لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 23 صفحه
قسمتی از متن .doc :
داربست
داربست سازه ای موقتی است که از طریق آن شخص می تواند برای انجام عملیات ساختمانی به محل کار دسترسی پیدا کند. داربست شامل هر نوع سکوی کار، نردبان و نرده های محافظ است. داربستهای اصولا به دو دسته تقسیم می شوند:
1-داربستهای مهارشده.
2-داربستهای مستقل.
داربستهای مهارشده
در این گونه داربستها یک ردیف ستونهای عمودی در فاصله مناسبی از دیوار طوری نصب می شوند که بتوان سکوهای کار (تخته های زیرپایی) را با پهنای مورد نظر برروی آنها سوار کرد. ستونهای عمودی به کمک لوله های افقی داربست به یکدیگر متصل شده و توسط قطعاتی عرضی به نام دستکهای افقی به ساختمان مهار می شوند. این داربست همراه با بالا آمدن ساختمان برپا می شود.
داربستهای مستقل
داربستهای از دو ردیف ستون عمودی تشکیل می شوند که توسط لوله های عرضی به یکدیگر متصل می گردند. این نوع داربست از ساختمان به عنوان تکیه گاه استفاده نمی کند و به همین جهت برای استفاده در ساختمانهای تیر پایه ای بسیار مناسب است.
تمامی داربستها باید به طور عمودی در فواصل تقریبی m6/3 و به طور افقی در فواصل m6 کاملا به ساختمان مهار شوند. برای انجام این کار همچنین می توان از لولة افقی مهار که در داخل دیوار یا در عرض درگاهی پنجره قرار می گیرد نیز استفاده کرد و قطعات عرضی داربست را به آنها متصل کرد. در روش دیگر می توان از لوله ای با پایة قابل تنظیم که در داخل درگاهی قرار می گیرد برای اتصالات قطعات عرضی استفاده کرد. در صورتی که درگاهی مناسب وجود نداشته باشد باید داربست را به کمک لوله های موربی که به سمت ساختمان متمایل اند، حایل کرد.
داربستها را می توان از مواد زیر ساخت:
1-لوله های فولادی.
2-لوله های آلیاژ آلومینیم.
3-چوب.
خانه های کارگاهی
به طور کلی به خاطر عملیات و ماهیت موقتی محل ساختمان، برای اقامت کارکنان و انبار کردن مصالح نمی توان ساختمانهای دائمی احداث کرد. به هر حال سازنده به سلیقه خود می تواند مناسبترین امکاناتی را که برای هر پروژه ویژه به صرفه باشد، فراهم سازد. این کار علاوه بر بهبود روابط مدیریت و کارکنان، از میزان اتلاف مصالح در اثر دزدی، خسارات اتلافی و دشمنی نیز می کاهد. هرچه تسهیلات و امکانات رفاهی ایجاد شده در محل ساختمان بهتر باشد، به همان اندازه خشنودی کارکنان حاضر در محل نیز بیشتر خواهد بود و این امر در نهایت به باروری بیشتر منجر خواهد شد.
خانه های کارگاهی کارکنان اغلب به یکی از دو صورت زیر هستند:
1-کلبه های چوبی قابل تفکیک.
2-کاروان یا کابین متحرک.
کلبه های چوبی قابل تفکیک کلبه هایی پیش ساخته اند و برای استفاده مجدد در محل دیگر به راحتی می توان آنها را پیاده و سوار کرد. کلبه هایی با این خصوصیات باید با همان دقت ساختمانهای دائمی طراحی، ساخته و نگهداری شوند تا بتوان آنها را برای چندین سال و در پروژه های مختلف مورد استفاده قرار داد. اندازة طول و یا پهنای آن دسته از کلبه های چوبی قابل تفکیکی را که طراحی مناسبی دارند، می توان با افزودن قطعات اضافی افزایش داد.
کاروانها و کابینهای متحرک با ابعاد، سبکها و کاربردهای بسیار متنوعی ساخته می شوند. در ساخت آنها عموما از قاب بندی چوبی و روکش تخته چندلایی که به طرز مناسبی عایق بندی و تزیین شده استفاده می شود. کاروانها و کابینهای متحرک بر طبق یک سیستم مدولی ساخته می شوند، به طوری که به کمک واحدهای اتصالی ویژه هر طرح و اندازة معقولی را می توان به وجود آورد.
شمع بندی
به منظور ایجاد حایلهای موقتی برای ساختمان یا سازة در حال احداث از اشکال مختلف شمع بندی استفاده می شود. موارد معمولی که احتمالاً به شمع بندی نیاز دارند عبارتند از:
1-ایجاد حایل برای دیوارهای خطرناکی که ممکن است در اثر نشست، شکم دادن یا یکبر شدن دچار ناپایداری شوند.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 21
تولید داربست های پیلمری:جداسازی فاز
PROCESSING OF POLYMER SCAFFOLDS : PHASE SEPARATION
رویون ژانگ و پیتر – اکس – ما
این فصل شامل روش های جدید آماده سازی داربست های پلیمر زیست تخریب پذیر مصنوعی ازمحلول های پلیمر از طریق جداسازی فاز است. همچنین قراردادهای مختلف ساخت داربست های بسیارمتخلخل مرتبط با فرآیندهای مختلف جداسازی فاز را دربر می گیرد. بلورینگی حلال در محلول پلیمرموجب جداسازی فاز مایع – جامد می گردد. اسفنج بدست آمده در اثر فرآیند جدا سازی فاز مایع – جامد دارای مورفولوژی لوله ای شکل ناهمگون با یک ساختار نردبانی شکل داخلی است. اسفنج فوق با شبکه ای از خلل و فرج های پیوسته توسط القای گرمایی جدا سازی فاز مایع – مایع ایجاد میشود. ماتریس رشته ای مصنوعی با فیبرهایی با قطری به مقیاس نانومتر توسط فرایند القای گرمایی انعقادthermally induced gelation process)) تهیه می شوند. ماتریس های نانو رشته ای با ساختار ماکرو متخلخل بوسیله ترکیب روش پالایش پروژن و فرآیند القای گرمایی ژلاتین بدست می آیند. اسفنج های متخلخل پلیمرهای زیست تخریب پذیر و آپاتیت های استخوانی معدنی شکل توسط فرآیند جدا سازی فاز مایع – جامد و فرآیند زیست تقلیدی تهیه می شوند.
-پیشگفتار
مهندسی بافت یک روش نوید بخش را در تولید گزینه های بیولوژیکی برای کاشتنی ها و پروتزها ارائه می دهد. در این روش وجود یک داربست بسیار متخلخل جهت استقرار سلولها و هدایت رشد آنها و بازسازی بافت در سه بعد الزامی است. پلیمرهای زیست تخریب پذیر مصنوعی مانند پلی – ال – لاکتید اسید (PLLA)، پلی گلیکولیک اسید (PGA) و پلی دی، ال – لاکتیک اسید – کو – گلیکولیک اسید (PLGA) به طور گسترده به عنوان داربست هایی برای فراکاشت سلول و مهندسی بافت بکار برده می شوند. روشهای مختلفی برای تهیه داربست های بسیار متخلخل از این پلیمرهای زیست تخریب پذیر ارائه شده اند. پالایش ذره ای یک روش تایید شده برای ساخت اسفنج های متخلخل در مهندسی بافت است. تکنولوژیهای بافت به طور گسترده در ساخت چهار چوبهای قابل بافت و غیر قابل بافت زیست تخریب پذیر برای مهندسی بافت بکار برده می شوند.
برای ساخت داربست ها از روش خشک سازی امولسیون از طریق انجماد، اسفنج سازی گاز و چاپ سه بعدی بهره برده میشود. امروزه روش جدید تهیه داربست های پلیمری زیست تخریب پذیر بسیار متخلخل یعنی جدا سازی فاز القای گرمایی محلول پلیمر و انتقال (خارج سازی) بعدی، بسیار مورد توجه است.
فرآیند جداسازی فاز کنترل شده برای سالهای متمادی برای تهیه غشاهای متخلخل پلیمر بکار برده میشد.جدا سازی فاز محلول پلیمر را می توان به چندین روش ایجاد کرد، که شامل جدا سازی فاز از طریق غیر حلال، جدا سازی فاز از طریق شیمیایی، و جدا سازی فاز از طریق گرمایی (TIPS) میشود. در فرآیند TIPS که یک روش نسبتاً جدید برای تهیه غشاهای متخلخل است، دمای محلول پلیمر کاهش یافته و جداسازی فاز رخ می دهد که فاز اول آن دارای غلظت پلیمر بالا (فاز غنی از پلیمر) و فاز دوم دارای غلظت پلیمر کم (فاز عادی از پلیمر) است. بعد از خارج سازی حلال از طریق عصاره گیری، تبخیر یا تصعید، پلیمر موجود در فاز غنی از پلیمر به شکل اسکلت سخت شده و فضاهای اشغال شده در ابتدا توسط حلال، در فاز عادی از پلیمر به صورت خلل و فرج اسفنج پلیمر در می آیند. موفولوژی غشاء متخلخل متناسب با پلیمر، حلال، غلظت محلول پلیمر و دمای جداسازی فاز، تغییر می کند. غشاهای بدست آمده از این فرآیند معمولاً دارای خلل و فرجی با قطر چندین میکرومتر بوده و معمولاً برای داربستهای مهندسی بافت مناسب نیستند. یک داربست باید دارای خلل و فرج هایی به اندازه کافی بزرگ برای کاشت سلول و سطحی به اندازه کافی وسیع برای چسبندگی سلول و همچنین افشانندگی(diffusivity) مناسب برای تراوش (نفوذ) مواد غذایی و متابولیت ها باشد. ما در این فصل بر توسعه روش های جداسازی فاز القای گرمایی برای ساخت داربست هایی با مورفولوژی و خصوصیات تخلخلی کنترل شده برای فراکاشت سلول و کاربردهای مهندسی بافت تاکید می کنیم (شکل1-62). قراردادهای توسعه یافته در آزمایشگاه ما به عنوان مثالهایی برای شرح این مباحث بکار برده می شوند.
-موادMATERIALS
-پلیمرهاPOLYMERS
پلی – ال – لاکتید اسید (PLLA)، پلی دی، ال – لاکتیک اسید – کو – گلیکولیک اسید (15/85) (PLGA85) و پلی دی، ال – لاکتیک اسید – کو – گلیکولیک اسید (50:50) (PLGA50) با وسیکوزیته ذاتی در حدود 6/1 ، 4/1 و 5/0 از بهرینگر اینگلهایم (اینگلهایم، آلمان).
پلی دی، ال – لاکتیک اسید – کو – گلیکولیک اسید (25 : 75) (PLGA75) و ویسکوزیته ذاتی 65/0-5/0 از موسسه بین المللی تکنولوژی های مدیزورب (سینسیناتی، OH (ایالت اوهایو)
پلی دی ال – لاکتید (PDLLA) با وزن مولکول 103000 از شرکت شیمیایی سیگما (سنت لوئیس، MO (ایالت میسوری))
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 15
تولید داربست های پلیمری: پلیمریزاسیون (بسپارش)
PROCESSING OF POLYMER SCAFFOLDS : POLYMERIZATION
پال- دی- دالتون، ساروجینی ویجایاسکاران، و مولی- اس- شویچت
پیشگفتار
داربست های به دست آمده از طریق روش بسپارش کانیدهای خوبی برای مهندسی بافت به شمار رفته و به دلیل سهولت ساخت نسبت به روش دیگر ساخت داربست ارجحیت دارند. با وجودیکه پلیمرهای مختلفی را می توان به این روش بسپارش کرد. اما تعداد کمی از آنها منجر به داربست هایی با قابلیت دخول سلول یا همان داربست های متخلخل می شوند. برای نمونه پلی اتیلن گلیکول- مالتی-اکریلیت و پلی 2- هیدروکسی اتیل متا اکریلات (PHEMA) می توانند به صورت شبکه ای یا به حالت اصلی بسپارش شوند، هر چند ساختار ایجاد شده به جای داربستی با خلل و فرج های بزرگ درهم برای نفوذپذیری سلول ها به شکل ژل می باشد. با دستکاری (تغییر) شرایط بسپارش می توان داربست های متخلخل از PHEMA و پلی- ان- 2-هیدروکسی پروپیل متا اکریلامید (PHPMA) ایجاد کرد. به طور خلاصه ترکیب منومری (تک پار) در حضور حلالی که منومر در آن قابل حل ولی پلیمر غیر قابل حل است، درون قالب بسپارش می شود. گذار حلالیت درخلال بسپارش منجر به دو فاز می گردد، ساختار زیستی پیوسته پلیمر و حلال (شکل 1-63) بدین ترتیب، داربست تولید شده در نتیجه بسپارش برای ایجاد خلل و فرج های در هم نیازی به پالایش پروژن ندارد. برای داربست های PHEMA با قابلیت دخول سلول که اغلب به نام اسفنج های PHEMA خوانده می شوند حلال مازاد معمولاً آب است.
اسفنج های PHEMA نخستین بار در سال 1960 ساخته شده و اولین کاربرد بالینی آنها افزایش حجم پستان و جایگزینی عضروف بینی بود. اسفنجهای PHEMA قابلیت تحمل اتوکلاو را داشته و به سادگی به اشکال مختلف تغییر فرم می دهند و به خاطر خصوصیات فیزیکی اسفنجی برای جراح مانند بافت نرم هستند. برخی از محققین ، اسفنج های PHEMA را جایگزین بافت نرم با قابلیت کاربردی متنوع نامیده اند. با این حال آهکی شدن آنها در محیط آزمایشگاه در مدت زمان طولانی سبب کند شدن سرعت توسعه اسفنج های PHEMA تا اوایل 1990 یعنی زمانی که چیریلا از اسفنج های PHEMA برای پروژه قرنیه مصنوعی استفاده کرد، شد. اسفنج های PHEMA از آن موقع به بعد به عنوان حاشیه متخلخل قرنیه مصنوعی که باموفقیت های بالینی فراوانی مواجه شد توسعه یافتند. داربست های PHEMA قابل نفوذ برای سلول ها بوده و به همین دلیل به عنوان یک قلاب (نگهدارنده) بین بافت قرنیه و هسته مرکزی شفاف غیرقابل نفوذ به کار برده می شود همچنین میتوان با تلفیق اسفنج های PHEMA با کاشتنی چشمی (اربیتال) سبب نفوذ ماهیچه ها به داخل اجزاء PHEMA شد.
تست های آزمایشگاهی و درون بدنی اسفنج های PHEMA لزوم نفوذ (هجوم) سلول را برای کاربردهای مهندسی بافت ثابت کرده اند. اشکال مختلف داربست به واسطه پیامد بسپارش اجازه تغییر ساختار مصنوعی را در حین سنتز می دهد. این فصل روش تحلیل ساخت اسفنجهای PHEMA قابل تولید در آزمایشگاههای تحقیقاتی را تشریح میکند.
معرف ها(شناسگرها)REAGENTS سیستم های آغاز کننده و منومر اسفنج های PHEMA گران نبوده و مواد شیمایی فوق آماده مصرف هستند. مواد شیمیایی فهرست شده در جدول 1-63 و 2-63 از آلیدرچ (میلواکی ایالت ویسکانسین) قابل خریداری هستند. آب به کار رفته معمولاً مقطر بوده و یون زدایی شده است و دارای مقاومت M18 می باشد، میلی پور میلی رو مثبت 10 و میلی- کیویواف مثبت (بدفورد، ایالت ماساچوست)
-روش هاMETHODS مراحل کلیدی در سنتز اسفنج های PHEMA برای مقاصد پزشکی- زیستی عبارتند از:
تهیه قالب
تهیه فرمولاسیون
اعمال- تزریق فرمولاسیون به قالب
بسپارش و تشکیل داربست
استخراج ساکس هلت (soxhlet) داربست
استریلزاسیون (سترون کردن)
نفوذ سلولی داربست
پردازش ساختار بافت
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 16
تولید داربست های پلیمری: پردازش اسفنج گازی
PROCESSING OF POLYMER SCFFOLDS : GAS FOAM PROCESSING
توماس- پی- ریچارد سون، مارتین-سی- پیترز و دیوید- جی- مونی
مهندسی بافت وعده بزرگ تهیه اندام های کاملاً عملیاتی برای رفع مشکل کمبود عضو اهدایی را داده است. روش های متداول آزمایشگاهی تشکیل این گونه بافت ها را معمولاً از دستگاههای مختلط (هیبرید) شامل داربست های پلیمری زیست تخریب پذیر و سلول های این بافت ها استفاده می کنند. روش های متعددی در شکل دهی و پردازش پلیمرها برای استفاده در مهندسی بافت توسعه یافته است که هر فرایند مجزای آن، دارای ویژگی و عملکرد منحصر به فردی در تشکیل داربست های مهندسی بافت است. با توجه به این روش ها، پیشرفت های قابل ملاحظه ای در حال شکل گیری است که یکی از مهمترین آنها اسفنج سازی گازی است. اسفنج سازی گازی به دلیل قابلیت تخلخل پذیری بالای اسفنج های داربست پلیمری بدون به کارگیری دمای بالا یا حلال های ارگانیک (آلی) حائز اهمیت است. با حذف شرایط دمای بالا و حلال های آلی می توان مولکولهای زیست فعال بزرگ حاوی فاکتورهای رشد را با حفظ فعالیت زیستی در پلیمر مجتمع ساخت. (داربست های پلیمری را میتوان به عنوان حامل مواد مورد نیاز پروتئین ها برای ایجاد پاسخ سلولی (برای مثال، جابجائی، (مهاجرت) و تکثیر) و بستری برای چسبندگی سلول قلمداد کرد که هر دو برای رشد بافت های آزمایشگاهی بسیار مهم هستند. فعالیت آزمایشگاهی ما بر استفاده از این روش در پردازش کوپلیمرهای اسیدهای لاکتیک و گلیکولیک و کپسوله کردن پروتئین ها و پلاسمید DNA کد کننده پروتئین ها برای تغییر رفتار سلولی مورد نظر مهندسی بافت متمرکز می شود. این فصل نظریه و روند اسفنج سازی گازی را با ملاحظه جنبه عملی پردازش اسفنج مورد بحث قرار می دهد.
-پیشگفتار
اهداف مهندسی بافت فراهم سازی اندام های کارآمد یا جایگزینی قسمتی از بافت برای بیمارانی با ضعف (از کار افتادگی) اندام، آسیب یا بیماری وخیم است. محققان برای تهیه و تأمین جایگزین هایی کارآمد برای بافت، اقدام به تهیه پلیمرهایی نموده اند که در آنها گونه های سلولی متفاوت (مثل سلولهای استخوان زا و غضروف زا و غیره) را کشت داده اند؛ و بدین منظور کلیه رهیافت های مبتنی بر آزمونهای داخل بدن و یا خارج بدن موجود زنده (in vivo , in vitro) مد نظر قرار گرفته است. علاوه بر این، پیشرفت های قابل ملاحظه ای در استفاده از ترکیباتی که سبب تحریک بافت خود شخص گیرنده در پاسخ به دستگاه شده و تولید بافتی که تقریباً عملیات معادل بافت صدمه دیده یا غایب را انجام می دهد صورت گرفته است.
اهداف استراتژی فعلی، توسعه داربست های زیست تخریب پذیری است که در آنها یا سلول ها به طور مستقیم کاشته شده و یا فاکتورهای القایی بافت (برای مثال، فاکتورهای رشد) کپسوله می شوند، که البته ترکیب هر دو استراتژی فوق نیز در نظر گرفته می شود. در این روش فرض می شود که پلیمر ویژگی های ساختاری ضروری را برای نفوذ، تکثیر سلولی، ته نشینی ماتریس برون سلولی و سازمان دهی سلولی که در نهایت منجر به یک بافت سازمان دهی شده کاملاً کارآمد می شود فراهم آورد. فرض دیگر این است که این پردازش های سلولی برابر با نرخ تخریب پلیمر یا نزدیک به آن باشد. در سال های اخیر ساختارهای پلیمری متعددی (برای مثال، فیلم ها، اسفنج ها و غیره) توسط پردازش های گوناگون توسعه یافته و قابلیت استحکام مکانیکی، تخلخل پذیری، نرخ ترکیب و آزاد سازی مولکول های زیست سازگار آنها مورد آزمایش قرار گرفته است. این کار نشان می دهد که روش های مختلف ساخت پلیمر دارای قابلیت های مجزایی برای دستیابی به هدف نهایی یعنی جایگزینی بافت کارآمد هستند. این روش ها به وسیله پارامترهای سهولت پردازش، تخلخل پذیری پلیمر، نسبت های متغیر سطح به حجم و سازگاری با مولکول های زیست فعال از یکدیگر تمیز داده می شوند. در بخش بعدی روشهای متداولی که برای کاربردهای مهندسی بافت توسعه داده شده اند بطور خلاصه بازنگری شده و سپس روش اسفنج سازگاری در بخش های آتی تشریح می شود. این فصل بر پردازش پلی- لاکتیک- کوگیکولیک اسید (PLGA) که یک ماده بسیار متداول در داربست های مهندسی بافت است تمرکز میکند.
-پردازش پلیمرهای به کار رفته در مهندسی بافت
PROCESSING OF POLYMERS FOR USE IN TISSUE ENGINEERING
پلیمرهای متنوعی در مهندسی بافت مورد استفاده قرار می گیرند اما تأکید این فصل بر پردازش PLGA است. پلیمرهای حاوی اسید لاکتیک و اسیدگلیکولیک به طور گسترده در مهندسی بافت به کار رفته و به مدت 25 سال به عنوان نخ بخیه زیست تخریب پذیر مورد استفاده قرار گرفته اند که نشان دهنده زیست سازگاری مناسب آنهاست. شیوه های مختلفی با مزایا و مضرات شاخص برای ساخت داربست های PLGA توسعه یافته که به غیر از روش اسفج سازگاری بقیه به پردازش PLGA در حالت مایع نیازمند است. این روش های پردازش به صورت خلاصه در اینجا مورد بازنگری قرار می گیرند. چهار روش پر کاربرد عبارتند از؛ قالب گیری حلال، تفکیک فاز، قالب گیری مذاب و اسفنج سازی گازی که به طور مفصل در بخش های بعدی مطرح می شوند. هر کدام از این روشهای پردازش دارای قابلیت های خاصی در مهندسی بافت هستند.
قسمت باقیمانده فصل بر یک روش دیگر اشاره میکند که به حلال های آلی یا دمای بالا نیاز ندارد. پردازش اسفنج سازی گازی به طور مفصل به همراه نظریه آرایش (شکل گیری)، پارامترهای ساخت و ترکیب، کاربرد های اسفنج های گازی، قرار داد استاندارد تهیه و یک توضیح مختصر در مورد روش های توصیف آنها، تشریح می شود.
روش قالب گیری حلال شامل انحلال PLGA در یک حلال آلی است (برای مثال کلرید متیلن) که با یک پروژن قابل حل در آب که معمولاً نمک است ترکیب شده و محلول را در یک قالب سه بعدی از پیش مشخص قالب گیری می کنند. سپس به حلال اجازه داده می شود تا تبخیر شده و داربست نهایی برای خارج سازی نمک پالایش می شود که این امر سبب ایجاد خلل و فرج هایی با اندازه ابعاد ذرات نمک می گردد، مزایای این روش پردازش عبارتند از: تخلخل کنترل شده که توسط توده بلورهای نمک موجود در ترکیب تحمیل میشود اندازه خلل و فرج که به وسیله ابعاد بلورهای نمک کنترل می گردد درجات مختلف بلورینگی که توسط ترکیب ویسکوزیته ذاتی پلیمر تعیین می شود و نرخ سطح به حجم که به وسیله نسبت نمک به پلیمر تعیین می گردد. عیب اصلی این روش استفاده از حلال های
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 23
تولید داربست های پلیمری: لایه سازی غشاء
PROCESSING OF POLYMER SCAFFOLDS : MEMBRANE LAMINATION
فرانک-تی- جنتایل
لایه سازی غشاء برای درمان سلول های کپسوله شدن برای رهایش دامنه گسترده ای از محصولات به دست آمده از مولکول های کوچک (برای مثال، دوپامین، انکفالینها) تا محصولاتی با ژن های بسیار بزرگ (مانند فاکتورهای رشد، ایمیونوگلوبولین ها (گلوبولین های ایمنی)) را در بر می گیرد. بسیاری از بیماری ها درمدل های حیوانی کوچک و بزرگ و موارد انسانی مطالعه شده اند. اهداف بیماری شامل از کار افتادگی کبد، دیابت نوع I ، درد مزمن، آلزایمر، اسکلروزه شدن سلول های عصبی مسئول حرکت عضلات (amyotrophic lateral sclerosia)، کره هنگینگتون (Huntington’s chorea) و بیماری پارکینسون است. کلیه دستگاهها دارای سطوحی از ایمنی سلولهای بیگانه زا یاد گرزا (زنوژنیک یا آلوژنیک) هستند. اولین دستگاهی که در حال دریافت تأئیدیه در ایالت متحده است دستگاهی به نام «کبدیار» است (liver assist) (به عبارت دیگر، کاشت یک پل(bridge )در کبد) نکات کلیدی در استفاده از مواد جهت ساخت این دستگاهها عبارتند از: 1- غشاء زیست سازگار، اجزاء دستگاه و مواد ماتریس 2- کاشتنی های مستحکم و 3- موادی که قابلیت تبدیل به غشاهایی با ویژگی های مناسب کاشت را داشته باشند. این فصل بر روش های تأثیر گذار بر غشا یا سنجش توان آن و خصوصیات کاشت تأکید میکند. هر دو این خصوصیات برای هر سیستم تجاری کاشت حیاتی خواهد بود. خصوصیات کاشت غشا برای همه سیستم ها بحرانی است چه دستگاه کاشتنی باشد وچه خارج بدنی. شیوه های ساخت غشا می توانند غشاءهایی با قدرت دو تا چهار برابر قدرت غشاء های معکوس فاز سنتی تهیه کنند. با استفاده از ابزار آلات جدید سنجش وزن های ملکولی کوچک و بزرگ می توان غشاهایی با ترکیبات ایزولاسیون ایمنی و نرخ رهایش دلخواه را برای کاربردهای بی شماری تهیه دید که بالقوه پرگستره و سیعی از درمان بیماری اثر می گذارند.
پشگفتار
یک حوزه مهم برای بیوموادها، رهایش مواد فعال در مناطق خاصی از بدن (invivo) است. به طور سنتی این حوزه توسط کپسول های پلیمری تخریب پذیر و غیره تخریب پذیر که شامل یک یا چند دارو هستند احاطه شده است. در این حوزه مواد در حین ساخت با یک ماتریس پلیمری ترکیب شده و سپس بعد از مدت زمانی از میان ماده یا در خلال تخریب ماده آزاد می شوند. در اینجا کنترل مناسب کنتیک های آزاد شده از اهمیت خاصی برخوردار است. یک مثال در این مورد کنتیک های رها شده مرتبه صفر به دست آمده از میله های کوپلیمر استات اتیلن- ونیل (EVAc) به کار رفته در رهایش عاملهای شیمی درمانی در مغز است. در طول دو دهه پیش محققان تلاش کرده اند که مواد را از ناقل های رهایش هیبریدی زیست مصنوعی (bioartificial) که شامل لایه های غشا بر سطح اجزا سلولی کپسوله شده که درون غشا هستند آزاد کنند، (به عبارت دیگر درمان غشاء کپسوله شده سلول).
هدف از تحقیقات درمان غشاء کپسوله شده سلول توسعه کاشتنی های حاوی سلول های زنده بیگانه زا یا دگر زا برای درمان شرایط وخیم و ناتوانی های انسانی است. برداشت از توانایی عبارت است از سلولها یا توده های کوچک بافت که توسط لایه غشا انتخابی احاطه می شوند و اجازه عبور آزادانه اکسیژن و دیگر احتیاجات متابولیسمی همراه با آزاد سازی ترشحات سلولی زیست فعال را می دهند اما از عبور عامل های سمی بزرگ تر سیستم ایمنی دفاعی بدن جلوگیری می کنند.
کاربردهای اصلی و هدف از درمان سلول کپسوله شده عبارتند از : درد مزمن، بیماری پارکینسون و دیابت نوع I ، همچنین ناتوانی های دیگر ناشی از افت ترشح عملکرد سلول که با کاشت اندام یا درمان های دارویی به طور کامل قابل مداوا نیستند. علاوه بر این شرایطی که بالقوه قابلیت پاسخ دهی به حفظ رهایش موضعی فاکتورهای رشد و دیگر تصحیح کننده های پاسخ بیولوژیک را داشته باشند با این روش بررسی شده اند. گونه های متضاد درمان سلول های ایزوله شده ایمنی در مدل های کوچک و بزرگ حیوانی و انسانی شامل درد مزمن، بیماری پارکینسون، دیابت نوع I، و از کار افتادگی وخیم کبد (خارج بدنی) و در چندین گروه از مدل های حیوانی کره هتگینکتون، هموفیلی، بیماری آلزایمر، اسکلروزه شدن سلول های عصبی مسئول حرکت عضلات و صرع می باشند. از این میان به نظر می رسد که از کار افتادگی وخیم کبد اولین درمانی باشد که برای استفاده تجاری در انسان تأئید می شود.
کپسوله کردن بافت عموماً به دو شکل انجام می گیرد: لایه بندی غشاء میکروکپسوله و ماکرومتخلخل (درون عروقی و برون عروقی) در میکروکپسوله سازی یک یا چند سلول با پراکندگی های کروی فراوان (با قطر 100-300nm) کپسوله می شوند. در ماکروکپسوله سازی تعداد زیادی از سلول ها یا توده های سلولی در یک یا چند کپسول نسبتاً بزرگ کاشته می شوند. (برای فیبرهای توخالی، ابعاد معمول 0.5-6nm) قطر، با طول کلی 0.5-10cm) مزایای روش آخر عبارت است از پایداری شیمیایی و مکانیکی و سادگی بازیافت در صورت نیاز یا خطر.
-روابط خصوصیات ساختاری برای پلیمرهای به کار رفته در لایه بندی غشاء
STRUCTURE– PROPERTY RELATIONSHIPS FOR POLYMERS USED IN MEMBRANE LAMINATON
ثابت بودن خصویات غشاء انتخاب شده و ماده غشاء درطول زمان اهمیت زیادی دارد. تخریب غشاء شامل تغییر خصوصیات فیزیکی و ویژگی های انتقالی در طول زمان میشود که به دلیل بر هم کنش با محیط داخل بدن میباشد. خصوصیات اصلی که قابل تغییر هستند، اندازه خلل و فرج (و توزیع سراسری اندازه خلل و فرج) و ضرائب پخشندگی انتقال توده می باشند.
دامنه وسیعی از مواد غشاء را می توان برای اندام های مصنوعی از این نوع به کار برد. یکی از پر استفاده ترین مواد برای این کاربرد، پلی اکریلونیتریل- کوپلیمر شده با- ونیل کلراید [P(AN-VC)] است. P(AN-VC) یک کوپلیمر آماری (statistical copolymer)ساخته شده از مونومرهای نیتریل و ونیل کلراید است که در