لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 15
روش های ورود DNA یه درون سلول
ورود DNA خارجی به سلول و بقای آن، پایه و اساس بیو تکنولوژی است. «تراژن» موجودی است که DNA خارجی دارد. روش های تغییر ژنتیکی، باکتری ها، قارچ ها، جانوران و گیاهان تراژنی را تولید می کنند که در تحقیقات پایه از آن ها استفاده می شود و کاربردهای عملی نیز دارند.
در این مختصر سعی بر این است، روش های ورود DNA به سلول، شامل الکتروپوریشن (منفذ زایی الکتریکی) ، بیولیستیک (تفنگ الکترونی)، میکرواینجکشن (ریز تزریق) و DNA – T اگر باکتریوم و کاربردهای آن ها شرح داده شوند.
تغییر ژنتیکی باکتری
تعدادی از گونه های باکتری به طور طبیعی توانایی جذب DNA را دارند. این توانایی شایستگی طبیعی نامیده می شود که قابل افزایش است. مثلا گونه ای از استرپتوکوکوس ها قابلیت تغییر دارند و زمانی که غلظت سلول ها به حد معینی برسد، این قابلیت، افزایش می یابد. و یا هموفیلوس آنفلونزا زمانی که در شرایط گرسنگی قرار می گیرد، می تو.اند DNA را جذب کند.
گونه هایی از سیانوباکترها نیز وجود دارند که در هر مرحله از چرخه رشدشان، می توانند DNA را جذب کنند.
برای ساختن گونه های تغییر یافته، از تیمارهای مصنوعی استفاده می شود. سلول ها به صورتی آماده می شوند که توانایی جذب DNA را به دست آورند. البته اغلب این دستکاری ها، طول عمر باکتری ها را کاهش می دهند، اما سلول های باکتریایی که زنده می مانند، بهتر میتوانند DNA را جذب کنند.
تغییر ژنتیکی اشریشیاکلی با پلاسمید نو ترکیب، روش مهمی در کلون سازی DNA نوترکیب است. برای ایجاد تغییر ژنتیکی در E.coli ، وسوسپانسیونی از باکتری در محلولی از کلرید کلسیم 1/0 مولار وارد می شود و روی یخ قرار می گیرد. پس از آن،ظرف حاوی باکتری به محیط o 42 منتقل می شود. در شرایط کلی 7 10×5 تا 8 10 DNA پلاسمید تغییر یافته، به ازای هر میکروگرم پلاسمید به دست می آید. کلرید کلسیم سرد تغییراتی در غشا ایجاد می کند . طی این تغییرات، DNA بهتر به غشا متصل می شود و در شوک حرارتی o 42 ، با مکانیسمی نا معلوم وارد سلول می شود. در حال حاضر، با اصلاح روش های موجود، بیش تر از 9 10 پلاسمید تغییر یافته به ازای هر میکروگرم پلاسید، DNA تولید می شود.
DNA ، پس از ورود، برای بقا در سلول ، باید وارد ژنوم سلول و جزئی از آن شود . یا به درون DNA پلاسمیدی که قادر است تکثیر کند، رود و با آن شروع به تکثیر کند. یا آن که در سلول میزبان حمایت شود و باقی بماند.
منفذزایی الکتریکی (ایجاد منفذ در باکتری به وسیلۀ الکتریسیته)
در منفذزایی الکتریکی، سلول های باکتری در محلولی از DNA وارد شده، در معرض میدان الکتریکی با ولتاژ بالا قرار می گیرند. ولتاژ بالا سوراخ های کوچکی در غشای لیپدی سلول ایجاد می کند و در نتیجه، مولکول های کوچک و ماکرومولکول ها می توانند از این طریق وارد سلول و یا از آن خارج شوند. این سوراخ های به وجود آمده در برخی از سلول ها، خود به خود بسته می شوند.
ولتاژی که در منفذ زایی الکتریکی به کار می رود، حدود 50 درصد سلول ها را می کشد . تعدادی از سلول ها نیز به علت بسته نشدن سوراخ ها می میرند. بنابراین سلول هایی که زنده مانده اند، احتمالا تغییر یافته اند. این روش، تغییر ژنتیکی را در تعدادی از گونه های باکتری آسان کرده است و در برخی گونه ها برای اولین بار، امکان تغییر را مهیا ساخته است.
در روش معمول منفذ زایی الکتریکی، سلول های باکتری در آب یا بافری با چگالی 1010× 5-1 سلول در هر میلی لیتر (ml) وارد می شوند. در قسمت خاصی از بازار منفذزایی (شکل 1) 200 میکرولیتر از سلول ها با یک نانو گرم تا یک یکروگرم از DNA پلاسمیدی مخلوط می شود و روی یخ قرار می گیرد. ولتاژ بالای الکتریکی برقرار می گردد.میدان الکتریکی معمولی برای منفذزایی الکتریکی باکتری ها از 20 تا 25 کیلو وات بر سانتی متر (KV/cm) متغیر است. مایع ویژه ای برای رشد سلول ها افزوده شده و آن ها بین یک تا دو ساعت در گرمخانه قرار می گیرند. این کار، برای بیان ژن مقاومت به آنتی بیوتیک که قبلا در DNA پلاسمید وارد شده است، صورت می گیرد. این ژن علامت مشخص ژنتیکی است. سپس باکتری ها روی محیط جامد آگار که دارای آنتی بیوتیک مناسب است، کشت داده می شوند. باکتری هایی که تغییر یافته اند، و ژن مقاومت به آنتی بیوتیک را کسب کرده اند، زنده مانده و رشد می کنند. باکتری های تغییر نیافته، در اثر آنتی بیوتیک محیط از بین می روند.
با استفاده از روشمنفذ زایی الکتریکی، 10 10 DNA تغییر یافته، به ازای هر میکروگرم از DNA پلاسمیدی برای گونه های معینی از coli.E مشاهده شده است.
انتقال ژنتیکی سلول های یوکاریوتی
منفذ زایی الکتریکی یوکاریوت ها
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 32
سلول بنیادی چیست و ...
سلولهای بنیادی، سلولهایی اند که در بدن جنین، در نهایت به سلولهای بافت و اندامهای مختلف تبدیل میشوند. این سلولها، برخلاف سلولهای معمولی که با تقسیم شدن، سلولهای مشابه خود را به وجود میآورند، می توانند به هریک از انواع سلول در بدن موجود زنده تبدیل شوند و همین موضوع موجب پیدایش بافتها و اندامهای مختلف جنین میشود. سلولهای بنیادی به 2 نوع سلولهای بنیادی جنینی و سلولهای بنیادی بالغ تقسیم میشوند.
نوع اول سلولهای بنیادی از جنین به دست می آیند. یک جنین 3 تا 5 روزه بلاستوسیست نامیده میشود و حاوی سلولهای بنیادی است که بشدت در حال تکثیرند تا اندامها و بافتهای مختلف جنین را به وجود آورند. نوع دوم سلولهای بنیادی در بدن انسان بالغ وجود دارند. این سلولها در بافتها و اندام هایی نظیر قلب، مغز، مغز استخوان و ریهها وجود دارند و مخصوص ترمیماند. سلولهای بنیادی بالغ هم این قابلیت را دارند که در شرایط مناسب به سلولهای مختلف متمایز شوند.
سلول های مغز استخوان
در گذشته تصور دانشمندان بر این بود که سلولهای بنیادی هر بافت فقط به خودش متمایز میشود، در حالی که ثابت شده است سلولهای بنیادی مغز استخوان که به طور طبیعی سلولهای خونی را میسازند، در شرایط مناسب قابلیت تبدیل به هر بافتی را دارند. به دست آوردن این سلولها کار چندان پیچیده ای نیست و نیاز به جراحی خاصی ندارد و می توان آن را با سرنگ از استخوان ران بیرون کشید.
یک ویژگی مهم سلولهای بنیادی مغز استخوان نسبت به نوع جنینی این است که از خود فرد گرفته می شوند؛ بنابراین، پس از پیوند اصطلاحا پس زده نمیشوند چون کاملا با بافتهای سالم بدن بیمار هماهنگی دارند. علاوه بر این سلولهای بنیادی جنینی ممکن است بعد از پیوند توموری شوند و مشکلات تازه ای را برای بیمار به وجود آورند در حالی که تا به حال گزارشی از توموری شدن سلولهای بنیادی مغز استخوان به دست نیامده است. مشکل دیگر استفاده از سلولهای بنیادی جنینی، بحث اخلاقی آنهاست که همواره در جوامع بشری مطرح بوده است.
سلول های بنیادی جنینی
سلول های بنیادی جنینی :
کدام مرحله از زندگی رویانی برای تولید Stem Cell(SC) مهم است؟سلول های بنیادی جنینی همان طور که از اسمشان مشخص است از جنین گرفته می شوند.در واقع این سلول ها از جنین های گرفته می شوند که از طریق لقاح مصنوعی((IVF در آزمایشگاه و با اطلاع اهداکنندگان اسپرم و تخمک به دست آمده اند.هیچگاه این سلول ها در یک رویان که از بدن مادر گرفته شده استخراج نمی شوند.جنینی که از آن سلول های بنیادی گرفته می شود به طور طبیعی حدود سن چهار یا پنج روزگی را دارد و به شکل یک توده گرد است که آن را بلاستوسیست ((blastocyst می نامند.در واقع blastocyst ساختار مخصوصی هست که از3 بخش تشکیل شده است :1-trophoblayt که لایه سلول های احاطه کننده blastocyst هستند.2-blastocoel که در واقع یک حفره در داخل blastocyst است.3-inner cell mass : گروهی متشکل از تقریبا 30 سلول که در یک انتهای blastocyst دیده می شود.
B.چگونه سلول های بنیادی در آزمایشگاه کشت داده می شوند؟رشد سلول های بنیادی در محیط آزمایشگاه را اصطلاحا "کشت سلولی" یا "cell culture " می نامند.در واقع جدا کردن سلول های بنیادی جنینی از طریق انتقال inner cell masis به یک ظرف کشت آزمایشگاهی پلاستیکی که شامل یک بستر تغذیه ای به نام "محیط کشت" یا "culture medium" می باشد انجام می گیرد.تقسیم و ازدیاد سلول ها بر روی سطح این ظرف انجام می گیرد. سطح داخلی این ظرف به صورت typical به وسیله سلول های پوست جنین موش پوشیده شده است. این سلول ها قادر به تقسیم شدن نیستند. به این لایه پوشاننده سلولی در اصطلاح feeder layer گفته می شود.دلیل استفاده از این سلول ها فراهم آوردن یک سطح طبیعی به منظور چسپیدن سلول های inner cell mass به آن و عدم جداشدنشان است. در واقع این عمل به منظور حمایت فیزیکی از سلول هایمان انجام می گیرد.در ضمن سلول های این لایه مواد مغذی را به داخل محیط کشت رها می کنند.اخیرا دانشمندان راه های جدیدی را به منظور کشت سلولهای بنیادی جنین بدون استفاده از feeder layer را فراهم کرده اند.این روش به عنوان نقطه عطفی در فرایند کشت سلولی به حساب می آید.زیرا ریسک انتقال برخی مواد مضر و اسیب رسان از سلول های موشی به سلول های انسانی را به حداقل می رساند.(این مواد مضر شاملMacromulecules مثل Viruses می باشد)پس از چند روز سلول های کشت داده شده شروع به رشد و تقسیم شدن (proliferation) در این محیط می کنند.
هنگامی که این عمل انجام گرفت سلول های کشت داه شده که الان زیاد شده اند را از این محیط برداشته و به محیطهای تازه کشت منتقل می دهند.پروسه کشت مجدد سلول ها بارها و بارها برای چندین مرتبه و به مدت چندین ماه تکرار می شود. این عمل را اصطلاحا subculturing می نامند. هر کدام از سیکل های subcultring را در اصطلاح پاساژ(passage) می نامند. بعد از 6 ماه یا بیشتر 30 سلول اولیه که در غالب inner cell mass استفاده کردیم تبدیل به هزاران میلیون "سلول بنیادی جنینی" می شوند.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 15
روش های ورود DNA یه درون سلول
ورود DNA خارجی به سلول و بقای آن، پایه و اساس بیو تکنولوژی است. «تراژن» موجودی است که DNA خارجی دارد. روش های تغییر ژنتیکی، باکتری ها، قارچ ها، جانوران و گیاهان تراژنی را تولید می کنند که در تحقیقات پایه از آن ها استفاده می شود و کاربردهای عملی نیز دارند.
در این مختصر سعی بر این است، روش های ورود DNA به سلول، شامل الکتروپوریشن (منفذ زایی الکتریکی) ، بیولیستیک (تفنگ الکترونی)، میکرواینجکشن (ریز تزریق) و DNA – T اگر باکتریوم و کاربردهای آن ها شرح داده شوند.
تغییر ژنتیکی باکتری
تعدادی از گونه های باکتری به طور طبیعی توانایی جذب DNA را دارند. این توانایی شایستگی طبیعی نامیده می شود که قابل افزایش است. مثلا گونه ای از استرپتوکوکوس ها قابلیت تغییر دارند و زمانی که غلظت سلول ها به حد معینی برسد، این قابلیت، افزایش می یابد. و یا هموفیلوس آنفلونزا زمانی که در شرایط گرسنگی قرار می گیرد، می تو.اند DNA را جذب کند.
گونه هایی از سیانوباکترها نیز وجود دارند که در هر مرحله از چرخه رشدشان، می توانند DNA را جذب کنند.
برای ساختن گونه های تغییر یافته، از تیمارهای مصنوعی استفاده می شود. سلول ها به صورتی آماده می شوند که توانایی جذب DNA را به دست آورند. البته اغلب این دستکاری ها، طول عمر باکتری ها را کاهش می دهند، اما سلول های باکتریایی که زنده می مانند، بهتر میتوانند DNA را جذب کنند.
تغییر ژنتیکی اشریشیاکلی با پلاسمید نو ترکیب، روش مهمی در کلون سازی DNA نوترکیب است. برای ایجاد تغییر ژنتیکی در E.coli ، وسوسپانسیونی از باکتری در محلولی از کلرید کلسیم 1/0 مولار وارد می شود و روی یخ قرار می گیرد. پس از آن،ظرف حاوی باکتری به محیط o 42 منتقل می شود. در شرایط کلی 7 10×5 تا 8 10 DNA پلاسمید تغییر یافته، به ازای هر میکروگرم پلاسمید به دست می آید. کلرید کلسیم سرد تغییراتی در غشا ایجاد می کند . طی این تغییرات، DNA بهتر به غشا متصل می شود و در شوک حرارتی o 42 ، با مکانیسمی نا معلوم وارد سلول می شود. در حال حاضر، با اصلاح روش های موجود، بیش تر از 9 10 پلاسمید تغییر یافته به ازای هر میکروگرم پلاسید، DNA تولید می شود.
DNA ، پس از ورود، برای بقا در سلول ، باید وارد ژنوم سلول و جزئی از آن شود . یا به درون DNA پلاسمیدی که قادر است تکثیر کند، رود و با آن شروع به تکثیر کند. یا آن که در سلول میزبان حمایت شود و باقی بماند.
منفذزایی الکتریکی (ایجاد منفذ در باکتری به وسیلۀ الکتریسیته)
در منفذزایی الکتریکی، سلول های باکتری در محلولی از DNA وارد شده، در معرض میدان الکتریکی با ولتاژ بالا قرار می گیرند. ولتاژ بالا سوراخ های کوچکی در غشای لیپدی سلول ایجاد می کند و در نتیجه، مولکول های کوچک و ماکرومولکول ها می توانند از این طریق وارد سلول و یا از آن خارج شوند. این سوراخ های به وجود آمده در برخی از سلول ها، خود به خود بسته می شوند.
ولتاژی که در منفذ زایی الکتریکی به کار می رود، حدود 50 درصد سلول ها را می کشد . تعدادی از سلول ها نیز به علت بسته نشدن سوراخ ها می میرند. بنابراین سلول هایی که زنده مانده اند، احتمالا تغییر یافته اند. این روش، تغییر ژنتیکی را در تعدادی از گونه های باکتری آسان کرده است و در برخی گونه ها برای اولین بار، امکان تغییر را مهیا ساخته است.
در روش معمول منفذ زایی الکتریکی، سلول های باکتری در آب یا بافری با چگالی 1010× 5-1 سلول در هر میلی لیتر (ml) وارد می شوند. در قسمت خاصی از بازار منفذزایی (شکل 1) 200 میکرولیتر از سلول ها با یک نانو گرم تا یک یکروگرم از DNA پلاسمیدی مخلوط می شود و روی یخ قرار می گیرد. ولتاژ بالای الکتریکی برقرار می گردد.میدان الکتریکی معمولی برای منفذزایی الکتریکی باکتری ها از 20 تا 25 کیلو وات بر سانتی متر (KV/cm) متغیر است. مایع ویژه ای برای رشد سلول ها افزوده شده و آن ها بین یک تا دو ساعت در گرمخانه قرار می گیرند. این کار، برای بیان ژن مقاومت به آنتی بیوتیک که قبلا در DNA پلاسمید وارد شده است، صورت می گیرد. این ژن علامت مشخص ژنتیکی است. سپس باکتری ها روی محیط جامد آگار که دارای آنتی بیوتیک مناسب است، کشت داده می شوند. باکتری هایی که تغییر یافته اند، و ژن مقاومت به آنتی بیوتیک را کسب کرده اند، زنده مانده و رشد می کنند. باکتری های تغییر نیافته، در اثر آنتی بیوتیک محیط از بین می روند.
با استفاده از روشمنفذ زایی الکتریکی، 10 10 DNA تغییر یافته، به ازای هر میکروگرم از DNA پلاسمیدی برای گونه های معینی از coli.E مشاهده شده است.
انتقال ژنتیکی سلول های یوکاریوتی
منفذ زایی الکتریکی یوکاریوت ها
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 33
سلول گیاهی
مقدمه
سلول واحد ساختاری مشترک در تمام موجودات زنده است. سلول عنصری مستقل ، کوچک و دارای اندازه میکروسکوپی است. محتویات سلولی مجموعهای از اجزا با ساختاری بسیار پیچیده و ترکیبات خاص است. تمام ظواهر و پدیدههای حیاتی و واکنشهای موجود ، ناشی از فعالیت محتویات پروتوپلاست درون سلولی است. سلولهای گیاهی نسبت به سلولهای جانوری دارای اشکال متنوعتری هستند. سلولهای گیاهی دارای اشکال چند ضلعی با اقطار مساوی و منظم و یا کشیده هستند و علاوه بر آن سلولهای گیاهی ، محصور در غشای شکل دهنده نسبتا سخت و محکم و مقاوم هستند که گاه نازک و گاهی ضخیم است.
در یک توده سلولی همگن سازنده یک بافت ، همه سلولها دارای یک اندازه و یک شکل و معمولا چند وجهیاند. در گیاهان آلی اندازه سلولها متناسب با کار آنهاست و بر حسب ماهیت بافت و نقشی که در گیاه دارند اندازه آنها متفاوت است. اندازه و طول سلولهای سازنده پیکر گیاهان به ماهیت و ویژگی آن سلول بستگی دارد و به طول ملکولهای پروتئینی موجود در آنها و همچنین به میزان فعالیت هسته سلول و دوره استراحت آن ارتباط دارد.
سیتوپلاسم هر دو یاخته مجاور به وسیله منافذ موجود (پلاسمودسمها) با هم ارتباط دارند. غشای سیتوپلاسمی از یک لایه دو مولکولی فسفولیپید تشکیل یافته است که پروتئینها به دو صورت سطحی و عمقی در آن غوطهورند. نقش غشای سیتوپلاسمی حفظ تراوایی انتخابی است. زمینه سیتوپلاسم اساسیترین قسمت درونی یاخته را تشکیل میدهد، زیرا اکثرا اعمال بیوسنتزی یاخته در آن صورت میگیرد. اندامکها در این زمینه قرار دارند. یکی از ویژگیهای سیتوپلاسم جنبش دائمی آن است که در اثر انقباض ریزرشتهها بوجود میآید، ولی ریزلولهها به این جریان جهت میدهند.
روش مشاهده سلول گیاهی
سادهترین راه مشاهده سلول گیاهی ، مطالعه سلولهای اپیدرم فلس پیاز است. اپیدرم فلس پیاز در زیر میکروسکوپ با بزرگنمایی ضعیف به صورت سلولهای چند وجهی کشیدهای است که بطور منظم که هم قرار داشته و بهم چسبیدهاند. چنانچه این اپیدرم را با محلول رقیق یدیدوره آغشته سازیم هسته سلولها بطور محسوسی مشخص میگردد. در هسته یک یا دو هستک به صورت نقاط روشن دیده میشود. علاوه بر هسته در داخل سلولها واکوئل یا (حفرههای سیتوپلاسمی) نیز وجود دارد که در ابتدا کوچک و پراکنده هستند و با رشد سلول بهم ملحق شده ، حفرههایی واحد و بزرگ را تشکیل میدهند.
در سلولهای پیر و مسن که واکوئلها قسمت اعظم فضای درونی آنها را فرا میگیرند هسته به گوشهای رانده شده ، سایر محتویات سلول به صورت ورقه نازک در اطراف واکوئل مرکزی چسبیده به غشا باقی میمانند. به علت چسبندگی و یکی بودن غشای سیتوپلاسمی با غشای سلولزی لذا غشای سیتوپلاسمی بطور عادی قابل مشاهده نیست ولی با اضافه کردن چند قطره محلول آب و نمک 20 درصد و ایجاد کیفیت پلاسمولیز غشای سلولی از غشای سلولزی جدا و قابل رویت میگردد.
دیواره یاختهای
در پیرامون اغلب یاختههای گیاهی و بعضی از یاختههای جانوری ، دیوارهای به نام دیواره یاختهای وجود دارد. دیواره یاختهای در یاختههای گیاهان ساختار نسبتا سخت سلولزی دارد و نوعی اسکلت بیرونی را ایجاد میکند که به این یاختهها شکل هندسی و نسبتا ثابتی میدهد. این دیواره که دیواره نخستین نامیده میشود، بوسیله پروتوپلاسم زنده یاخته ایجاد میشود و وجود آن اساسیترین وجه تمایز بین گیاهان و جانوران است. دیواره بین دو یاخته شامل شامل سه بخش است: هر یک از دو یاخته مجاور هم ، دیواره نخستین را تولید میکند و بین آن دو ، لایه بین یاختهای به نام تیغه میانی مشترک بین دو یاخته وجود دارد.
جنس تیغه میانی از ترکیبات پکتینی ، مانند پکتین ، است. در نتیجه افزایش سن یاخته ، ممکن است مواد دیگری ساخته شوند و از سمت داخل یاخته به صورت لایهای روی دیواره نخستین قرار بگیرند که دیواره دومین یا پسین نام دارد. ارتباط بین دو یاخته از راه پلاسمودسمها صورت میگیرد. پلاسمودسمها در دیوارههای نخستین در سوراخهای ریز دیواره ، جایی که دیواره فاقد تیغه میانی است، بوجود میآیند و سیتوپلاسم از آن محلها از یاختهای به یاخته دیگر جریان مییابد.
غشای سلولی
غشای سیتوپلاسمی از یک لایه دو مولکولی (دو ردیفی) فسفولیپید ساخته شده که هر مولکول آن شامل یک سر آب دوست و یک دم آب گریز است. استقرار این دو ردیف مولکول در مقابل یکدیگر طوری است که دمهای آب گریز به طرف داخل و در مقابل یکدیگر و سرهای آب دوست به طرف خارج قرار گرفتهاند. مولکولهای پروتئین در سطح بیرونی یا درونی و یا در تمام غشا وجود دارند. نقش غشای سیتوپلاسمی حفظ تراوایی انتخابی است. این غشا چون سدی نیمه تروا عمل میکند، نیمه تراوا بودن غشا عامل اصلی در نقش آن است.
سیتوپلاسم
سیتوپلاسم شامل تشکیلات یاختهای است که ساختاری نیمه شفاف ، بیشکل و تقریبا یکنواخت دارد و خاصیت شکست نور در آن کمی بیش از آب است. سیتوپلاسم پس از مرگ یاخته با رنگهای اسیدی آنیلین رنگ میگیرد، یعنی اسیدوفیل است. برعکس ، سیتوپلاسم زنده تقریبا خنثی است. زمینه سیتوپلاسم را هیالوپلاسم گویند. در هیالوپلاسم دو دسته عناصر به حالت شناور وجود دارند: یک دسته ضمایم دائمی مانند میتوکندریها ، پلاستها ، دستگاه گلژی و غیره که اندامک نامیده میشوند و دسته دیگر مواد غیر دائمی حاصل از اعمال زیست شیمیایی داخل هیالوپلاسم به نام اجسام ضمیمه هستند.
در هر حال محدوده هیالوپلاسم از طرف داخل ، غشای هسته و از طرف خارج ، غشای سیتوپلاسمی یاخته است. اندامکها عبارتند از: هسته ، میتوکندری ، شبکه آندوپلاسمی ، دستگاه گلژی ، ریزلولهها و ریزرشتهها ، لیزوزومها ، واکوئلها و پلاستها. ذرات دیگری نیز در سیتوپلاسم دیده میشوند که از اندامکها کوچکترند و غشا ندارند و ریبوزوم نام دارند. اگر چه ریبوزومها غشا ندارد و اندامک به شمار نمیآیند، اما اهمیت زیادی در سوخت و ساز یاخته دارند. سیتوپلاسم در تبادلات یاخته ، مراحل مختلف سوخت و ساز و همچنین جنبشهای سیتوپلاسمی که ممکن است چرخشی و یا موضعی باشد، نقش دارد.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 37
گزینش و جداسازی سلول
CELL ISOLATION AND SELECTION
ساروین کارمیول
پیشگفتار
این فصل دو مقوله: گزینش (Selection) و جداسازی(Isolation) سلول را در بر میگیرد. تقسیم بندی فوق از نظر اولویت صورت گرفته است. برای کسب بهینه ترین نتیجه، بهتر است که ایزولاسیون و گزینش به طور همزمان صورت گیرد. بغیر از سلولهای سیستم خون سازی و بافتهای جنینی خاص سلولهای معمولی دیگر ذاتاً به ماتریسهای خارج سلولی مرتبط می شوند. شیوههای متفاوت پاره کردن (گسیختن) ماتریسها نه تنها بر کارائی گوراش آنزیمی بلکه بر جمعیت سلولی تأثیر می گذارد. همچنین سیستم کشت سلولی که شامل ماده بازال (بنیادی) و مکملها است نه تنها با فراهم کردن مواد غذایی و شرایط مناسب بر بقای سولها تأثیر می گذارد بلکه می تواند یک پتانسیل گزینشی قابل ملاحظه را در ترجیح یک نوع سلول بر دیگری اعمال کند.
نوشتههای فراوانی درمورد موضوعات این فصل وجود دارد. ایزولاسیون و پاک سازی سلولها یک فرایند پیچیده است و یکی از اهداف این فصل کمک به آسان نمودن این پیچیدگی است. برای کسب اطلاعات مفصل در مورد جنبههای گوناگون کشت سلولی لطفاً به نوشتههای فرشنی اشتودزینسکی و مسترز مراجعه کنید.
- ایزولاسیون سلول CELL ISOLATION
تحقیقات به خوبی نشان می دهد که انواع سلولهای مشابه مانند سلولهای فیبروبلاست، اندوتلیال یا پری ادیپوسایتها در محلهای آناتومی مختلف دارای مشخصههای متفاوت هستند. اما این موضوع که چگونه سلولهای آناتومی یک محل نیز مشخصههای متفاوت از خود نشان می دهند هنوز به خوبی شناخته شده نیست. ناهمگنی سلولی (هیتروژنیتی) در اثر خصوصیات ویژه آنها رخ می دهد. این خصوصیات می تواند یکی از پارامترهای عملیاتی جمعیت سلولی باشد. پدیده فوق با این تصور که خصیصهها لزوماً در داخل جمعیت سلولی دارای توزیع همگن (هموژن) نیستند قابل توجیه است. فیبروبلاستها جمعیتی هستند که در داخل محل آناتومی از خود خصوصیات فنوتیپیکی متفاوت نشان می دهند، مطالعات فرایز و همکارانش همچنین لکیک و همکارانش را بر روی موش، ریه انسان، لثه (پیرادندانی) و هتروژنیتی (ناهمگن) فیبروبلاست لثوی ملاحظه کنید. همچنین مشاهده شده است که فیبروبلاستها عکس العملهای متفاوتی به تحریکات کلاژنهای آزاد شده توسط تومور یا سلولهای قلیا خواه (mast cells) نشان می دهند. علاوه بر این فنوتیپهای مختلف سلولهای اندوتلیال عروق کوچک در کورپوس لوتئوم (جسم زرد گاو) (luteum bovine corpus) با در نظر گرفتن اکتین، سایتوکراتین و ویمنتین حساس به گاما، اینترفرون (IFN-) نشان دهنده هتروژینتی است. منطقی است اگر کل جمعیت سلولها را با توجه به خصیصههایشان در هتروژنیتی (ناهمگن) دخیل بدانیم. هدف سنتی از انجام کشت سلولهای اولیه تهیه مقدار کافی از سلولهای قابل رشد واجد شرایط می باشد که تضمین کننده شباهت توزیع نهایی سلولها با توزیع یافته شده در بافت اصلی است. استفاده از کشت سلولی به عنوان مدلی برای شرایط داخلی بدنی (in vivo) تا حد.ود زیادی به الزامات زیر نیازمند است. چندین فاکتور مؤثر بر نتیجه عبارتند از: محل آناتومی، پاتولوژی (آسیب شناسی)، نرمالسی (normalsy) یا درجه ایسکمی (کم خونی) میزان فراوانی بافت به کار رفته بر این فاکتورها تأثیر می گذارد. طبیعت متنوع معماری بافت به روشهای مختلفی برای توزیع سلول نیازمند است. برای مثال استخوان، مغز، ماهیچههای اسکلتی کبد و طحال دارای پیوندهای ماتریس سلول- سلول و سلول- برون سلولی هستند. نتیجه این شرایط این است که هیچ قراردادی همه انواع بافت را پوشش نمی دهد. در مورد نحوه ایجاد کشت اولیه و تجزیه بافت مطالب چندی منتشر شده است که تلاش در بهینه سازی این موضوعات برای سلول نتیجه بخش خواهد بود.
-توضیح
استراتژیهای مختلفی برای ایزولاسیون سلولهای موجود در بافتهای سخت وجود دارد از جمله: روشهای برون کاشت (explantation) آنزیمی، مکانیکی و تجزیه شیمیایی، (chemical disaggregation) تزریقی (perfusion) یا ترکیبی از آنها. یکی از جدید ترین شیوهها در جداسازی سلول و تکثیر سلولها در داخل آزمایشگاه (in vitro) برون کاشت قطعههای بافت است. در این روش تا زمانی که انتشار مواد غذایی و گازها محدود نشود بافت به قطعات بسیار کوچک خرد میشود. این عمل با بریدن و کوچک سازی بافت مورد نظر تا اندازه ای مناسب صورت می گیرد. سپس قطعات باف در ظروف کشت بافت که با سرم جنینی گاو (fetal bovine serum) یا ماتریسهای دیگر پوشیده شده است قرار داده می شود. ترکیب ماده و پوشش سطح همان طور که در ایزولاسیون انواع سلول از گلومرولها (glomerulus) نشان داده شده است، می تواند اثر قابل توجهی بر نوع سلول نهایی تولید شده داشته باشد. همچنین می توان قطعات بافت را برای تثبیت اتصال در زیر پوشش قرار داد زیرا تماس مستقیم با سطح کشت بافت برای کشت موفق برون کاشتنی (explant) ضروری است.
عموماً برای قرار دادن بافت در محیط کشت از دستگاههای مکانیکی استفاده شده و هیچ گونه آنزیمی اضافه نمی گردد. کشت اولیه توسط روش برون کاشت نسبت به دیگر روشها زمان بیشتری را طلب میکند، اما روش برون کاشت به خاطر استفاده از خاصیت حساسیت پتانسیلی سلول مورد نظر به ترکیب آنزیم دارای مزایای بیشتری است. اگر آنزیم قابل ارائه در محیط باشد می توان بافت را با غلظت آنزیمی بهینه برای مدت کوتاهی در دمای اتاق و یا برای مدت طولانی تری در دمای c0 4 نگهداری کرد. در اینجا هدف، تجزیه بافت نیست بلکه سازگار کردن مناسب ماتریس برون سلولی جهت حرکت مؤثر سلول مورد نظر است.