لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 9
منطق فازی چیست؟
منطق فازی دانشمندی به نام پروفسور لطفی زاده
منطقی که تکنیک را هوشمند کرد.
مفاهیم اساسی:
حتماً بارها شنیده اند که کامپیوتر از یک منطق صفر و یک تبعیت میکند. در چهار چوب این منطق ، چیزها درستند یا نادرست ، وجود دارند یا ندارند. سیستم منطق کلاسیک بم بر پایه منطق بولی است. منطق بولی بر این فرض استوار است که یک عنصر یا عضو مجموعه داده شده است و یا عضو مجموعه نیست. هر دو فرض فوق نمی توانند تواملاً درست باشند. متاسفانه این سیستم برای نشان دادن مفاهیم مبهم محدودیت دارد. به عنوان مثال فرض کنید منطق بولی برای تشخیص اینکه یک اتاق گرم است یا سرد مورد استفاده قرار بگیرد. همه افراد با این فرض که 100 درجه فارنهایت برای دمای اتاق گرم و 25 درجه فارنهایت برای دمای اتاق سرد محسوب میشوند موافقند. اما اگر دمای اتاق 75 درجه فارنهایت باشد چطور؟
در این موارد منطق بولی وسیله مناسبی برای شناسایی مقدار میانه نیست و منطق فازی روش توسعه یافته آن برای موارد مبهم بکار می رود. برای بیان ابهام در قالب یک عدد ، منطق فازی تابعی برای عضویت در یک دسته معرفی میکند که به هر عنصر یک عدد حقیقی بین صفر و یک نسبت می دهد. این عدد نشان دهنده این است که عنصر مورد نظر کاملاً در مجموعه قرار دارد یا خیر. اگر 1 باشد یعنی در مجموعه وجود دارد و اگر صفر باشد یعنی در مجموعه قرار ندارد و هر عدد بین این دو مقدار بیانگر درجه عضویت آن عضو به مجموعه است. و در مثال قبل 75 درجه فارنهایت مقداری بین صفر و یک خواهد بود. اگر بخواهیم در مورد تابع عضویت توضیحی ارائه دهیم می توان گفت یک متخصص دانا باید تابع عضویتی ارائه دهد که با عقاید عمومی سازگاری داشته باشد. تابع عضویتی که گرمی اتاق را توصیف می کند ، بایستی مفهوم سردی و گرمی که در ذهن افراد است ، منعکس نماید. اگر چه منطق فازی بر توابع عضویت تکیه دارد ، ولی سرچشمه آن خارج قلمرو این تابع می باشد.
این تابع می تواند اشکال مختلفی داشته باشد: مثلثی ، ذوذنقه ای ، نمایی و ... در این توابع دمای 75 درجه به عنوان دمای میانگین در نظر گرفته شده است.
مثال دیگری که وجود منطق فازی را به خوبی نشان می دهد. مثال پارک کردن اتومبیل درجاتی مناسب است.
فرض کنید نمایشگاه پوشاکی در نقطه ای از شهر است که باید با اتومبیل به آنجا بروید ، و هنگامیکه به محل نمایشگاه می رسید.
متوجه می شوید که پارکینگ نمایشگاه پراز ماشین است. اما با خود می گوئید حتماً باید جای پارکی پیدا کنم. سرانجام محلی را پیدا می کنید که یک ماشین به طور کامل در آن جا نمی شود . اما با کمی اغماض می شود. ماشین در آنجا می داد ، هر چند که این امکان وجود دارد که فضای عبور و مرور دیگر خودروها را تنگ کنید. اما به هر حال در همانجا ماشین خود را پارک می کنید.
بسیار خوب! اکنون بیائید بررسی کنیم شما دقیقاً چکار کردید؟ شما دنبال جای توقف یک اتومبیل می گشتید آیا پیدا کردید؟ هم بله ، هم نه . شما در ابتدا می خواستید ماشین را در محل مناسب پارک کنید. آیا چنین عملی انجام دادید؟ از یک نظر بله ، از یک دیدگاه نه. در مقایسه با وقت و انرژی لازم برای پیدا کردن یک مکان راحت برای توقف خودرو. شما جای مناسبی پیدا کردید . اما ار این نظر که اتومبیل را در جایی پارک کردید که فضای کافی برای قرار گرفتن ماشین شما نداشت ، نمی توان گفت جای مناسبی است.
اگر به منطق کلاسیک در علم ریاضیات مراجعه کنیم و این پرسش را مطرح کنیم که قبل از ورود به پارکینگ چند درصد احتمال می دادید جایی برای پارک کردن پیدا کنید. پاسخ بستگی به این دارد که واقعاً چه تعداد مکان مناسب (فضای کافی ) برای توقف خودروها در آنجا وجود داشت؟
فرض کنید هنگامیکه وارد نمایشگاه شدید ماشینهایی را دیدید که بصورت کج و معوج پارک کرده بودند یا برخی دیگر به اندازه یک و نیم خودرو فضا را اشغال کرده بودند. اگر صاحب بعضی از این خودروها در دست پارک کرده بودند ، الان جای خالی برای پارک کردن ماشین شما وجود داشت.
به این ترتیب علم ریاضیات و آمار و احتمال در مواجهه با چنین شرایطی قادر به پاسخگویی نیست. اگر قرار بود بر پایه منطق صفر و یک یا باینری کامپیوتر ، روباتی ساخته شود تا اتومبیل شما را در یک مکان مناسب پارک کند ، احتمالش کم بود. چنین روباتی به احتمال زیاد ناکام از پارکینگ خارج می شد. پس شما با چه منطقی اتومبیل خود را پارک کردید؟
شما از منطق فارسی استفاده گردید.
به همین شکل در زندگی روزمره ما بسیار از منطق فارسی استفاده می کنیم. مثلاً از ما می پرسند ، « هوا ابری است یا آفتابی ؟» پاسخ می دهیم نیمه ابری.
می پرسند: «آیا همه آنچه که گفتی درست بود؟» پاسخ می دهیم بیشتر آن حقیقت داشت. واقعیت این است که دنیای صفر و یک ، دنیای انتزاعی و خیالی است. به ندرت پیش می آید موضوعی صد در صد درست یا صد صد در صد نادرست باشد ؛ زیرا دنیای واقعی در بسیاری از مواقع همه چیز مرتب و منظم و سر جایش نیست.
پیشینه منطق فارسی:
تئوری مجموعه های فارسی و منطق فارسی را اولین بار پرفسور لطفی زاده در رساله ای بنام و مجموعه های فارسی اطلاعات و کنترل » در سال 1965 معرفی نمود. هدف اولیه او در آن زمان ، توسعه مدلی کار آمدم برای توصیف فرآیند پرورش زبانهای طبیعی بود. او مفاهیم و اصطلاحاتی همچون مجموعه های فارسی ، رویدادهای فارسی ، اعداد فارسی و فارسی سازی را وارد علوم و ریاضیات و مهندسی نمود و همچون در سال 2005 در دانشگاه فنی برلین پس از امضای کتابچه طلایی یادبود ، نام خود را در کنار بزرگان علم و صنعت دنیا به ثبت رساند.
همه لوازم پیرامون ما که آسایش را برایمان معنا می کند و تکنیک "اتومات" و "هوش مصنوعی" را بطن خود دارد. از ابداع پروفسور لطفی زاده نشان دارد.
پس از مصرفی منطق فارسی به دنیای علم ، در ابتدا مقاومتهای بسیاری در برابر پذیرش این نظریه صورت گرفت که ناشی از برداشت های نادرست از منطق فارسی و کارایی آن بود. جالب اینکه ، منطق فارسی در سالهای نخست تولد خود در دنیای مشرق زمین ، به ویژه کشور ژاپن با استقبال قابل توجهی روبرو شد . اما سلطه اندیشه کلاسیک صفر و یک در کشورهای مغرب زمین ، اجازه رشد اندکی به این نظریه داد.
با این حال به تدریج که این علم کاربردهایی پیدا کرد و وسایل الکترونیکی و دیجیتالی جدیدی وارد بازار شدند که بر اساس منطق فارسی کار می کردند ، مخالفتها نیز اندک اندک کاهش یافتند.
در ژاپن استقبال از منطق فارسی عمدتاً به کاربرد آن در روباتیک و هوش مصنوعی مربوط میشود
مجموعه های فازی:
بنیاد منطق فارسی بر شالوده نظریه مجموعه های فارسی استوار است. این نظریه تعمیمی از نظریه کلاسیک مجموعه ها در علم ریاضیات است. در تئوری کلاسیک مجموعه ها ، یک عنصر مجموعه است یا نیست. در حقیقت عضویت عناصر از یک الگوی صفر و یک و باینری تبعیت کنید. اما تئوری مجموعه های فارسی این مفهوم رابط می دهد و عضویت درجه بندی شده را مطرح می کند. به این ترتیب که یک عنصر می تواند تا درجاتی و نه کاملا عضو یک مجموعه باشد. مثلاً اینکه «آقای الف به اندازه هفتاد درصد عضو جامعه بزرگسالان است» از دید تئوری مجموعه های فارسی صحیح است.
در این تئوری ، عضویت اعضای مجموعه از طریق تابع U (X) نمایانگر یک عضو مشخص و u تابعی است که درجه عضویت x در مجموعه مربوطه را تعیین می کند و مقدار آن بین صفر و یک است.
و فرمول آن:
و تابع u(x) می تواند مجموعه ای از مقادیر گسسته یا پیوسته باشد.
تفاوت میان نظریه احتمالات و منطق فازی
یکی از مباحث مهم در مناطق فازی ، تمیز دادن آن
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 9
منطق فازی چیست؟
منطق فازی دانشمندی به نام پروفسور لطفی زاده
منطقی که تکنیک را هوشمند کرد.
مفاهیم اساسی:
حتماً بارها شنیده اند که کامپیوتر از یک منطق صفر و یک تبعیت میکند. در چهار چوب این منطق ، چیزها درستند یا نادرست ، وجود دارند یا ندارند. سیستم منطق کلاسیک بم بر پایه منطق بولی است. منطق بولی بر این فرض استوار است که یک عنصر یا عضو مجموعه داده شده است و یا عضو مجموعه نیست. هر دو فرض فوق نمی توانند تواملاً درست باشند. متاسفانه این سیستم برای نشان دادن مفاهیم مبهم محدودیت دارد. به عنوان مثال فرض کنید منطق بولی برای تشخیص اینکه یک اتاق گرم است یا سرد مورد استفاده قرار بگیرد. همه افراد با این فرض که 100 درجه فارنهایت برای دمای اتاق گرم و 25 درجه فارنهایت برای دمای اتاق سرد محسوب میشوند موافقند. اما اگر دمای اتاق 75 درجه فارنهایت باشد چطور؟
در این موارد منطق بولی وسیله مناسبی برای شناسایی مقدار میانه نیست و منطق فازی روش توسعه یافته آن برای موارد مبهم بکار می رود. برای بیان ابهام در قالب یک عدد ، منطق فازی تابعی برای عضویت در یک دسته معرفی میکند که به هر عنصر یک عدد حقیقی بین صفر و یک نسبت می دهد. این عدد نشان دهنده این است که عنصر مورد نظر کاملاً در مجموعه قرار دارد یا خیر. اگر 1 باشد یعنی در مجموعه وجود دارد و اگر صفر باشد یعنی در مجموعه قرار ندارد و هر عدد بین این دو مقدار بیانگر درجه عضویت آن عضو به مجموعه است. و در مثال قبل 75 درجه فارنهایت مقداری بین صفر و یک خواهد بود. اگر بخواهیم در مورد تابع عضویت توضیحی ارائه دهیم می توان گفت یک متخصص دانا باید تابع عضویتی ارائه دهد که با عقاید عمومی سازگاری داشته باشد. تابع عضویتی که گرمی اتاق را توصیف می کند ، بایستی مفهوم سردی و گرمی که در ذهن افراد است ، منعکس نماید. اگر چه منطق فازی بر توابع عضویت تکیه دارد ، ولی سرچشمه آن خارج قلمرو این تابع می باشد.
این تابع می تواند اشکال مختلفی داشته باشد: مثلثی ، ذوذنقه ای ، نمایی و ... در این توابع دمای 75 درجه به عنوان دمای میانگین در نظر گرفته شده است.
مثال دیگری که وجود منطق فازی را به خوبی نشان می دهد. مثال پارک کردن اتومبیل درجاتی مناسب است.
فرض کنید نمایشگاه پوشاکی در نقطه ای از شهر است که باید با اتومبیل به آنجا بروید ، و هنگامیکه به محل نمایشگاه می رسید.
متوجه می شوید که پارکینگ نمایشگاه پراز ماشین است. اما با خود می گوئید حتماً باید جای پارکی پیدا کنم. سرانجام محلی را پیدا می کنید که یک ماشین به طور کامل در آن جا نمی شود . اما با کمی اغماض می شود. ماشین در آنجا می داد ، هر چند که این امکان وجود دارد که فضای عبور و مرور دیگر خودروها را تنگ کنید. اما به هر حال در همانجا ماشین خود را پارک می کنید.
بسیار خوب! اکنون بیائید بررسی کنیم شما دقیقاً چکار کردید؟ شما دنبال جای توقف یک اتومبیل می گشتید آیا پیدا کردید؟ هم بله ، هم نه . شما در ابتدا می خواستید ماشین را در محل مناسب پارک کنید. آیا چنین عملی انجام دادید؟ از یک نظر بله ، از یک دیدگاه نه. در مقایسه با وقت و انرژی لازم برای پیدا کردن یک مکان راحت برای توقف خودرو. شما جای مناسبی پیدا کردید . اما ار این نظر که اتومبیل را در جایی پارک کردید که فضای کافی برای قرار گرفتن ماشین شما نداشت ، نمی توان گفت جای مناسبی است.
اگر به منطق کلاسیک در علم ریاضیات مراجعه کنیم و این پرسش را مطرح کنیم که قبل از ورود به پارکینگ چند درصد احتمال می دادید جایی برای پارک کردن پیدا کنید. پاسخ بستگی به این دارد که واقعاً چه تعداد مکان مناسب (فضای کافی ) برای توقف خودروها در آنجا وجود داشت؟
فرض کنید هنگامیکه وارد نمایشگاه شدید ماشینهایی را دیدید که بصورت کج و معوج پارک کرده بودند یا برخی دیگر به اندازه یک و نیم خودرو فضا را اشغال کرده بودند. اگر صاحب بعضی از این خودروها در دست پارک کرده بودند ، الان جای خالی برای پارک کردن ماشین شما وجود داشت.
به این ترتیب علم ریاضیات و آمار و احتمال در مواجهه با چنین شرایطی قادر به پاسخگویی نیست. اگر قرار بود بر پایه منطق صفر و یک یا باینری کامپیوتر ، روباتی ساخته شود تا اتومبیل شما را در یک مکان مناسب پارک کند ، احتمالش کم بود. چنین روباتی به احتمال زیاد ناکام از پارکینگ خارج می شد. پس شما با چه منطقی اتومبیل خود را پارک کردید؟
شما از منطق فارسی استفاده گردید.
به همین شکل در زندگی روزمره ما بسیار از منطق فارسی استفاده می کنیم. مثلاً از ما می پرسند ، « هوا ابری است یا آفتابی ؟» پاسخ می دهیم نیمه ابری.
می پرسند: «آیا همه آنچه که گفتی درست بود؟» پاسخ می دهیم بیشتر آن حقیقت داشت. واقعیت این است که دنیای صفر و یک ، دنیای انتزاعی و خیالی است. به ندرت پیش می آید موضوعی صد در صد درست یا صد صد در صد نادرست باشد ؛ زیرا دنیای واقعی در بسیاری از مواقع همه چیز مرتب و منظم و سر جایش نیست.
پیشینه منطق فارسی:
تئوری مجموعه های فارسی و منطق فارسی را اولین بار پرفسور لطفی زاده در رساله ای بنام و مجموعه های فارسی اطلاعات و کنترل » در سال 1965 معرفی نمود. هدف اولیه او در آن زمان ، توسعه مدلی کار آمدم برای توصیف فرآیند پرورش زبانهای طبیعی بود. او مفاهیم و اصطلاحاتی همچون مجموعه های فارسی ، رویدادهای فارسی ، اعداد فارسی و فارسی سازی را وارد علوم و ریاضیات و مهندسی نمود و همچون در سال 2005 در دانشگاه فنی برلین پس از امضای کتابچه طلایی یادبود ، نام خود را در کنار بزرگان علم و صنعت دنیا به ثبت رساند.
همه لوازم پیرامون ما که آسایش را برایمان معنا می کند و تکنیک "اتومات" و "هوش مصنوعی" را بطن خود دارد. از ابداع پروفسور لطفی زاده نشان دارد.
پس از مصرفی منطق فارسی به دنیای علم ، در ابتدا مقاومتهای بسیاری در برابر پذیرش این نظریه صورت گرفت که ناشی از برداشت های نادرست از منطق فارسی و کارایی آن بود. جالب اینکه ، منطق فارسی در سالهای نخست تولد خود در دنیای مشرق زمین ، به ویژه کشور ژاپن با استقبال قابل توجهی روبرو شد . اما سلطه اندیشه کلاسیک صفر و یک در کشورهای مغرب زمین ، اجازه رشد اندکی به این نظریه داد.
با این حال به تدریج که این علم کاربردهایی پیدا کرد و وسایل الکترونیکی و دیجیتالی جدیدی وارد بازار شدند که بر اساس منطق فارسی کار می کردند ، مخالفتها نیز اندک اندک کاهش یافتند.
در ژاپن استقبال از منطق فارسی عمدتاً به کاربرد آن در روباتیک و هوش مصنوعی مربوط میشود
مجموعه های فازی:
بنیاد منطق فارسی بر شالوده نظریه مجموعه های فارسی استوار است. این نظریه تعمیمی از نظریه کلاسیک مجموعه ها در علم ریاضیات است. در تئوری کلاسیک مجموعه ها ، یک عنصر مجموعه است یا نیست. در حقیقت عضویت عناصر از یک الگوی صفر و یک و باینری تبعیت کنید. اما تئوری مجموعه های فارسی این مفهوم رابط می دهد و عضویت درجه بندی شده را مطرح می کند. به این ترتیب که یک عنصر می تواند تا درجاتی و نه کاملا عضو یک مجموعه باشد. مثلاً اینکه «آقای الف به اندازه هفتاد درصد عضو جامعه بزرگسالان است» از دید تئوری مجموعه های فارسی صحیح است.
در این تئوری ، عضویت اعضای مجموعه از طریق تابع U (X) نمایانگر یک عضو مشخص و u تابعی است که درجه عضویت x در مجموعه مربوطه را تعیین می کند و مقدار آن بین صفر و یک است.
و فرمول آن:
و تابع u(x) می تواند مجموعه ای از مقادیر گسسته یا پیوسته باشد.
تفاوت میان نظریه احتمالات و منطق فازی
یکی از مباحث مهم در مناطق فازی ، تمیز دادن آن
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 27
نظریه احتمال و مجموعه های فازی
1ـ مقدمه
زمینه نظریه احتمال کلاسیک مبتنی بر اصل مدل کلموگروف است بطوریکه پیشامدها به صورت زیر مجموعهی معمولی از یک مجموعه مرجع X میباشند. این پیشامد ها یک ـ جبر A را تشکیل میدهند. احتمال P به عنوان یک تابع حقیقی روی A تعریف میشود و شرایط مرزی و P(X)=1 در مورد آن صدق میکند و برای هر ترتیب از پیشامدهای دوبدو ناسازگار دارای خاصیت _ جمعی میباشد و اگر شرط مرزی P(X)=1 را تغییر دهیم آنگاه به فهوم اندازه دست مییابیم. یک شاخه مهم از نظریهی فازی با استنباط ها از احتمال P ( و احیاناً ـ جبر A ) تا زمانی که مفهوم زیر مجموعه های معمولی باقی بماند و تغییر نکند در ارتباط است. این عنوان موضوع اصلی این مقاله نیست به هر حال به بعضی از این استنباط ها در فصل 2 اشاره میشود.
مجموعههای فازی توسط زاده ( Zadeh) در سال 1965 به عنوان تعمیم مجموعههای معمولی معرفی شدند. ( توسط تابع مشخصههای آن ها ارائه داده شدند.) که بصورت تابعی از مجموعه مرجع X به بازه واحد [0,1] هستند. ما تعمیمها و استنباطهای ممکن دیگر را حذف خواهیم کرد. ( برای مرور عمیق تر بر نظریه مجموعه فازی و کاربرد آنها به مقاله ] 27[ توجه کنید.) تعمیم کاربرد اشتراک، اجتماع و مکملسازی در نظریه مجموعه های معمولی به مجموعههای فازی معمولاً بصورت نقطه به نقطة صورت میگیرد.
دو تابع دو متغیره
و یک تابع یک متغیره و تعمیم آن ها از طریق معمولی است:
اگر A و B دو زیر مجموعهی فازی از X باشند آنگاه برای هر داریم:
در تحت بعضی از شرایط طبیعی T به یک نرم مثلثی Sklar و Schweizer ] 30[ تغییر پیدا می کند. بطور مشابه S نیز یک هم نرم مثلثی است. T و S در بخش 3 مورد بحث قرار خواهند گرفت. تابع مکمل C و روابط بین S , T در بخش 4 بحث خواهند شد. توجه کنید که اشتراک و اجتماعهائی که وابسته عنصری هستند توسط Klement ] 12 [ موردمطالعه و طبقه بندی قرار گرفتند. بطور مشابه lowen ] 16 [ مکملهایی را که وابسته عنصری هستند مورد مطالعه قرار داد. بطور کلی مادراین مقاله با تعریف نقطه به نقطه رابطه های فازی سروکار داریم.
یک زوج (X,A ) که A یک ـ جبر از زیر مجموعه ی معمولی مجموعهی مرجع X است، یک فضای کلاسیک قابل اندازهگیری را تشکیل میدهد. در بخش 5 بعضی از تعمیم های فازی از فضاهای اندازه پذیر مثل جبر های فازی تولید شده ( دسته ها)، ـ جبرهای فازی، T ـ دسته ها، g-T – دسته ها بحث خواهد شد. بعد از مرور کوتاه بر این موضوع، ما بعضی از آخرین نتایج و مسائل باز را ارائه میدهیم. در بخش 6 به اندازههای پیشامدهای فازی( اندازههای احتمال فازی، T ـ اندازهها، اندازههای تجزیه پذیر و غیره ) خواهیم پرداخت. این بخش شامل سیر تاریخی مطلب، بعضی از آخرین نتایج و مسائل باز نیز میباشد.
2ـ اندازههای فازی
اندازه های فازی اولین بار توسط Sugeno ] 35[ در سال 1974 در پایاننامهی دکترای او معرفی شد. یک اندازه فازی یک تابع مجموعه ای است که روی سیستم D از زیر مجموعه های معمولی مجموعهی مرجعX تعریف میشود. ( برای X متناهی، D معمولاً بصورت مجموعهی توان از مجموعه X گرفته میشود، ). تنها شرط لازم برای D این است که مجموعهی را شامل شود و . اغلب D به عنوان ـ جبر فرض میشود. یک اندازه فازی ( R مجموعهی اعداد حقیقی) در شرایط زیر صدق می کند:
,
برای پیشامدهای یکنوای نتیجه می دهد .
شرط (3) نسبتاً قوی است. بطور مثال بسیاری از اندازه های احتمال با پیوستگی از بالا هماهنگ نیستند، به همین دلیل است که در صفحات بعدی شرط پیوستگی حذف میشود. به مقاله های ] 24 و 23 و 21 [ توجه کنید. از این رو اندازه فازی یک تابع مجموعه ای یکنوا روی D است که در مجموعه تهی برابر صفر میشود. بدین معنی که اندازه فازی شرط (1) ، (2) را محقق میسازد. اگر علاوه بر این دو شرط، شرط (3) نیز صادق باشد m اندازه فازی پیوسته نامیده میشود.
بطوریکه f یک تابع قابل اندازه گیری نا منفی است و سمت راست انتگرال یک انتگرال لبگ معمولی میباشد. توجه کنید که در سال 1978، Sipos ] 32 [ یک روش انتگرالگیری را باتوجه به پیش اندازه معرفی کرد بطوریکه از انتگرال لبگ و انتگرال choquet مستقل بود. یک پیشاندازه بر یک اندازه فازی منطبق است و انتگرال Sipos یک تعمیم از انتگرال choquet است. ( این موضوع بر روی هر تابع قابل اندازهگیری تحت بعضی از محدودیت ها و شرط های طبیعی تعریف شده است.) برای جزئیات بیشتر به مقالات ] 34 و 33 و 32 [ مراجعه کنید.
یک طبقه بزرگ بسیاری از اندازه های فازی خاصیت شبه جمعی را دارا هستند بطور مثال، شبه جمع برای پیشامدهای مجزا بدین صورت است:
اغلب فرض میشود که m در شرط پیوستگی از پائین صدق میکند بطور مثال بصورت در نظر گرفته میشود که در این حالت اندازه امکان را بدست میآوریم . اندازه شبه جمع در یک قالب عمومی توسط Murofushi و Sugeno ] 23 [ در سال 1987 مورد مطالعه قرار گرفت. انتگرال آن ها نیز بطور مشابه با انتگرال لبگ ساخته شد. بطوریکه از تابعهای ساده شروع میکنیم و از روش های حد معمولی استفاده میکنیم. نتایج قابل توجهی در ارتباط با این موضوع میتوان بدست آورد. مثلاً در مقاله ] 14 [ .
اگر شبه جمع توسط مولد جمعی g تولید شود، آن گاه آن را با علامت نشان خواهیم داد.( همچنین به بخش 4 و 6 توجه کنید.) و اندازههای شبه جمعی مربوط نیز اندازههای -غیر قابل تجزیه نامیده میشوند. آن ها یک زیر خانواده از اندازه های شبه جمعی را تشکیل می دهند که توسط weber ] 38[ در سال 1984 معرفی شدند. انتگرال وبر ( Weber) نسبت به یک اندازه - تجزیه ناپذیر بر پایه انتگرال لبگ با توجه به gom ساخته میشود. اگرترکیب m,g یعنی gom یک اندازه جمعی متناهی و معمولی باشد آن گاه نتایج وبر (weber ) با نتایج Murofushi و Sugeno مطابقت می کند. بعضی از جزئیات در مقاله ] 22 [ دیده میشوند. همچنین دیدگاه مشابهی، البته با اندکی اصلاح ، توسط Pap ]28[بکار گرفته شده است.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 26
سرمقاله : مدل های فازی – چه هستند وچرا ؟
(J.C.Bezdek , IEEE Transactions on Fuzzy Systems , Vol. 1 , February 1993 - Edited by P.D.)
مجموعه های فازی درواقع تعمیمی برتئوری مجموعه های قراردادی می باشد که درسال 1965 به عنوان روشی ریاضی برای روشن کردن ابهامات درزندگی روزمره توسط زاده معرفی شد. [1].
ایده اصلی مجموعه های فازی ساده است وبه راحتی می توان آن را دریافت. فرض کنید هنگامی که به چراغ قرمز می رسید باید توصیه ای به یک دانش آموز راننده درباره زمان ترمز کردن بکنید. شما می گویید « در74 فوتی چهارراه ترمزکن » یا توصیه ی شما شبیه به این است « خیلی زود از ترمزها استفاده کن »؟ البته دومی ؛ دستورالعمل اول برای انجام دادن بسیار دقیق است. این نشان می دهد که دقت می تواند بی فایده باشد ، تا زمانی که راه های مبهم وغیر دقیق می توانند تفسیر وانجام گیرند. زبان روزمره مثال دیگری است از استفاده وانتشار ابهامات. بچه ها بسرعت تفسیر وانجام دستورالعمل های فازی را یاد می گیرند. (ساعت 10 به رختخواب برو). همه ما اطلاعات فازی نتایج مبهم واطلاعات غیر دقیق را به خاطر می سپاریم وازآن ها استفاده می کنیم وبه خاطر همین مسئله قادر هستیم تا در موقعیتهایی که به یک عنصر تصادفی وابسته است تصمیم گیری کنیم. بنابراین مدل های محاسباتی از سیستمهای حقیقی باید قادر باشند که عدم قطعیت های آماری وفازی را تشخیص دهند ، مشخص کنند ، تحت کنترل خود درآورند ، تفسیر کنند وازآن استفاده کنند.
تفسیر فازی ازاطلاعات یک راه بسیار طبیعی ، مستقیم و خوشظاهر برای فرموله کردن وحل مسائل مختلف است. مجموعه های قراردادی شامل اشیایی است که برای عضویت در ویژگیهای دقیقی صدق می کنند. مجموعه H که اعداد از6 تا 8 می باشد یک CRISP است ؛ ما می نویسیم . به طور مشابه H توسط تابع عضویت (MF) که مطابق زیرتعریف می شود نیز توصیف می گردد.
مجموعه H ونمودار درسمت چپ شکل 1 نشان داده شده اند هرعدد حقیقی r یا درH است یا نیست از آنجا که کلیه اعداد حقیقی را به دو نقطه (1،0) میبرد ، مجموعه Crisp معادل منطق دو مقداره است : هست یا نیست ، روشن یا خاموش ، سیاه یا سفید ، 1 یا 0 . درمنطق مقادیر مقادیر حقیقت نامیده می شوند، با ارجاع به این پرسش « آیا r درH است؟ » جواب مثبت است اگروتنها اگر ؛ درغیراین صورت نه.
مجموعه دیگرF ازاعداد حقیقی که نزدیک به 7 هستند را درنظر بگیرید ازآنجا که ویژگی «نزدیک به 7» نامعلوم است ، تابع عضویت یکتایی برای F وجود ندارد . به هرحال مدل کننده براساس پتانسیل کاربرد و ویژگی ها F باید تصمیم بگیرد که چه باشد . ویژگی هایی که برای F به نظرخوب می رسد شامل این موارد است (I) حالت عادی یا طبیعی (ii) یکنواختی (برای r نزدیکتر به7 ، به 1 نزدیکتراست وبرعکس) و (iii) تقارن (اعدادی که فاصله مساوی از چپ وراست 7 دارند باید عضویت یکسانی داشته باشند).
با توجه به این موارد ضروری هرکدام از توابع نشان داده شده درطرف راست شکل 1 میتواند نمایش مناسبی برای F باشد. گسسته است درحالی پیوسته است ولی هموارنیست (نمودار مثلثی) یک نفر می تواند به راحتی یک MF برای F بسازد به نحوی که هرعدد عضویت مثبتی در F داشته باشد ولی انتظار نداریم برای اعداد « خیلی دوراز7» برای مثال 2000097 زیاد داشته باشیم! یکی از بزرگترین تفاوت ها بین مجموعه های Crisp ومجموعههای فازی این است که اولی همیشه MF یکتایی دارد درحالی که هرمجموعه فازی بینهایت MF دارد که می توانند آن را نشان دهند. این درواقع هم ضعف است وهم قدرت ؛ یکتایی قربانی می شود ، ولی سود پیوسته ای که به خاطر انعطاف پذیری همراه خواهد داشت.
مدل فازی را قادر می سازد که با بیشترین سود دریک موقعیت داده شده تطبیق داده شود. درتئوری مجموعه های قراردادی ، مجموعه های اشیایی واقعی برای مثال اعداد در H معادلند و به صورت ایزومورفیک با یک تابع عضویت یکتا مانند توصیف می شوند. ولی معادل مجموعه ای ، از اشیای واقعی وجود ندارد. مجموعه های فازی همواره ( وفقط) توابعی هستند از «مجموعه جهانی» به نام X به [] . این مسئله درشکل 2 نشان داده شده است که درواقع مشخص می سازد مجموعه فازی تابع است از X به [] . همانطور که تعریف شده هرتابع [] یک مجموعه فازی است.
تازمانی که این در ریاضیات رسمی درست است ، بسیاری از توابع که دراین زمینه توصیف میشوند نمی توانند به طور مناسبی برای تصوریک مجموعه فازی تفسیر شوند . به عبارت دیگر، توابعی که X را به بازه واحد می برند ممکن است مجموعه های فازی باشند ولی تنها زمانی مجموعه فازی می شوند که یک سری ویژگی های غیر دقیق ولی ذاتی ، منطقی وتوصیفی را با اعضای X تطبیق دهند.
اولین سؤال و در واقع سؤالی که معمولا درمورد این طرح پرسیده می شود ، مربوط است به رابطه فازی واحتمال . آیا مجموعه های فازی یک مبدل هوشمند برای مدل های آماری است ؟ درواقع نه . شاید یک مثال کمک کند.
مثال 1: مجموعه همه آب ها رابه عنوان مجموعه جهانی درنظر بگیرید وهمچنین مجموعه فازی { مایعات قابل آشامیدن }=L را داریم . فرض کنید شما یک هفته بدون مایعات درصحرا بوده اید وحالا دو بطری A وB دارید. به شما گفته می شود که عضویت (فازی) مایع درون A در L ، 9/0 وهمچنین احتمال اینکه مایع درون B متعلق به L باشد هم 9/0 است. به عبارت دیگر A شامل مایعی است که با درجه عضویت 9/0 قابل شرب است درحالی که B شامل مایعی است که به احتمال 9/0 قابل شرب است . با این جفت بطری مواجه می شوید وباید ازیکی که انتخاب کرده اید بنوشید ، اول کدام را برای نوشیدن انتخاب می کنید ؟ چرا؟ بعلاوه بعداز مشاهده درباره محتوای دو بطری مقدار (محتمل) برای عضویت واحتمال چه میباشد؟ [ پاسخ این معما درکلاس بحث می شود ] سؤتفاهم رایج دیگردرباره مدل های فازی این است که آن ها به عنوان جایگزین هایی برای مدل های Crisp (یا احتمالاتی) پیشنهاد می شدند. برای توضیح این مسئله نخست از شکل های 1و2 توجه کنید که هرمجموعه Crisp فازی است ولی نه برعکس . بسیاری از طرح ها که ازایده فازی استفاده می کنند آن را از طریق محاط کردن وجا دادن بکار می برند یعنی ما تلاش می کنیم تا ساختارقراردادی را حفظ کنیم وبه آن اجازه می دهیم تا درخروجی هرزمان که میتواند و هرزمان که باید برجسته شود.
مثال 2 : وضع ریاضیدان اولیه را درنظر بگیرید ، او می دانند که سری تیلور برای تابع حقیقی (زنگی شکل) در واگرا است ولی نمی تواند بفهمد چرا ، مخصوصا که f دراین نقاط بی نهایت بار مشتقپذیر است. امروزه به عنوان دانش معمول هر دانش آموز ازتوابع مختلط تابع دو قطب در دارد. بنابراین تابع مختلط که محاط شده به وسیله صورت کسر است ، نمی تواند بسط سری توانی همگرا درنقطه ای روی مرز دایره به شعاع واحد درصفحه داشته باشد ؛ درحالت خاص در ، یعنی درنقاط حقیقی . این مثال یک اصل کلی در ریاضیات مدلی را نشان می دهد . یک مسئله حقیقی (ظاهراً لاینحل) را درنظر بگیرید ؛ فضا را گسترش بدهید وجواب را دراین فوق