لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 2 صفحه
قسمتی از متن .doc :
سلول های بنیادی چه هستند؟
اخبار جدید حاکی از موفقیت اخیر محققان "مرکز تحقیقات پوست و سالک پژوهشکده ی رویان" در ابداع روش جدید درمان چین و چروک صورت است. دکتر محمد علی نیلفروش زاده رئیس این مرکز است.
با وی در مورد سلول های بنیادی در پوست و اقدامات انجام شده در این زمینه گفت و گویی انجام شده است که در ادامه می خوانید.
* سلول های بنیادی چه هستند و چگونه عمل می کنند ؟
سلول های بنیادی یا STEM CELLS به سلول های چند پتانسیلی مغز استخوان گفته می شود که توانایی تبدیل به انواع سلول های خونی را دارند. توانایی تبدیل این سلول ها به انواع سلول های خونی، توجه دانشمندان و پژوهشگران را به طرف تبدیل این سلول ها به سایر سلول های تخصص یافته ی بافت های دیگر معطوف داشت.
پیشرفت مطالعات نشان داد که در کلیه ی بافت های بدن نوعی از سلول های بنیادی یافت می شود که توانایی تبدیل به سلول های تخصص یافته ی همان بافت را دارند و در موقع اختلال بافتی، دست به کار شده و تکثیر پیدا می کنند و به دلیل داشتن همین توانایی به آنها " سلول بنیادی" می گویند.
سلول های بنیادی اصولا سلول های تخصصی نشده ای هستند که با دو مشخصه مهم از دیگر سلول ها تفکیک می شوند:
اولا توانایی تکثیر و افزایش تعداد برای مدت طولانی را دارند.
دوم اینکه پس از دریافت پیام های شیمیایی معین می توانند تمایز حاصل کنند یا به سلول های تخصص یافته ای با عملکردهای خاص، مثل سلول قلبی یا عصبی تبدیل شوند. عملکرد این سلول ها در بدن این است که در هنگام اختلال و بیماری تکثیر شده و سلول های جدیدی به بافت ارائه می کنند که اساس سلول درمانی را تشکیل می دهد.
سلول های بنیادی بر اساس توانایی تکثیر و تمایز به انواع مختلفی تقسیم می شوند:
1- سلول های بنیادی TOTIPOTENT یا همه توانی:
این سلول ها می توانند به هر نوع سلولی در بدن تغییر پیدا کرده و تبدیل شوند. یک تخمک بارور شده در واقع یک نوع سلول بنیادی همه توانی است. سلول های تولید شده در تقسیمات تخمک بارور شده نیز همه توانی هستند.
2- سلول های بنیادی PLURIPOTENT یا پرتوانی:
این سلول ها که از سلول های بنیادی رویان منشا می گیرند، حدود 4 روز پس از لقاح به وجود می آیند و می توانند به هر نوع سلولی به جز سلول های بنیادی همه توانی و سلول های جفت تبدیل شده و تمایز حاصل کنند.
3- سلول های بنیادی MULTIPOTENT یا چند توانی :
از سلول های بنیادی پرتوانی منشا می گیرند و سلول های تخصص یافته از آنها ناشی می شوند. برای مثال سلول های بنیادی خون ساز که در مغز استخوان وجود دارند به همه انواع سلول موجود در خون تبدیل می شوند، مثل گلبول قرمز، گلبول سفید و پلاکت. یا سلول های بنیادی عصبی که می توانند به سلول های عصبی و سلول های حمایت کننده عصبی تبدیل شوند.
4- سلول های بنیادی UNIPOTENT یا تک توانی :
این نوع سلول ها می توانند فقط به یک نوع سلول تبدیل شده و آن را تولید کنند.
* سلول درمانی چیست و چگونه از سلول های بنیادی برای سلول درمانی استفاده می شود؟
سلول درمانی در واقع عمل پیوند سلول های خویش منشا یا اتولوگ است. روشی که در حال حاضر تحت عنوان سیستم سلولی اتولوگ یا AUTOLOGOUS CELLULAR SYSTEM مطرح می گردد.
در این روش درمانی سلول های خود فرد تکثیر شده و مجدد به محل مورد نظر تزریق می شود تا اختلال ایجاد شده رفع شود.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 2 صفحه
قسمتی از متن .doc :
پروتئین سازی در سلول چگونه انجام می شود؟
پروتئینها مواد آلی بزرگ و یکی از انواع درشتملکولهای زیستی هستند که از زیرواحدهایی به نام اسید آمینه ساخته شدهاند. پروتئینها مانند زنجیری از یک کلاف سهبعدی بسپارهایی هستند که از ترکیب اسیدهای آمینه حاصل میشوند. اسیدهای آمینه مثل یک زنجیر خطی توسط پیوند پپتیدی میان گروههای کربوکسیل و آمین مجاور به یکدیگر متصل میشوند تا یک پلی پپتید را به وجود بیاورند. ترتیب اسیدهای آمینه در یک پروتئین توسط ژن مشخص میشود. اگرچه کد ژنتیک ۲۰ تا اسید آمینه استاندارد را معرفی میکند، در بعضی از اندامگانها (ارگانیسمها) کد ژنتیک شامل سلنوسیستئین و در بعضی از آرکیباکتریها پ یرولزین میباشد. گاهی در پروتئینها دگرگونی به وجود میآید: یا قبل از آنکه پروتئین بتواند به وظایفش در یاخته عمل کند و یا به عنوان قسمتی از مکانیسم بازرسی. پروتئینها معمولا به یکدیگر میپیوندند تا یک وظیفهای را با یکدیگر انجام دهند که این خود باعث استوار شدن پروتئین میشود. چون ترتیبهای نامحدودی در توالی و طول زنجیره اسید آمینهها در تولید پروتئینها وجود دارد، از این رو انواع بیشماری از پروتئینها نیز میتوانند وجود داشته باشند[۱]
ساختار پروتئین
ساختار پروتئین، و یا ساختمان پروتئین به ساختاری گفته میشود که پروتئین به خود میگیرد. پروتئین دارای چهار ساختار میباشد.
ساختار اول: به توالی پروتئین که به صورت رشتهای از اسیدهای آمینه میباشد گفته میشود. پروتئینها پلیمرهایی خطی از اسیدهای آمینه هستند که با پیوند پپتیدی بهم متصل شدهاند.
ساختار دوم: به نظمهای موضعی گفته میشود که پروتئین در حین تاشدگی به خود میگیرد. ساختار دوم پروتنئینها خود به چند دسته تقسیم میشود:
ساختار دوم قسمتی از یک پروتئین؛مارپیچ آلفا به رنگ خاکستری و صفحه بتا به رنگ قرمز نمایش داده شده
مارپیچ آلفا ساده ترین و انعطاف پذیرترین ترتیب، کونفرماسیونی مارپیچی و راست گرد بود به نام مارپیچ آلفا. مارپیچ آلفا یکی از ساختارهای دوم رایج در پروتئینهاست. مارپیچ آلفا یک مارپیچ راستگرد است که ساختار آن هر ۴/۵ آنگستروم یکبار تکرار میشود. در هر دو مارپیچ آلفا، ۶/۳ اسید آمینه وجود دارد. یعنی هر ۵/۱ آنگستروم یک اسید آمینه در طول مارپیچ آلفا قرار میگیرد. هر گروه کربوکسیل و آمین در مارپیچ آلفا با اسید آمینهای با فاصله چهار تا از خود، دارای باند هیدروژنی میباشد و این الگو در سراسر مارپیچ، غیر از چهار اسیدآمینه در دو انتهای آن تکرار شدهاست.
صفحههای بتا: ساختار صفحههای بتا، ساختار دوم بسیارکشیده و چیندار میباشد. یکی از تفاوتهای مهم صفحههای بتا با مارپیچ آلفا این است که اسیدآمینههایی که معمولاً در ساختار اول زنجیره پروتئینی با فاصله زیاد از هم قرارگرفتهاند، برای تشکیل این ساختار در مجاورت یکدیگر قرار میگیرند بنابراین صفحههای بتا تمایل به سختی داشته و انعطافپذیری ناچیزی دارند. پیوندهای هیدروژنی بینرشتهای که میان گروههای CO یک رشته بتا و NH رشته بتای مجاور ایجاد میشوند، به صفحات بتا پایداری میبخشند و باعث میشوند که این صفحات ظاهری زیگزاگ داشته باشند.
ساختار سوم: حالت سهبعدی که پروتئین بعد از پیچش به خود میگیرد گفته میشود.
ساختار چهارم: حالت قرارگیری چند پروتئین در فضا کنار یکدیگر. بیشتر پروتئینها از پیوند زنجیرهای پلی پپتیدی مشابه و یا متفاوت ساخته شدهاند، اتصال بین زنجیرها توسط پیوندهای ضعیف تری برقرار میگردد. این ساختارترتیب قرارگرفتن زیر واحدهای یک پروتئین را شرح میدهد و نقش مهمی در توضیح چگونگی شرکت پروتئین در واکنشهای شیمیایی دارد.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 34
موضوع:
کاربرد سلول های بنیادی
دبیر مربوطه :
سرکار
گردآورنده:
؟؟
مقدمه:
سلولهای بنیادی
سلولهای بنیادی سلولهای اولیهای هستند که توانائی تبدیل و تمایز به انواع مختلف سلولهای انسانی را دارند و از آنها میتوان در تولید سلولها و نهایتا بافتهای مختلف در بدن انسان استفاده کرد .
منابع اصلی سلولهای بنیادی شامل : مغز استخوان، بند ناف و جفت میباشد . امروزه استفاده از این سلولها جهت ترمیم بافتهای آسیب دیده انسانی در حال گسترش است .
جالب اینکه سلولهای بنیادی چند پتانسیلی هستند یعنی قابلیت تبدیل به بافتهای مختلف را دارند اعم از بافت عصبی ؛ عضلانی ؛ پوششی و غیره. که این توانائی محور اصلی توجه به سلولهای بنیادی است .
مزیت اصلی سلولهای بنیادی بند ناف این است که بسیار اولیه بوده و توان تمایز بالایی دارند.همچنین سلولهای مشتق از مغز استخوان ( BMCs ) توان تمایز بالایی دارند.
کاربردهای سلولهای بنیادی
بیماران قلبی:
توصیه میشود برای افرادی که در مراحل وخیم بیماری قلبی بوده و در انتظار دریافت قلب پیوندی بهسر میبرند، در کنار تجویز داروهای سرکوبکننده سیستم ایمنی، از روش پیوند سلولهای بندناف بهعنوان یک روش کمکی استفاده کرد. بر این اساس، این ایده در دنیا مطرح شده است که نمونه سلولهای بندناف هر شخص در ابتدای تولد گرفته شود و برای سالهای بعد برای خود فرد ذخیره شود.با این عمل، بیمار شانس بیشتری برای زنده ماندن تا زمان دریافت قلب را خواهد داشت. این روش بهویژه در بیماران کهنسال که سلولهای بنیادی مغز استخوان آنها برای پیوند کافی نیست، از اهمیت بالاتری برخوردار است. از اینرو، امروزه در اغلب کشورها بانکهای ویژهای برای جداسازی و نگهداری سلولهای بنیادی بندناف نوزادان تاسیس شده است. مزیت دیگر این سلولها، نداشتن مشکل دفع پیوند سلولهای بنیادی جنینی است. چراکه از خود فرد اخذ میشوند و در سالهای بعدی زندگی، دوباره به همان شخص تزریق میشوند.
بیماران کبدی:
پیوند سلولهای بنیادی علاوه بر بیماران قلبی در سایر بیماران نیز نتایج خوبی را نشان داده است. برای مثال، در حال حاضر اگر بیماری دچار سرطان کبد باشد، جراح مجبور است برای جلوگیری از انتشار سرطان (متاستاز) به بخشهای دیگر بدن، بخش سرطانی کبد را نابود کند. برای این منظور معمولاً طی دو عمل جراحی همزمان، خون ناحیه سرطانی کبد را قطع میکنند تا بافت سرطانی به تدریج نابود شود. در عین حال چون بخش باقیمانده کبد باید بتواند وظایف کل کبد را به عهده گیرد، لازم است تا این اعمال جراحی به نحوی انجام شود که بخش سالم باقیمانده، فرصت تکثیر را پیدا کند و در نهایت عملکرد کبد کامل را ایفا نماید. برای این منظور، حداقل 6 هفته زمان لازم است تا بخش
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 9
سلول های خورشیدی استفاده فزاینده از الکتریسیته حاصل از آفتاب
فناوری فتوولتائیک بازاری است چند میلیارد دلاری در سرتاسر جهان
از شریل پلرین (1)نویسنده کادر فایل واشنگتن مسائل انرژی برای محیط زیست زمین حیاتی است. برای روز زمین 2005 – 22 آوریل – واشنگتن فایل یک سری گزارش در خصوص انرژی تجدید شونده، این عنصر امیدوار کننده در معادلات آتی انرژی تهیه کرده است.
واشنگتن – تبدیل آفتاب به انرژی – انرژی خورشیدی – از دست کم 1861 که اولین موتور خورشیدی در فرانسه به ثبت رسید برای بسیاری از مخترعین یک رویا بوده است. امروز، نوآوری ها، سرمایه گذاری ها، و پیشرفت های فنی و علمی فناوری هایی در زمینه انرژی خورشیدی به وجود آورده که با تولید اکتریسیته تاکید بر لزوم وجود زیرساخت ضروری الکتریکی را کاهش می دهند.مهم ترین فناوری های موجود در زمینه انرژی خورشیدی فناوری های خورشیدی حرارتی، تمرکز انرژی خورشیدی، و فتوولتائیک هستند.
تجهیزات خورشیدی حرارتی از گرمای مستقیم خورشید استفاده کرده و از آن برای هر کاری، از گرم کردن استخرهای شنا گرفته تا تولید بخار در نیروگاه های برق استفاده می کنند.
نیروگاه هایی که انرژی خورشیدی را متمرکز می کنند با تبدیل آفتاب به حرارت های بالا توسط آینه های بزرگ و سپس انتقال انرژی این حرارت به ژنراتورهای معمولی برق تولید می کنند. این نیروگاه ها متشکل از دو بخش هستند – یکی که انرژی خورشیدی را جمع آوری و به حرارت تبدیل می کند، و دیگری که انرژی حرارتی را به الکتریسیته تبدیل می کند.
از دو شیوه حرارتی خورشیدی و تمرکز انرژی خورشیدی در سرتاسر جهان استفاده شده که این امر به رشد فناوری های تجدید شونده خورشیدی کمک می کند. اما سریع ترین روند رشد در این زمینه به فناوری فتوولتائیک مربوط می شود.
این کلمه متشکل است از فتو به معنی نور و ولتائیک به معنی تولید ولتاژ.سلول های فتوولتائیک از آفتاب سوخت می گیرند، نه از حرارت. این سلول ها که غالبا از سیلیکن نیمه هادی ساخته شده اند، نور آفتاب را مستقیما به برق تبدیل می کنند.
دن آرویزو (2) مدیر آزمایشگاه ملی انرژی تجدید شونده (3) وزارت انرژی ایالات متحده واقع در کلرادو می گوید، " فتوولتائیک فناوری بسیار زیباتری است. فتوولتائیک یکی از بزرگ ترین برنامه های در حال اجرای وزارت انرژی است. در واقع، بزرگ ترین برنامه ما در آزمایشگاه است."ساده ترین سلول های فتوولتائیک نیروی مورد نیاز ساعت های مچی و ماشین حساب ها را تامین می کنند؛ سیستم های پیچیده تر با اتصال به شبکه برق، بر مورد نیاز برای پمپاژ آب، راه انداختن تجهیزات ارتباطی، روشن کردن منازل و کار کارخانه ها را تامین می کنند.در فرایند فتوولتائیک، ذرات نور که فوتون نام داشته به داخل سلول ها نفوذ کرده و با آزاد کردن الکترون از اتم های سیلیکن جریان الکتریکی تولید می کنند. تا زمانی که تابش نور به داخل سلول در جریان باشد، الکتریسیته تولید می شود. این سلول ها الکترون های خود را مانند باتری ها تمام نمی کنند – آنها مبدل هایی بوده که یک نوع انرژی (خورشیدی) را به نوعی دیگر (جریان الکترون ها) تبدیل می کند.سلول های فتوولتائیک معمولا در مدول هایی که هر یک از 40 سلول تشکیل شده ترکیب می شوند. ده مدول اینچنینی در یک مجموعه فتوولتائیک نصب می شود. با استفاده از این مجموعه ها می توان به اندازه یک ساختمان، یا در تعداد بیشتر به اندازه یک نیروگاه برق تولید کرد. به گفته آرویزو، اگر چه هزینه بیشتر است، اما "در میان فناوری های خورشیدی، بیشترین فعالیت در زمینه فتوولتائیک صورت می گیرد. هزینه هر کیلووات ساعت برق تولید شده با روش فتوولتائیک 20 تا 25 سنت است. اما به دلیل شکل مدولار این فناوری، می توان آن را در سیستم های کوچک تر اجرا کرد." در مقایسه، هزینه هر کیلووات ساعت برق تولید شده با فناوری باد پنج تا شش سنت است.
چاک مک گوین (4)، رهبر فنی در زمینه انرژی باد در موسسه تحقیقات نیروی برق (5) که مرکز مستقل و غیر انتفاعی ای است، می گوید بخشی
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 33 صفحه
قسمتی از متن .doc :
سلول گیاهی
مقدمه
سلول واحد ساختاری مشترک در تمام موجودات زنده است. سلول عنصری مستقل ، کوچک و دارای اندازه میکروسکوپی است. محتویات سلولی مجموعهای از اجزا با ساختاری بسیار پیچیده و ترکیبات خاص است. تمام ظواهر و پدیدههای حیاتی و واکنشهای موجود ، ناشی از فعالیت محتویات پروتوپلاست درون سلولی است. سلولهای گیاهی نسبت به سلولهای جانوری دارای اشکال متنوعتری هستند. سلولهای گیاهی دارای اشکال چند ضلعی با اقطار مساوی و منظم و یا کشیده هستند و علاوه بر آن سلولهای گیاهی ، محصور در غشای شکل دهنده نسبتا سخت و محکم و مقاوم هستند که گاه نازک و گاهی ضخیم است.
در یک توده سلولی همگن سازنده یک بافت ، همه سلولها دارای یک اندازه و یک شکل و معمولا چند وجهیاند. در گیاهان آلی اندازه سلولها متناسب با کار آنهاست و بر حسب ماهیت بافت و نقشی که در گیاه دارند اندازه آنها متفاوت است. اندازه و طول سلولهای سازنده پیکر گیاهان به ماهیت و ویژگی آن سلول بستگی دارد و به طول ملکولهای پروتئینی موجود در آنها و همچنین به میزان فعالیت هسته سلول و دوره استراحت آن ارتباط دارد.
سیتوپلاسم هر دو یاخته مجاور به وسیله منافذ موجود (پلاسمودسمها) با هم ارتباط دارند. غشای سیتوپلاسمی از یک لایه دو مولکولی فسفولیپید تشکیل یافته است که پروتئینها به دو صورت سطحی و عمقی در آن غوطهورند. نقش غشای سیتوپلاسمی حفظ تراوایی انتخابی است. زمینه سیتوپلاسم اساسیترین قسمت درونی یاخته را تشکیل میدهد، زیرا اکثرا اعمال بیوسنتزی یاخته در آن صورت میگیرد. اندامکها در این زمینه قرار دارند. یکی از ویژگیهای سیتوپلاسم جنبش دائمی آن است که در اثر انقباض ریزرشتهها بوجود میآید، ولی ریزلولهها به این جریان جهت میدهند.
روش مشاهده سلول گیاهی
سادهترین راه مشاهده سلول گیاهی ، مطالعه سلولهای اپیدرم فلس پیاز است. اپیدرم فلس پیاز در زیر میکروسکوپ با بزرگنمایی ضعیف به صورت سلولهای چند وجهی کشیدهای است که بطور منظم که هم قرار داشته و بهم چسبیدهاند. چنانچه این اپیدرم را با محلول رقیق یدیدوره آغشته سازیم هسته سلولها بطور محسوسی مشخص میگردد. در هسته یک یا دو هستک به صورت نقاط روشن دیده میشود. علاوه بر هسته در داخل سلولها واکوئل یا (حفرههای سیتوپلاسمی) نیز وجود دارد که در ابتدا کوچک و پراکنده هستند و با رشد سلول بهم ملحق شده ، حفرههایی واحد و بزرگ را تشکیل میدهند.
در سلولهای پیر و مسن که واکوئلها قسمت اعظم فضای درونی آنها را فرا میگیرند هسته به گوشهای رانده شده ، سایر محتویات سلول به صورت ورقه نازک در اطراف واکوئل مرکزی چسبیده به غشا باقی میمانند. به علت چسبندگی و یکی بودن غشای سیتوپلاسمی با غشای سلولزی لذا غشای سیتوپلاسمی بطور عادی قابل مشاهده نیست ولی با اضافه کردن چند قطره محلول آب و نمک 20 درصد و ایجاد کیفیت پلاسمولیز غشای سلولی از غشای سلولزی جدا و قابل رویت میگردد.
دیواره یاختهای
در پیرامون اغلب یاختههای گیاهی و بعضی از یاختههای جانوری ، دیوارهای به نام دیواره یاختهای وجود دارد. دیواره یاختهای در یاختههای گیاهان ساختار نسبتا سخت سلولزی دارد و نوعی اسکلت بیرونی را ایجاد میکند که به این یاختهها شکل هندسی و نسبتا ثابتی میدهد. این دیواره که دیواره نخستین نامیده میشود، بوسیله پروتوپلاسم زنده یاخته ایجاد میشود و وجود آن اساسیترین وجه تمایز بین گیاهان و جانوران است. دیواره بین دو یاخته شامل شامل سه بخش است: هر یک از دو یاخته مجاور هم ، دیواره نخستین را تولید میکند و بین آن دو ، لایه بین یاختهای به نام تیغه میانی مشترک بین دو یاخته وجود دارد.
جنس تیغه میانی از ترکیبات پکتینی ، مانند پکتین ، است. در نتیجه افزایش سن یاخته ، ممکن است مواد دیگری ساخته شوند و از سمت داخل یاخته به صورت لایهای روی دیواره نخستین قرار بگیرند که دیواره دومین یا پسین نام دارد. ارتباط بین دو یاخته از راه پلاسمودسمها صورت میگیرد. پلاسمودسمها در دیوارههای نخستین در سوراخهای ریز دیواره ، جایی که دیواره فاقد تیغه میانی است، بوجود میآیند و سیتوپلاسم از آن محلها از یاختهای به یاخته دیگر جریان مییابد.
غشای سلولی
غشای سیتوپلاسمی از یک لایه دو مولکولی (دو ردیفی) فسفولیپید ساخته شده که هر مولکول آن شامل یک سر آب دوست و یک دم آب گریز است. استقرار این دو ردیف مولکول در مقابل یکدیگر طوری است که دمهای آب گریز به طرف داخل و در مقابل یکدیگر و سرهای آب دوست به طرف خارج قرار گرفتهاند. مولکولهای پروتئین در سطح بیرونی یا درونی و یا در تمام غشا وجود دارند. نقش غشای سیتوپلاسمی حفظ تراوایی انتخابی است. این غشا چون سدی نیمه تروا عمل میکند، نیمه تراوا بودن غشا عامل اصلی در نقش آن است.
سیتوپلاسم
سیتوپلاسم شامل تشکیلات یاختهای است که ساختاری نیمه شفاف ، بیشکل و تقریبا یکنواخت دارد و خاصیت شکست نور در آن کمی بیش از آب است. سیتوپلاسم پس از مرگ یاخته با رنگهای اسیدی آنیلین رنگ میگیرد، یعنی اسیدوفیل است. برعکس ، سیتوپلاسم زنده تقریبا خنثی است. زمینه سیتوپلاسم را هیالوپلاسم گویند. در هیالوپلاسم دو دسته عناصر به حالت شناور وجود دارند: یک دسته ضمایم دائمی مانند میتوکندریها ، پلاستها ، دستگاه گلژی و غیره که اندامک نامیده میشوند و دسته دیگر مواد غیر دائمی حاصل از اعمال زیست شیمیایی داخل هیالوپلاسم به نام اجسام ضمیمه هستند.
در هر حال محدوده هیالوپلاسم از طرف داخل ، غشای هسته و از طرف خارج ، غشای سیتوپلاسمی یاخته است. اندامکها عبارتند از: هسته ، میتوکندری ، شبکه آندوپلاسمی ، دستگاه گلژی ، ریزلولهها و ریزرشتهها ، لیزوزومها ، واکوئلها و پلاستها. ذرات دیگری نیز در سیتوپلاسم دیده میشوند که از اندامکها کوچکترند و غشا ندارند و ریبوزوم نام دارند. اگر چه ریبوزومها غشا ندارد و اندامک به شمار نمیآیند، اما اهمیت زیادی در سوخت و ساز یاخته دارند. سیتوپلاسم در تبادلات یاخته ، مراحل مختلف سوخت و ساز و همچنین جنبشهای سیتوپلاسمی که ممکن است چرخشی و یا موضعی باشد، نقش دارد.