آن که تعداد Lxn نتیجه آزمایش n ام می نامند.
تئوری زنجیرهای پیوسته(زنجیرهایی با فضای حالت ناشما را یا شما را نامتناهی) بوسیله کلوموگروف آغاز و پل به وسیله دوبلین- دوب- لوی و بسیاری دیگر اولویت یافت.
احتمالات انتقال: (20)
احتمال تغییر وضعیت یک مرحله ای برابر احتمال شرطی است که به صورت زیر تعریف می شود:
(6-3)
احتمال تغییر وضعیت یک مرحله ای برابر احتمال رفتن از حالت I به حالت j در یک دوره زمانی با آغاز از n بیان می شود.
این نماد تاکید می کند که در حالت کلی، احتمالات انتقال نه فقط توابعی از وضعیت ابتدایی و انتهایی اند، بلکه به زمان انتقال نیز بستگی دارند.
تعریف، وقتی احتمالات انتقال یک مرحله ای از متغیر زمان( یعنی مقدار n) منتقل باشند، آنگاه گوییم فرآیند مارکف دارای احتمالات انتقال مانا می باشد. ماتریس مارکف یا ماتریس احتمال انتقال یک آرایه مربعی نامتناهی به صورت. می باشد که در آن سطر(i+1) ام توزیع احتمال مقادیر Xn+1 تحت شرط(Xn=i) است.
هر گاه تغییر حالتها متناهی باشد آنگاه P یک ماتریس مربعی متناهی است که مرتبه اش( تعداد سطرها) مساوی تعداد حالتهاست. واضح است که Pij ما در شرایط زیر صدق می کنند:
سطر فرآیندی با مشخص بودن تابع احتمال انتقال یک مرحله ای و X0(به عنوان حالت آغازین فرآیند) کاملا معین است زیرا طبق تعریف احتمالات شرطی، داریم:
(6-5)
و اگر فضای حالت متوالی نباشد یا فرآیند فضای حالت را به گونه ای متوالی طی نکند می توان گفت:
(6-6)
نمونه هایی از زنجیره های مارکف: (20)
1) زنجیرهای مارکف همگن: (18)
تعریف: یک زنجیر مارکف را همگن در زمان نامنداگر(m,n) Pij فقط به تفاضل n-m بستگی داشته باشد. و اگر این احتمالات انتقال به زمان بستگی داشته باشند آنگاه فرآیند را ناهمگن می گوئیم. اگر زنجیر همگن باشد، احتمالات تغییر وضعیت را مانا می نامیم و (6-7)
که نشان دهنده احتمال شرطی یک زنجیر مارکف همگن است زمانی که زنجیر در n مرحله از حالتi به حالت j می رود.
مدت زمانی که زنجیر مارکف همگن y صدف می کند در رسیدن به یک حالت(زمان رسیدن) باید بی حافظه باشد، زمانی که حالت فعلی برای تعیین آینده کافیست. بنابراین در حالت گسسته اگر زمانهای جاری tn به طور یکنواخت در tn=nt قرار بگیرند، y رابطه زیر را برآورد می سازد که y یک متغیر تصادفی هندسی است.
(6-8)
بنابراین مدتی که یک زنجیر مارکف گسسته زمان همگن در هر حالتی می گذارند یک توزیع هندسی است.
زنجیره های مارکف همگن(فضایی) را در دو حالت بررسی کرده و در هر حالت فرض می کنیم:
یک متغیر تصادفی گسسته با مقدار صحیح نامنفی باشد
همچنین و
مشاهداتی مستقل از باشند و همچنین فضای فرآیند مجموعه اعداد صحیح نامنفی است.
الف) فرآیند به ازای را در نظر می گیریم که با تعریف شده است. ماتریس آن به شکل زیر می باشد. یکسان بودن سطرها
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 20
«یک مدل تصادفی مربوط به تصمیمات استراتژیک»
ـ مدل تصادفی: تصمیمات استراتژیک
ما تلاش میکنیم عوامل تأثیرگذار در تصمیمگیری را برحسب متغیرها تهیه کرده و ارتباطات بین آنها را تعیین کنیم. تلاشها در جهت ارائه و تکمیل مدل یکپارچه و پیشرفته است. این امر با درنظر گرفتن متغیرهای مهم و تأثیرگذار در چهار فهرست قابل ارائه است که این موارد دارای ویژگیهای مشترکی هستند. این موارد بشرح زیر هستند.
ـ ویژگیها و خصوصیات محیطی: این متغیرها مربوط به ماهیت ساختار هستند و بر چهارچوب سازمانی آن میتوانند تأثیر داشته باشند.
ویژگیهای واحد «بخش» تصمیمگیری: متغیرهای زیادی در ارتباط با این موضوع وجود دارند که میتوانند در فرآیند تصمیمگیری تأثیرگذار باشند.
ـ ویژگیهای اطلاعاتی: این متغیرها با ابعاد و مقادیر کمی ارتباط دارند که در این رابطه اطلاعات و سیستم اطلاعاتی مرتبط با آنان بهگونهای طراحی شدهاند که بتوانند از فرآیند تصمیمگیری استراتژیک حمایت و پشتیبانی کنند.
90101 ویژگیهای محیط کاری «کاربردی»:
فرآیند انجام هر تصمیمگیری نمیتواند بدون وجود فضای کاربردی قابل پیادهسازی نیست. این فرآیند به منظور تحقق علاوه بر محیط پیادهسازی به عواملی نیز نیازمند است. مهمترین این موارد بشرح زیر هستند.
ـ محیط و فضای خارجی: تقاضا و درخواستها برای دریافت هر نوع خدمات میتواند سبب اعمال فشار و تنش بر محیط شود و بدنبال آن فضای بازار و شرایط حاکم برآن و میزان تقاضای مشتری تأثیر میپذیرند. در این رابطه برخی آژانسها و نمایندگیها میتوانند سبب تشویق و ترغیب فعالیتهای سازمانی و تحولات درون آن شوند.
ـ محیط سازمانی: درحین فرآیند سازماندهی، چهارچوب کاری از جمله عوامل مهم و کلیدی در این رابطه هستند. میزان ارتباطات و بر هم کنشهای داخلی میتوانند عملکرد حفاظتی و پشتیبانی از فعالیتهای مدیریتی را انجام دهد. اهداف و سیاستها برپایه محیط کاربردی و عملیاتی تعیین میشوند.
90102 ویژگیها و خصوصیات یک تصمیم ویژه
هر فرآیند تصمیمگیری استراتژیک برحسب ویژگیهای سازمانی تعیین میشود. این خصوصیت واحد و منحصر بفرد را میتوان بصورت زیر طبقهبندی کرد:
1ـ ماهیت مشکل استراتژیک، این امر دارای 2 بخش است،
ـ مقیاس و وسعت مسأله بستگی به تصمیمات استراتژیک و ابعاد سازمانی دارد. این امر را میتوان معمولاً برحسب میزان تأثیرگذاری منابع تعیین کرد. در این رابطه متغیر زمان و میزان در دسترس آن در تصمیمگیری از جایگاه ویژهای برخوردار است.
ـ میزان پیچیدگی و تفاوتهای برپایه تعریفی که از یک مسأله استراتژیک ویژه صورت میگیرد تعیین میشود. در این رابطه خصوصیات و ویژگیهای محیط و شرایط کاری میتوانند سریعاً ماهیت و محتوای تصمیم را تغییر دهند. نظر و عقیده مرتبط با آن میتواند از یک هفته تا هفته دیگر دچار تغییر شود. بازار میتواند در عرصه رقابت بین ارائه کنندگان محصولات میتواند در نرخ سرعت تغییرات اثرات قابل توجهی داشته باشند.
2ـ عوامل مربوط به تصمیمگیری میتوانند در رابطه با هر نوع تصمیم استراتژیک تغییر کنند، باتوجه به تعداد متغیرها حالات و روشهای گوناگون قابل استفاده هستند و میتوان در رابطه با هر موضوع چندین راه حل را ارائه داد. مثالهایی از این عوامل مهم بشرح زیر هستند.
ـ کیفیت تصمیمگیری در رابطه با سازمان.
ـ میزان قابلیت انحراف و اشتباه در هر بار تصمیمگیری
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 66
انتگرال تصادفی: (18)
فرآیند x(t)، انتگرال پذیر MS است اگر
(5-39)
قضیه: فرآیند x(t) انتگرال پذیر MS است اگر (5-40)
نتیجه: (5-41)
فصل ششم: زنجیرهای مارکف:
فرآیندهای مارکف یک تعمیم ساده برای فرآیندهای مستقل است برای مجاز کردن وابستگی برآمد فاصله به یکی از برآمدهای قبلی که به برآمدهای قبل از آن وابسته نباشد. بنابراین در فرآیند مارکف x(t) گذشته روی آینده بی تاثیر است اگر وضعیت فعلی فرآیند مشخص باشد. یعنی اگر آنگاه: (6-1)
و اگر آنگاه:
حالت خاصی از فرآیندهای مارکف، زنجیر مارکف است. هر دو فرآیند و زنجیر مارکف تبه به اینکه فضای حالتشان گفته یا پیوسته است، می توانند گسسته یا پیوسته باشند.
تعریف: زنجیر مارکف با زمان گسسته یک فرآیند تصادفی مارکف است که فضای حالت آن مجموعه ای شمارا یا شما را نامتناهی بوده و در آن که تعداد Lxn نتیجه آزمایش n ام می نامند.
تئوری زنجیرهای پیوسته(زنجیرهایی با فضای حالت ناشما را یا شما را نامتناهی) بوسیله کلوموگروف آغاز و پل به وسیله دوبلین- دوب- لوی و بسیاری دیگر اولویت یافت.
احتمالات انتقال: (20)
احتمال تغییر وضعیت یک مرحله ای برابر احتمال شرطی است که به صورت زیر تعریف می شود:
(6-3)
احتمال تغییر وضعیت یک مرحله ای برابر احتمال رفتن از حالت I به حالت j در یک دوره زمانی با آغاز از n بیان می شود.
این نماد تاکید می کند که در حالت کلی، احتمالات انتقال نه فقط توابعی از وضعیت ابتدایی و انتهایی اند، بلکه به زمان انتقال نیز بستگی دارند.
تعریف، وقتی احتمالات انتقال یک مرحله ای از متغیر زمان( یعنی مقدار n) منتقل باشند، آنگاه گوییم فرآیند مارکف دارای احتمالات انتقال مانا می باشد. ماتریس مارکف یا ماتریس احتمال انتقال یک آرایه مربعی نامتناهی به صورت. می باشد که در آن سطر(i+1) ام توزیع احتمال مقادیر Xn+1 تحت شرط(Xn=i) است.
هر گاه تغییر حالتها متناهی باشد آنگاه P یک ماتریس مربعی متناهی است که مرتبه اش( تعداد سطرها) مساوی تعداد حالتهاست. واضح است که Pij ما در شرایط زیر صدق می کنند:
سطر فرآیندی با مشخص بودن تابع احتمال انتقال یک مرحله ای و X0(به عنوان حالت آغازین فرآیند) کاملا معین است زیرا طبق تعریف احتمالات شرطی، داریم:
(6-5)
و اگر فضای حالت متوالی نباشد یا فرآیند فضای حالت را به گونه ای متوالی طی نکند می توان گفت:
(6-6)
نمونه هایی از زنجیره های مارکف: (20)
1) زنجیرهای مارکف همگن: (18)
تعریف: یک زنجیر مارکف را همگن در زمان نامنداگر(m,n) Pij فقط به تفاضل n-m بستگی داشته باشد. و اگر این احتمالات انتقال به زمان بستگی داشته باشند آنگاه فرآیند را ناهمگن می گوئیم. اگر زنجیر همگن باشد، احتمالات تغییر وضعیت را مانا می نامیم و (6-7)
که نشان دهنده احتمال شرطی یک زنجیر مارکف همگن است زمانی که زنجیر در n مرحله از حالتi به حالت j می رود.
مدت زمانی که زنجیر مارکف همگن y صدف می کند در رسیدن به یک حالت(زمان رسیدن) باید بی حافظه باشد، زمانی که حالت فعلی برای تعیین آینده کافیست. بنابراین در حالت گسسته اگر زمانهای جاری tn به طور یکنواخت در tn=nt قرار بگیرند، y رابطه زیر را برآورد می سازد که y یک متغیر تصادفی هندسی است.
(6-8)
بنابراین مدتی که یک زنجیر مارکف گسسته زمان همگن در هر حالتی می گذارند یک توزیع هندسی است.
زنجیره های مارکف همگن(فضایی) را در دو حالت بررسی کرده و در هر حالت فرض می کنیم:
یک متغیر تصادفی گسسته با مقدار صحیح نامنفی باشد
همچنین و
مشاهداتی مستقل از باشند و همچنین فضای فرآیند مجموعه اعداد صحیح نامنفی است.
الف) فرآیند به ازای را در نظر می گیریم که با تعریف شده است. ماتریس آن
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 66
انتگرال تصادفی: (18)
فرآیند x(t)، انتگرال پذیر MS است اگر
(5-39)
قضیه: فرآیند x(t) انتگرال پذیر MS است اگر (5-40)
نتیجه: (5-41)
فصل ششم: زنجیرهای مارکف:
فرآیندهای مارکف یک تعمیم ساده برای فرآیندهای مستقل است برای مجاز کردن وابستگی برآمد فاصله به یکی از برآمدهای قبلی که به برآمدهای قبل از آن وابسته نباشد. بنابراین در فرآیند مارکف x(t) گذشته روی آینده بی تاثیر است اگر وضعیت فعلی فرآیند مشخص باشد. یعنی اگر آنگاه: (6-1)
و اگر آنگاه:
حالت خاصی از فرآیندهای مارکف، زنجیر مارکف است. هر دو فرآیند و زنجیر مارکف تبه به اینکه فضای حالتشان گفته یا پیوسته است، می توانند گسسته یا پیوسته باشند.
تعریف: زنجیر مارکف با زمان گسسته یک فرآیند تصادفی مارکف است که فضای حالت آن مجموعه ای شمارا یا شما را نامتناهی بوده و در آن که تعداد Lxn نتیجه آزمایش n ام می نامند.
تئوری زنجیرهای پیوسته(زنجیرهایی با فضای حالت ناشما را یا شما را نامتناهی) بوسیله کلوموگروف آغاز و پل به وسیله دوبلین- دوب- لوی و بسیاری دیگر اولویت یافت.
احتمالات انتقال: (20)
احتمال تغییر وضعیت یک مرحله ای برابر احتمال شرطی است که به صورت زیر تعریف می شود:
(6-3)
احتمال تغییر وضعیت یک مرحله ای برابر احتمال رفتن از حالت I به حالت j در یک دوره زمانی با آغاز از n بیان می شود.
این نماد تاکید می کند که در حالت کلی، احتمالات انتقال نه فقط توابعی از وضعیت ابتدایی و انتهایی اند، بلکه به زمان انتقال نیز بستگی دارند.
تعریف، وقتی احتمالات انتقال یک مرحله ای از متغیر زمان( یعنی مقدار n) منتقل باشند، آنگاه گوییم فرآیند مارکف دارای احتمالات انتقال مانا می باشد. ماتریس مارکف یا ماتریس احتمال انتقال یک آرایه مربعی نامتناهی به صورت. می باشد که در آن سطر(i+1) ام توزیع احتمال مقادیر Xn+1 تحت شرط(Xn=i) است.
هر گاه تغییر حالتها متناهی باشد آنگاه P یک ماتریس مربعی متناهی است که مرتبه اش( تعداد سطرها) مساوی تعداد حالتهاست. واضح است که Pij ما در شرایط زیر صدق می کنند:
سطر فرآیندی با مشخص بودن تابع احتمال انتقال یک مرحله ای و X0(به عنوان حالت آغازین فرآیند) کاملا معین است زیرا طبق تعریف احتمالات شرطی، داریم:
(6-5)
و اگر فضای حالت متوالی نباشد یا فرآیند فضای حالت را به گونه ای متوالی طی نکند می توان گفت:
(6-6)
نمونه هایی از زنجیره های مارکف: (20)
1) زنجیرهای مارکف همگن: (18)
تعریف: یک زنجیر مارکف را همگن در زمان نامنداگر(m,n) Pij فقط به تفاضل n-m بستگی داشته باشد. و اگر این احتمالات انتقال به زمان بستگی داشته باشند آنگاه فرآیند را ناهمگن می گوئیم. اگر زنجیر همگن باشد، احتمالات تغییر وضعیت را مانا می نامیم و (6-7)
که نشان دهنده احتمال شرطی یک زنجیر مارکف همگن است زمانی که زنجیر در n مرحله از حالتi به حالت j می رود.
مدت زمانی که زنجیر مارکف همگن y صدف می کند در رسیدن به یک حالت(زمان رسیدن) باید بی حافظه باشد، زمانی که حالت فعلی برای تعیین آینده کافیست. بنابراین در حالت گسسته اگر زمانهای جاری tn به طور یکنواخت در tn=nt قرار بگیرند، y رابطه زیر را برآورد می سازد که y یک متغیر تصادفی هندسی است.
(6-8)
بنابراین مدتی که یک زنجیر مارکف گسسته زمان همگن در هر حالتی می گذارند یک توزیع هندسی است.
زنجیره های مارکف همگن(فضایی) را در دو حالت بررسی کرده و در هر حالت فرض می کنیم:
یک متغیر تصادفی گسسته با مقدار صحیح نامنفی باشد
همچنین و
مشاهداتی مستقل از باشند و همچنین فضای فرآیند مجموعه اعداد صحیح نامنفی است.
الف) فرآیند به ازای را در نظر می گیریم که با تعریف شده است. ماتریس آن