انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

دانلود مقاله نظریه احتمال و مجموعه های فازی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 27

 

نظریه احتمال و مجموعه های فازی

1ـ مقدمه

زمینه نظریه احتمال کلاسیک مبتنی بر اصل مدل کلموگروف است بطوریکه پیشامدها به صورت زیر مجموعه‌ی معمولی از یک مجموعه مرجع X می‌باشند. این پیشامد ها یک ـ جبر A را تشکیل می‌دهند. احتمال P به عنوان یک تابع حقیقی روی A تعریف می‌شود و شرایط مرزی و P(X)=1 در مورد آن صدق می‌‌کند و برای هر ترتیب از پیشامدهای دوبدو ناسازگار دارای خاصیت _ جمعی می‌باشد و اگر شرط مرزی P(X)=1 را تغییر دهیم آن‌گاه به فهوم اندازه دست می‌یابیم. یک شاخه مهم از نظریه‌ی فازی با استنباط ها از احتمال P ( و احیاناً ـ جبر A ) تا زمانی که مفهوم زیر مجموعه های معمولی باقی بماند و تغییر نکند در ارتباط است. این عنوان موضوع اصلی این مقاله نیست به هر حال به بعضی از این استنباط ها در فصل 2 اشاره می‌شود.

مجموعه‌های فازی توسط زاده ( Zadeh) در سال 1965 به عنوان تعمیم مجموعه‌های معمولی معرفی شدند. ( توسط تابع مشخصه‌های آن ها ارائه داده شدند.) که بصورت تابعی از مجموعه مرجع X به بازه واحد [0,1] هستند. ما تعمیم‌ها و استنباط‌های ممکن دیگر را حذف خواهیم کرد. ( برای مرور عمیق تر بر نظریه مجموعه فازی و کاربرد آن‌ها به مقاله ] 27[ توجه کنید.) تعمیم کاربرد اشتراک، اجتماع و مکمل‌سازی در نظریه مجموعه های معمولی به مجموعه‌های فازی معمولاً بصورت نقطه به نقطة‌ صورت می‌گیرد.

دو تابع دو متغیره

 

و یک تابع یک متغیره و تعمیم آن ها از طریق معمولی است:

اگر A و B دو زیر مجموعه‌ی فازی از X باشند آن‌گاه برای هر داریم:

 

در تحت بعضی‌ از شرایط طبیعی T به یک نرم مثلثی Sklar و Schweizer ] 30[ تغییر پیدا می کند. بطور مشابه S نیز یک هم نرم مثلثی است. T و S در بخش 3 مورد بحث قرار خواهند گرفت. تابع مکمل C و روابط بین S , T در بخش 4 بحث خواهند شد. توجه کنید که اشتراک و اجتماع‌هائی که وابسته عنصری هستند توسط Klement ] 12 [ موردمطالعه و طبقه بندی قرار گرفتند. بطور مشابه lowen ] 16 [ مکمل‌هایی را که وابسته عنصری هستند مورد مطالعه قرار داد. بطور کلی مادراین مقاله با تعریف نقطه به نقطه رابطه های فازی سروکار داریم.

یک زوج (X,A ) که A یک ـ جبر از زیر مجموعه ی معمولی مجموعه‌ی مرجع X است، یک فضای کلاسیک قابل اندازه‌گیری را تشکیل می‌دهد. در بخش 5 بعضی از تعمیم های فازی از فضاهای اندازه پذیر مثل جبر های فازی تولید شده ( دسته ها)، ـ جبرهای فازی، T ـ دسته ها، g-T – دسته ها بحث خواهد شد. بعد از مرور کوتاه بر این موضوع، ما بعضی از آخرین نتایج و مسائل باز را ارائه می‌دهیم. در بخش 6 به اندازه‌های پیشامدهای فازی( اندازه‌های احتمال فازی، T ـ اندازه‌ها، اندازه‌های تجزیه پذیر و غیره ) خواهیم پرداخت. این بخش شامل سیر تاریخی مطلب، بعضی از آخرین نتایج و مسائل باز نیز می‌باشد.

2ـ اندازه‌‌‌های فازی

اندازه های فازی اولین بار توسط Sugeno ] 35[ در سال 1974 در پایان‌نامه‌ی دکترای او معرفی شد. یک اندازه فازی یک تابع مجموعه ای است که روی سیستم D از زیر مجموعه های معمولی مجموعه‌ی مرجعX تعریف می‌شود. ( برای X متناهی، D معمولاً بصورت مجموعه‌ی توان از مجموعه X گرفته می‌شود، ). تنها شرط لازم برای D این است که مجموعه‌ی را شامل شود و . اغلب D به عنوان ـ جبر فرض می‌شود. یک اندازه فازی ( R مجموعه‌ی اعداد حقیقی) در شرایط زیر صدق می کند:

 

,

برای پیشامدهای یکنوای نتیجه می دهد .

شرط (3) نسبتاً قوی است. بطور مثال بسیاری از اندازه های احتمال با پیوستگی از بالا هماهنگ نیستند، به همین دلیل است که در صفحات بعدی شرط پیوستگی حذف می‌شود. به مقاله های ] 24 و 23 و 21 [ توجه کنید. از این رو اندازه فازی یک تابع مجموعه ای یکنوا روی D است که در مجموعه تهی برابر صفر می‌شود. بدین معنی که اندازه فازی شرط (1) ، (2) را محقق می‌سازد. اگر علاوه بر این دو شرط، شرط (3) نیز صادق باشد m اندازه فازی پیوسته نامیده می‌شود.

 

بطوریکه f یک تابع قابل اندازه گیری نا منفی است و سمت راست انتگرال یک انتگرال لبگ معمولی می‌باشد. توجه کنید که در سال 1978، Sipos ] 32 [ یک روش انتگرال‌گیری را باتوجه به پیش اندازه معرفی کرد بطوریکه از انتگرال لبگ و انتگرال choquet مستقل بود. یک پیش‌اندازه بر یک اندازه فازی منطبق است و انتگرال Sipos یک تعمیم از انتگرال choquet است. ( این موضوع بر روی هر تابع قابل اندازه‌گیری تحت بعضی از محدودیت ها و شرط های طبیعی تعریف شده است.) برای جزئیات بیشتر به مقالات ] 34 و 33 و 32 [ مراجعه کنید.

یک طبقه بزرگ بسیاری از اندازه های فازی خاصیت شبه جمعی را دارا هستند بطور مثال، شبه جمع برای پیشامدهای مجزا بدین صورت است:

 

اغلب فرض می‌شود که m در شرط پیوستگی از پائین صدق می‌کند بطور مثال بصورت در نظر گرفته می‌شود که در این حالت اندازه امکان را بدست می‌آوریم . اندازه شبه جمع در یک قالب عمومی توسط Murofushi و Sugeno ] 23 [ در سال 1987 مورد مطالعه قرار گرفت. انتگرال آن ها نیز بطور مشابه با انتگرال لبگ ساخته شد. بطوریکه از تابع‌های ساده شروع می‌کنیم و از روش های حد معمولی استفاده می‌کنیم. نتایج قابل توجهی در ارتباط با این موضوع می‌توان بدست آورد. مثلاً در مقاله ] 14 [ .

اگر شبه جمع توسط مولد جمعی g تولید شود، آن گاه آن را با علامت نشان خواهیم داد.( همچنین به بخش 4 و 6 توجه کنید.) و اندازه‌های شبه جمعی مربوط نیز اندازه‌های -غیر قابل تجزیه نامیده می‌شوند. آن ها یک زیر خانواده از اندازه های شبه جمعی را تشکیل می دهند که توسط weber ] 38[ در سال 1984 معرفی شدند. انتگرال وبر ( Weber) نسبت به یک اندازه - تجزیه ناپذیر بر پایه انتگرال لبگ با توجه به gom ساخته می‌شود. اگرترکیب m,g یعنی gom یک اندازه جمعی متناهی و معمولی باشد آن گاه نتایج وبر (weber ) با نتایج Murofushi و Sugeno مطابقت می کند. بعضی از جزئیات در مقاله ] 22 [ دیده می‌شوند. همچنین دیدگاه مشابهی، البته با اندکی اصلاح ، توسط Pap ]28[بکار گرفته شده است.



خرید و دانلود دانلود مقاله نظریه احتمال و مجموعه های فازی