لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 40
روشهای تکراری پیش فرض در مسائل گسسته خطی
از منظر معکوس« بایسیان»
دانشکده ریاضیات و مرکزی برای مدل سازی سیستم های متابولیک کامل دانشگاه کمیس غربی کلوند، OH 44106 آمریکا
دریافتی 3 فویه 2005 دریافتی صورت اصلاح شده 24 آگوست 2005
چکیده:
در این مقاله ما با مسائل گسسته خطی که با روشهای تکراری قابل حل می باشد از نظر آماری معکوس بایسیان روبرو خواهیم شد پس از بررسی اجمالی روش های تکراری عمده برای حل مسائل ناقص خطی و برخی نتایج آماری اولیه و روشهای آماری استراتژیهای ترسیمی را مورد تجزیه و تحلیل قرار خواهیم داد. نمونه های محاسبه شده رابط بین این دو را تشریح می کند.
کلمات کلیدی: حل های معکوس( امتحانی) فضای فرعی« کریلا» و روش معکوس« بایسیان»
پیش فرضها مسائل ناقص
(1) مقدمه
استفاده از روشهای تکراری برای حل سیستمهای خطی معادلات روشی انتخابی است هنگامی که ابعاد سیستم آنقدر بزرگ باشد که
فاکتورسازی ماتریس A را غیر عملی سازد یا هنگامی که ماتریس آن بطور صریح مجهول باشد و ما بآسانی بتوانیم حاصلضرب آن را با هر گونه بردار معلومی محاسبه کنیم. هنگامی که سیستم خطی در رابطه با گسستگی مسائل خطی ناقص سمت راست b اطلاعات و فرضیات را مورد بررسی قرار دهد، نقش مسائل متوالی در ماتریس A افزایش می یابد و بنابراین حل مسائل برای یافتن خطا در داده ها مهم و ضروری به نظر می رسد. بمنظور حفظ خطا در نشان دادن صورت b برخی از روشهای بدست آوردن مجهولات بایستی مشخص شود در زمینه روشهای معکوس بمنظور حل مجهولات بواسطه توقف کردن تکرار قبل از همگرایی در حل سیستم های خطی بهتر است به تکرار های ناقص رجوع شود. تجزیه و تحلیل کامل در ویژگی های معلوم کردن به روش CG در معادلات کامل هنگامی که می توان از معیارهای بازدارندگی مناسب استفاده کرد در بخش ] 10 [ قابل بحث می باشد.
در صورتیکهM ماتریس معکوس باشد، براساس ویژگی های طیفی MA همگرایی سریعترین برای روشهای حل تکراری ایجاد می کند. ماتریس M ماتریس شرطی سمت چپ برای سیستم خطی(1) نامیده می شود قابلیت امتحان ماتریس M نشان میدهد که سیستم های (1) و (2) راه حل یکسانی دارند انتخاب یک ماتریس شرطی مقدم M نشان می دهد که چنین ماتریسی نه تنها ویژگی های طیفی ماتریس A را تغییر می دهد بلکه بمنظور حل سیستم های خطی با مضروب ماتریس A بآسانی می توان آن را در کل بردار ضرب کرد. در حقیقت در هنگام حل سیستم 2 به روش تکرار لازم است ضرب ماتریس در بردار را در فرم مورد محاسبه قرار دهیم. سیستم خطی (1) با معادله زیر قابل جانشینی است.
(3)
ماتریس معکوس
در صورتی کهM ماتریس معکوس باشد در این مورد M ماتریس شرطی اولیه را ست نامیده می شود و از آنجائیکه هنگام حل سیستم خطی لازم است ضرب ماتریس در بردار را که بصورت نشان داده می شود محاسبه کنیم حل سیستم خطی با ضریب ماتریس A نیز ضروری به نظر می رسد یکی از شرایط برای روشهای حل تکراری در سیستم های خطی را می توان در بخش 19 مشاهده کرد زمانی که سیستم خطی از پراکندگی مسائل ناقص خطی ناشی می شود لازم و ضروری است که این مسائل را حل کرد در عوض تغییر مسیر از شتاب دهنده های همگرا به یک افزایش دهنده کیفیت در حل مسائل محاسبه شده به هیچ روش امکان پذیر نمی باشد. علاوه بر آن سمت و جهتی که معکوس ماتریس بکار می رود بسیار مهم است.در حل تکراری مسائل خطی یک شرط اولیه سمت راست مرتبط با داده های کاملاً منسجم و موجود در مورد حل در حالیکه شرایط لازم الاجرای سمت چپ داده هایی در مورد تمایز ویژگی های آماری ارائه می دهد در حالی که کاربرد این فرضیات در رابطه با روشهای تکراری در سیستم های خطی مشابه و مسائل خطی ناقص بر هم مرتبط است ساخت این پیش فرضیات مناسب کاملاً متغیر بوده و در موارد بعدی برای فهم اینکه چگونه این پیش فرضیات بر کیفیت حل مسائل اثر گذارنده مهم بنظر می رسد.
برخی انواع داده های قبلی در مورد حل ممکن است قابل تغیر به یک تغییرات مناسب در جهت حل های تکراری باشد بعنوان مثال داده هایی در مورد حد های بالایی و پائینی در حل اعداد صحیح بواسطه مراحل ترسیم سازی، پس از
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 40
روشهای تکراری پیش فرض در مسائل گسسته خطی
از منظر معکوس« بایسیان»
دانشکده ریاضیات و مرکزی برای مدل سازی سیستم های متابولیک کامل دانشگاه کمیس غربی کلوند، OH 44106 آمریکا
دریافتی 3 فویه 2005 دریافتی صورت اصلاح شده 24 آگوست 2005
چکیده:
در این مقاله ما با مسائل گسسته خطی که با روشهای تکراری قابل حل می باشد از نظر آماری معکوس بایسیان روبرو خواهیم شد پس از بررسی اجمالی روش های تکراری عمده برای حل مسائل ناقص خطی و برخی نتایج آماری اولیه و روشهای آماری استراتژیهای ترسیمی را مورد تجزیه و تحلیل قرار خواهیم داد. نمونه های محاسبه شده رابط بین این دو را تشریح می کند.
کلمات کلیدی: حل های معکوس( امتحانی) فضای فرعی« کریلا» و روش معکوس« بایسیان»
پیش فرضها مسائل ناقص
(1) مقدمه
استفاده از روشهای تکراری برای حل سیستمهای خطی معادلات روشی انتخابی است هنگامی که ابعاد سیستم آنقدر بزرگ باشد که
فاکتورسازی ماتریس A را غیر عملی سازد یا هنگامی که ماتریس آن بطور صریح مجهول باشد و ما بآسانی بتوانیم حاصلضرب آن را با هر گونه بردار معلومی محاسبه کنیم. هنگامی که سیستم خطی در رابطه با گسستگی مسائل خطی ناقص سمت راست b اطلاعات و فرضیات را مورد بررسی قرار دهد، نقش مسائل متوالی در ماتریس A افزایش می یابد و بنابراین حل مسائل برای یافتن خطا در داده ها مهم و ضروری به نظر می رسد. بمنظور حفظ خطا در نشان دادن صورت b برخی از روشهای بدست آوردن مجهولات بایستی مشخص شود در زمینه روشهای معکوس بمنظور حل مجهولات بواسطه توقف کردن تکرار قبل از همگرایی در حل سیستم های خطی بهتر است به تکرار های ناقص رجوع شود. تجزیه و تحلیل کامل در ویژگی های معلوم کردن به روش CG در معادلات کامل هنگامی که می توان از معیارهای بازدارندگی مناسب استفاده کرد در بخش ] 10 [ قابل بحث می باشد.
در صورتیکهM ماتریس معکوس باشد، براساس ویژگی های طیفی MA همگرایی سریعترین برای روشهای حل تکراری ایجاد می کند. ماتریس M ماتریس شرطی سمت چپ برای سیستم خطی(1) نامیده می شود قابلیت امتحان ماتریس M نشان میدهد که سیستم های (1) و (2) راه حل یکسانی دارند انتخاب یک ماتریس شرطی مقدم M نشان می دهد که چنین ماتریسی نه تنها ویژگی های طیفی ماتریس A را تغییر می دهد بلکه بمنظور حل سیستم های خطی با مضروب ماتریس A بآسانی می توان آن را در کل بردار ضرب کرد. در حقیقت در هنگام حل سیستم 2 به روش تکرار لازم است ضرب ماتریس در بردار را در فرم مورد محاسبه قرار دهیم. سیستم خطی (1) با معادله زیر قابل جانشینی است.
(3)
ماتریس معکوس
در صورتی کهM ماتریس معکوس باشد در این مورد M ماتریس شرطی اولیه را ست نامیده می شود و از آنجائیکه هنگام حل سیستم خطی لازم است ضرب ماتریس در بردار را که بصورت نشان داده می شود محاسبه کنیم حل سیستم خطی با ضریب ماتریس A نیز ضروری به نظر می رسد یکی از شرایط برای روشهای حل تکراری در سیستم های خطی را می توان در بخش 19 مشاهده کرد زمانی که سیستم خطی از پراکندگی مسائل ناقص خطی ناشی می شود لازم و ضروری است که این مسائل را حل کرد در عوض تغییر مسیر از شتاب دهنده های همگرا به یک افزایش دهنده کیفیت در حل مسائل محاسبه شده به هیچ روش امکان پذیر نمی باشد. علاوه بر آن سمت و جهتی که معکوس ماتریس بکار می رود بسیار مهم است.در حل تکراری مسائل خطی یک شرط اولیه سمت راست مرتبط با داده های کاملاً منسجم و موجود در مورد حل در حالیکه شرایط لازم الاجرای سمت چپ داده هایی در مورد تمایز ویژگی های آماری ارائه می دهد در حالی که کاربرد این فرضیات در رابطه با روشهای تکراری در سیستم های خطی مشابه و مسائل خطی ناقص بر هم مرتبط است ساخت این پیش فرضیات مناسب کاملاً متغیر بوده و در موارد بعدی برای فهم اینکه چگونه این پیش فرضیات بر کیفیت حل مسائل اثر گذارنده مهم بنظر می رسد.
برخی انواع داده های قبلی در مورد حل ممکن است قابل تغیر به یک تغییرات مناسب در جهت حل های تکراری باشد بعنوان مثال داده هایی در مورد حد های بالایی و پائینی در حل اعداد صحیح بواسطه مراحل ترسیم سازی، پس از
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 40
روشهای تکراری پیش فرض در مسائل گسسته خطی
از منظر معکوس« بایسیان»
دانشکده ریاضیات و مرکزی برای مدل سازی سیستم های متابولیک کامل دانشگاه کمیس غربی کلوند، OH 44106 آمریکا
دریافتی 3 فویه 2005 دریافتی صورت اصلاح شده 24 آگوست 2005
چکیده:
در این مقاله ما با مسائل گسسته خطی که با روشهای تکراری قابل حل می باشد از نظر آماری معکوس بایسیان روبرو خواهیم شد پس از بررسی اجمالی روش های تکراری عمده برای حل مسائل ناقص خطی و برخی نتایج آماری اولیه و روشهای آماری استراتژیهای ترسیمی را مورد تجزیه و تحلیل قرار خواهیم داد. نمونه های محاسبه شده رابط بین این دو را تشریح می کند.
کلمات کلیدی: حل های معکوس( امتحانی) فضای فرعی« کریلا» و روش معکوس« بایسیان»
پیش فرضها مسائل ناقص
(1) مقدمه
استفاده از روشهای تکراری برای حل سیستمهای خطی معادلات روشی انتخابی است هنگامی که ابعاد سیستم آنقدر بزرگ باشد که
فاکتورسازی ماتریس A را غیر عملی سازد یا هنگامی که ماتریس آن بطور صریح مجهول باشد و ما بآسانی بتوانیم حاصلضرب آن را با هر گونه بردار معلومی محاسبه کنیم. هنگامی که سیستم خطی در رابطه با گسستگی مسائل خطی ناقص سمت راست b اطلاعات و فرضیات را مورد بررسی قرار دهد، نقش مسائل متوالی در ماتریس A افزایش می یابد و بنابراین حل مسائل برای یافتن خطا در داده ها مهم و ضروری به نظر می رسد. بمنظور حفظ خطا در نشان دادن صورت b برخی از روشهای بدست آوردن مجهولات بایستی مشخص شود در زمینه روشهای معکوس بمنظور حل مجهولات بواسطه توقف کردن تکرار قبل از همگرایی در حل سیستم های خطی بهتر است به تکرار های ناقص رجوع شود. تجزیه و تحلیل کامل در ویژگی های معلوم کردن به روش CG در معادلات کامل هنگامی که می توان از معیارهای بازدارندگی مناسب استفاده کرد در بخش ] 10 [ قابل بحث می باشد.
در صورتیکهM ماتریس معکوس باشد، براساس ویژگی های طیفی MA همگرایی سریعترین برای روشهای حل تکراری ایجاد می کند. ماتریس M ماتریس شرطی سمت چپ برای سیستم خطی(1) نامیده می شود قابلیت امتحان ماتریس M نشان میدهد که سیستم های (1) و (2) راه حل یکسانی دارند انتخاب یک ماتریس شرطی مقدم M نشان می دهد که چنین ماتریسی نه تنها ویژگی های طیفی ماتریس A را تغییر می دهد بلکه بمنظور حل سیستم های خطی با مضروب ماتریس A بآسانی می توان آن را در کل بردار ضرب کرد. در حقیقت در هنگام حل سیستم 2 به روش تکرار لازم است ضرب ماتریس در بردار را در فرم مورد محاسبه قرار دهیم. سیستم خطی (1) با معادله زیر قابل جانشینی است.
(3)
ماتریس معکوس
در صورتی کهM ماتریس معکوس باشد در این مورد M ماتریس شرطی اولیه را ست نامیده می شود و از آنجائیکه هنگام حل سیستم خطی لازم است ضرب ماتریس در بردار را که بصورت نشان داده می شود محاسبه کنیم حل سیستم خطی با ضریب ماتریس A نیز ضروری به نظر می رسد یکی از شرایط برای روشهای حل تکراری در سیستم های خطی را می توان در بخش 19 مشاهده کرد زمانی که سیستم خطی از پراکندگی مسائل ناقص خطی ناشی می شود لازم و ضروری است که این مسائل را حل کرد در عوض تغییر مسیر از شتاب دهنده های همگرا به یک افزایش دهنده کیفیت در حل مسائل محاسبه شده به هیچ روش امکان پذیر نمی باشد. علاوه بر آن سمت و جهتی که معکوس ماتریس بکار می رود بسیار مهم است.در حل تکراری مسائل خطی یک شرط اولیه سمت راست مرتبط با داده های کاملاً منسجم و موجود در مورد حل در حالیکه شرایط لازم الاجرای سمت چپ داده هایی در مورد تمایز ویژگی های آماری ارائه می دهد در حالی که کاربرد این فرضیات در رابطه با روشهای تکراری در سیستم های خطی مشابه و مسائل خطی ناقص بر هم مرتبط است ساخت این پیش فرضیات مناسب کاملاً متغیر بوده و در موارد بعدی برای فهم اینکه چگونه این پیش فرضیات بر کیفیت حل مسائل اثر گذارنده مهم بنظر می رسد.
برخی انواع داده های قبلی در مورد حل ممکن است قابل تغیر به یک تغییرات مناسب در جهت حل های تکراری باشد بعنوان مثال داده هایی در مورد حد های بالایی و پائینی در حل اعداد صحیح بواسطه مراحل ترسیم سازی، پس از
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 40
روشهای تکراری پیش فرض در مسائل گسسته خطی
از منظر معکوس« بایسیان»
دانشکده ریاضیات و مرکزی برای مدل سازی سیستم های متابولیک کامل دانشگاه کمیس غربی کلوند، OH 44106 آمریکا
دریافتی 3 فویه 2005 دریافتی صورت اصلاح شده 24 آگوست 2005
چکیده:
در این مقاله ما با مسائل گسسته خطی که با روشهای تکراری قابل حل می باشد از نظر آماری معکوس بایسیان روبرو خواهیم شد پس از بررسی اجمالی روش های تکراری عمده برای حل مسائل ناقص خطی و برخی نتایج آماری اولیه و روشهای آماری استراتژیهای ترسیمی را مورد تجزیه و تحلیل قرار خواهیم داد. نمونه های محاسبه شده رابط بین این دو را تشریح می کند.
کلمات کلیدی: حل های معکوس( امتحانی) فضای فرعی« کریلا» و روش معکوس« بایسیان»
پیش فرضها مسائل ناقص
(1) مقدمه
استفاده از روشهای تکراری برای حل سیستمهای خطی معادلات روشی انتخابی است هنگامی که ابعاد سیستم آنقدر بزرگ باشد که
فاکتورسازی ماتریس A را غیر عملی سازد یا هنگامی که ماتریس آن بطور صریح مجهول باشد و ما بآسانی بتوانیم حاصلضرب آن را با هر گونه بردار معلومی محاسبه کنیم. هنگامی که سیستم خطی در رابطه با گسستگی مسائل خطی ناقص سمت راست b اطلاعات و فرضیات را مورد بررسی قرار دهد، نقش مسائل متوالی در ماتریس A افزایش می یابد و بنابراین حل مسائل برای یافتن خطا در داده ها مهم و ضروری به نظر می رسد. بمنظور حفظ خطا در نشان دادن صورت b برخی از روشهای بدست آوردن مجهولات بایستی مشخص شود در زمینه روشهای معکوس بمنظور حل مجهولات بواسطه توقف کردن تکرار قبل از همگرایی در حل سیستم های خطی بهتر است به تکرار های ناقص رجوع شود. تجزیه و تحلیل کامل در ویژگی های معلوم کردن به روش CG در معادلات کامل هنگامی که می توان از معیارهای بازدارندگی مناسب استفاده کرد در بخش ] 10 [ قابل بحث می باشد.
در صورتیکهM ماتریس معکوس باشد، براساس ویژگی های طیفی MA همگرایی سریعترین برای روشهای حل تکراری ایجاد می کند. ماتریس M ماتریس شرطی سمت چپ برای سیستم خطی(1) نامیده می شود قابلیت امتحان ماتریس M نشان میدهد که سیستم های (1) و (2) راه حل یکسانی دارند انتخاب یک ماتریس شرطی مقدم M نشان می دهد که چنین ماتریسی نه تنها ویژگی های طیفی ماتریس A را تغییر می دهد بلکه بمنظور حل سیستم های خطی با مضروب ماتریس A بآسانی می توان آن را در کل بردار ضرب کرد. در حقیقت در هنگام حل سیستم 2 به روش تکرار لازم است ضرب ماتریس در بردار را در فرم مورد محاسبه قرار دهیم. سیستم خطی (1) با معادله زیر قابل جانشینی است.
(3)
ماتریس معکوس
در صورتی کهM ماتریس معکوس باشد در این مورد M ماتریس شرطی اولیه را ست نامیده می شود و از آنجائیکه هنگام حل سیستم خطی لازم است ضرب ماتریس در بردار را که بصورت نشان داده می شود محاسبه کنیم حل سیستم خطی با ضریب ماتریس A نیز ضروری به نظر می رسد یکی از شرایط برای روشهای حل تکراری در سیستم های خطی را می توان در بخش 19 مشاهده کرد زمانی که سیستم خطی از پراکندگی مسائل ناقص خطی ناشی می شود لازم و ضروری است که این مسائل را حل کرد در عوض تغییر مسیر از شتاب دهنده های همگرا به یک افزایش دهنده کیفیت در حل مسائل محاسبه شده به هیچ روش امکان پذیر نمی باشد. علاوه بر آن سمت و جهتی که معکوس ماتریس بکار می رود بسیار مهم است.در حل تکراری مسائل خطی یک شرط اولیه سمت راست مرتبط با داده های کاملاً منسجم و موجود در مورد حل در حالیکه شرایط لازم الاجرای سمت چپ داده هایی در مورد تمایز ویژگی های آماری ارائه می دهد در حالی که کاربرد این فرضیات در رابطه با روشهای تکراری در سیستم های خطی مشابه و مسائل خطی ناقص بر هم مرتبط است ساخت این پیش فرضیات مناسب کاملاً متغیر بوده و در موارد بعدی برای فهم اینکه چگونه این پیش فرضیات بر کیفیت حل مسائل اثر گذارنده مهم بنظر می رسد.
برخی انواع داده های قبلی در مورد حل ممکن است قابل تغیر به یک تغییرات مناسب در جهت حل های تکراری باشد بعنوان مثال داده هایی در مورد حد های بالایی و پائینی در حل اعداد صحیح بواسطه مراحل ترسیم سازی، پس از
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 315
ـ فرض کنید تحقیقی در مورد گروهی از مریضها انجام میشود، به طوری که احتیاج به یک رژیم غذایی دارند که بایستی حداقل 2000 کالری و حداقل 600 واحد ویتامین D مورد لزوم از دو خوراک I و II کسب شود. هر واحد از خوراک I دارای 40 کالری و 8 واحد ویتامین D است و هر واحد از خوراک II دارای 20 کالری و 12 واحد ویتامین D است در ضمن هزینه هر واحد خوراک I برابر 4 تومان و هزینه هر واحد خوراک II برابر 5 تومان میباشد. مسئله را به صورت یک برنامهریزی خطی مدلبندی نمایید به طوری که ضمن کسب حداقل کالری و ویتامین D مورد لزوم مقدار هزینه مینیمم شود.
حل. تعریف میکنیم:
تعداد واحد خوراک نوع I که فرد خریداری میکند برای
اطلاعات مسئله را میتوانیم به صورت یکی از جدولهای زیر خلاصه نماییم:
حداقل مورد نیاز
خوراک I
خوراک II
2000
20
4
کالری
600
12
8
ویتامین D
5
4
هزینه
هزینه هر واحد
ویتامین D
کالری
4
8
4
X1تعداد واحد خوراک I
5
12
20
X2 تعداد واحد خوراک II
600
2000
حداقل مورد نیاز
با استفاده از هر کدام از دو جدول فوق، مدل مسئله به صورت زیر قابل بیان است:
ـ در یک کارگاه بشقابسازی بشقاب در دو اندازه کوچک و بزرگ ساخته میشود برای ساخت یک بشقاب کوچک، یک دسیمتر مربع ورق استیل 5/1 نفر ساعت کار مورد نیاز است. در صورتی که برای ساخت یک بشقاب بزرگ دو دسیمتر مربع ورق استیل و 3 نفر کار مورد نیاز است. فروش هر بشقاب کوچک 30 تومان و فروش هر بشقاب بزرگ 50 تومان سود دارد. اگر در هفته 400 دسیمتر مربع ورق استیل و 500 نفر ساعت نیروی انسانی در اختیار داشته باشیم و هر تعداد بشقاب از هر نوع که تولید شود به فروش برسد یک مدل ریاضی برای مسئله بنویسید که تعیین کند در هر هفته از هر نوع بشقاب چه تعداد تولید میشود تا ضمن رعایت محدودیتهای منابع، سود حاصل از تولید ماکزیمم شود.
حل. تعریف میکنیم:
تعداد تولید هفتگی بشقاب نوع کوچک: x1
تعداد تولید هفتگی بشقاب نوع بزرگ: x2
مقدار در دسترس
بزرگ
کوچک
400
2
1
ورق استیل
500
3
5/1
نیروی انسانی
50
30
سود
ـ در کارخانهای دو نوع کالا تولید میشود. برای تولید هر واحد از نوع اول، 3 ساعت زمان و برای تولید هر واحد از نوع دوم، 2 ساعت زمان لازم است. کارخانه در 24 ساعت شبانهروز کار میکند و از طرفی ماده اولیه برای تولید حداکثر 10 واحد کالا از هر نوع داریم. هرگاه سود کالای نوع اول 400 تومان و سود کالای نوع دوم 300 تومان برای هر واحد باشد. از هر کالا چه تعدادی در شبانه روز تولید کنیم تا سود حاصل ماکزیمم شود. یک مدل ریاضی برای بیان مسئله بنویسید.
حل. تعریف میکنیم:
تعداد کالای نوع i برای
ـ یک کارخانه تولیدی 5 ماشین رنگکاری و یک ماشین پرس دارد. این ماشینها برای ساخت دو نوع محصول I و II به کار گرفته میشوند. با ترکیب یک واحد از I و یک واحد از II، یک محصول جدید به نام III به دست میآید. میزان بهکارگیری هر کدام از این ماشینها برای محصولات I و II در جدول زیر داده شده است.