لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 55 صفحه
قسمتی از متن .doc :
چکیده
پایگاههای دادة فعال با هدف ایجاد تعامل در پایگاههای داده ایجاد شدند. در این نوع پایگاه داده با تعریف قوانین و بدون نیاز به کدنویسی، سیستم قادر به عکسالعمل مناسب در مقابل رویدادهای مهم در شرایط خاص میباشد. تعریف قوانین سادهترین نوع بیان محدودیتها بوده که برای متخصصین محیط نیز قابل درک میباشد. اما در بیان تجربیات اغلب از کلمات فازی استفاده میشود که ترجمه آنها به مقادیر دقیق منجر به کاهش ارزش معنایی دانش میشود. فازیسازی پایگاههای داده فعال با هدف نزدیکتر نمودن زبان بیان قوانین به زبان طبیعی انسان مطرح شد. این امر کمک میکند دانش متخصصین، مستقیماً به پایگاه داده منتقل شود. ضمن اینکه تغییرات نیز با کمترین هزینه، بر قوانین تعریف شده اعمال میشود.
در اولین گام از فازیسازی پایگاههای دادة فعال ولسکی و بوازیز به فازی نمودن رویداد، شرط و واکنش در تعریف قوانین پرداختهاند و طی سه مقاله نتایج آن را ارائه نمودند، آنها در پروژه Tempo به پیادهسازی فازی این سه بخش پرداختهاند.
این پایاننامه به فازی نمودن سایر بخشهای پایگاههای دادة فعال میپردازد. این بخشها شامل رویدادهای مرکب، انتخاب فازی اجزاء رویدادهای مرکب، انتخاب فازی زمان بررسی شرط و اجرای واکنش قوانین میباشد. همچنین راهحلهایی برای دو مشکل پایانناپذیری اجرای قوانین و یکتایی پاسخ در پایگاههای دادة فعال فازی ارائه شده است.
فازی نمودن پایگاههای دادة فعال با هدف کاربردیتر نمودن پایگاههای داده مطرح شد. مدل اجرایی پایگاههای دادة فعال در بسیاری موارد نظیر زمان بررسی شرط و یا تعیین اولویت قوانین از پیش فرض سیستم استفاده مینماید. فازی نمودن این نوع پایگاه داده کمک میکند تا سیستم سیاستهای اجرایی پایگاه داده را در زمان اجرا و با استفاده از شدت وقوع رویدادها (به صورت معنایی و پویا) تعیین نماید.
در ادامة این پایاننامه یک معماری ساده از پایگاه دادة فعال ارائه میشود و در پایان با یک نمونة پیادهسازی شده از پایگاه دادة فعال فازی موارد پیشنهادی ارزیابی میگردد.
کلیدواژه: پایگاه دادة فعال، مفاهیم فازی، عدم قطعیت، سیستمهای محرک.
فصل اول: کلیات
1-1 مقدمه
با ایجاد سیستمهای مدیریت پایگاه داده عمده مشکلات ساختار، پشتیبانی و مدیریت دادههای حجیم در سیستمهای فایلی برطرف شد اما توجهی به جنبههای رفتاری پایگاه داده نشد. به این معنا که با استفاده از قیود جامعیت شاید بتوان از منفی شدن مبلغ حقوق کارمندان جلوگیری نمود اما نمیتوان مانع از بیشتر شدن حقوق آنها از مدیرانشان شد. در چنین مواردی کاربران پایگاه داده با اجرای یک پرس و جو موارد نقض محدودیتهایی از این قبیل را پیدا نموده و خود اقدام به اصلاح آنها مینمایند.
مواردی این چنین و نیز گزارشات مدیریتی در آغاز ماه از جمله کارهای مشخص و دارای ضابطهای میباشند که انجام آنها تکراری و قابل تفویض به سیستم است.
کاربران غیرمجاز با استفاده از یک سر گزارش، غیرمستقیم به اطلاعات کلیدی دست یافته و اقدام به تغییر آنها مینمایند. پیدا نمودن چنین تغییراتی که معمولاً بعد از گزارشات اتفاق میافتند، به راحتی امکانپذیر نیست. همانطور که مشاهده میشود در یک پایگاه داده معمولی ردیابی رویدادهایی که در سیستم اتفاق افتادهاند (رخدادها) نیز ممکن نبوده و نیاز به یک سیستم با پشتیبانی جنبههای رفتاری میباشد.
در گام اول برای فراهم کردن امکان تعامل پایگاه داده با کاربر سیستمهای محرک نظیر Oracle به وجود آمدند. اما این نوع سیستمها تنها قادر به تشخیص رویدادهای ساختاری نظیر اضافه، حذف و تغییر مقادیر در پایگاه داده میباشند. به عبارت دیگر این سیستمها با ایجاد تغییر در یک قلم داده عکسالعمل نشان میدهند و این برای کاربران پایگاه داده کافی نیست. برای این کاربران ممکن است رویدادهایی نظیر نخواندن حسابها در آغاز ماه و یا یک رویداد خارجی نظیر فشردن یک کلید نیز مهم باشد که در این موارد سیستمهای محرک، پاسخگو نیستند [2].
درگام بعد پایگاه دادة فعال با افزودن قوانین به پایگاههای داده امکان تعامل (کنش و واکنش) بین سیستم و پایگاه داده را ایجاد نمود. این نوع پایگاه داده دارای دو بخش مدیریت داده و مدیریت قوانین میباشد. بخش مدیریت داده مسئول حفظ خواص پایگاه داده در سیستمهای کاربردی بوده و بخش دوم با مدیریت قوانین مسئول واکنش به رویدادهای سیستم میباشد. در این نوع پایگاه داده طراحان سیستم قادرند با تعریف قوانین که نزدیکترین بیان به زبان طبیعی میباشد، سیستم را وادار به عکسالعمل مناسب در مقابل رویدادهای مهم نمایند [21].
پایگاه داده فعال با استفاده از قوانین قادر به «پشتیبانی گستردهتر قیود جامعیت و سازگاری دادهها، واکنش در مقابل رخدادهای سیستم کاربردی، عدم اجرای تقاضاهای مشکوک، ردیابی رویدادها، گزارشات ماهانه و...» میباشد.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 19 صفحه
قسمتی از متن .doc :
یادگیری فعال
شیوه های انتقال تصمیم گیریهای مربوط به یادگیری به یاد گیرنده ، فکر فیلسوفان آموزش و پرورش را از زمانهای قدیم یعنی از زمان افلاطون وسفراط تا کنون به خود جلب کرده است. با وجود حضور همیشگی و نیروهای اجتماعی ، سیاسی و آموزه های مذهبی ، متخصصان آموزش و پرورش ، در طی قرون متمادی همیشه بر برنامه های آموزشی و موسسات آن از طریق کنترل یا دادن آزادیهای خاص دخالت و نظارت داشته اند.
●● عضو شماره ۱
شیوه های انتقال تصمیم گیریهای مربوط به یادگیری به یاد گیرنده ، فکر فیلسوفان آموزش و پرورش را از زمانهای قدیم یعنی از زمان افلاطون وسفراط تا کنون به خود جلب کرده است. با وجود حضور همیشگی و نیروهای اجتماعی ، سیاسی و آموزه های مذهبی ، متخصصان آموزش و پرورش ، در طی قرون متمادی همیشه بر برنامه های آموزشی و موسسات آن از طریق کنترل یا دادن آزادیهای خاص دخالت و نظارت داشته اند. متفکران دوره رنسانس به پرورش قوای طبیعی و آشکار کودک از طریق برنامه های آموزشی تأکید داشته اند . درحالی که فیلسوفان قرون وسطی معتقد بودند که به کودک باید به عنوان یک کل هماهنگ نگاه کرد. یکی از مشهورترین نویسندگانی که در مورد رویه تصمیم گیریها و دادن آزادیها در مدرسه به صورت روشن و صریح نظریاتی دارد " موسکا موستن " است . او در کتابهای قدیمی تر خود که در دهه ۶۰ نوشته و در کتابهای اخیر خود ( موستن ۱۹۸۲) ، کلیه روشهای آموزشی را تشریح کرده است . یعنی او در طیف روش تدریس خود از معلمی که تصمیم گیرنده مطلق است و فقط دستور می دهد و تمامی تصمیمات به وسیله اواتخاذ می شود و دانش آموز باید تمامی اوامر معلم را اطاعت کند شروع کرده تا روشهای آزادانه تر و روشهایی که بسیاری از تصمیم گیریها به عهده دانش آموز است .۱
۱- خوانندگانی که با کارهای موستن آشنا نیستند می توانند به کتابهای او که در کتابهای مرجع آمده است مراجعه کنند.
موستن شرط اصلی را آزادگذاری دانش آموز و مسئولیت تصمیم گیریها توسط دانش آموز می داند که این آزادی می تواند همیشه برای دانش آموز باشد یا اینکه دانش آموز در کنار معلم و همراه او آزادی نسبی داشته و با تعامل با او از آزادی خود استفاده کند. بنابراین اولین تصمیم گیریهای دانش آموز باید تصمیم گیری در مورد اصلاح رفتارها و وظایف او در زمانی که با معلم کار می کند و تعامل آن دو بر یکدیگر باشد. تصمیم گیریهای بعدی ، تصمیمات مربوط به قضاوت و ارزشیابی است که معمولا بعد از انجام فعالیت صورت می گیرد. و بالاخره تصمیم گیریهای مربوط به طراحی و برنامه ریزی توسط دانش آموز ، که این تصمیمات باید قبل از اینکه معلم و دانش آموز برای کار با هم باشند ، گرفته شوند.
متفکران دیگری نیز روشها و راهبردهای مشابهی برای فرآیند تفکر طراحی کرده اند که در جریان آموزش و تدریس مدرسه باید به آنها توجه کرد ( گانیه ۱ ۱۹۶۵ ، گیلفورد ۱۹۵۹ ، اسپیرمن و جانز۲ ۱۹۵۱). برخی از متفکران طبقه بندی خاصی برای یادگیری پیشنهاد کرده اند که بر آن اساس معتقدند یادگیری بعضی از مراحل ساده تر و رسیدن به برخی مراحل مهمتر و یا " سخت تر " است ( بلوم ۱۹۵۹). مثلاً حافظه ، نسبت به سایر مراحل در پایین ترین سطح قرار می گیرد و بر عکس روشهای مختلف حل مسئله در بالاترین سطح . و اگر چه کیفیت مراحل یادگیری در این طبقه بندیها از جهات مختلف متفاوت است ، اما بیشتر آنها فرایند تفکر واگرا و همگرا را که در قبل توضیح داده شد، شامل می شوند ، منظور از تفکر واگرا ( طبقه بندی تمامی پاسخهای ممکن ، نوعی تفکر خلاق که معمولاً در طراحی ، گرافیک هنرهای نمایشی به کار گرفته می شود) و تفکر همگرا ، ( غیر واگرا و منظور یافتن بهترین پاسخ و راه حل که در علوم کاربرد زیادی دارد) است . و بالاخره توانایی ارزیابی که نیاز به طبقه بندی ، مقابله و مقایسه ، تجزیه و تحلیل و ترکیب ( سنتز ) و سایر مراحلی است که قبلا توضیح داده شد.
کرتی معتقد است که به جای تابع قرار دادن بعضی از این وظایف بهتر است که برخی از مراحل مثل حل مساله را به عنوان فرآیندی اساسی و برخی دیگر را فعالیتهای حمایت کننده بنامیم . حافظه و روشهای ارزشیابی ( شامل طبقه بندی مقایسه و مقابله ) به عنوان حمایت کننده و تجزیه و تحلیل ، سنتز ، تفکر واگرا و همگرا به عنوان فرآیندهای اساسی در نظر گرفته شده که در شکل زیر نشان داده شده است.
در این نمودار ، حافظه ، ارزشیابی و مراحل مربوط به آنها مثل مقابله و مقایسه برای حمایت مراحل بالاتر یعنی مسائلی که نیاز به راه حلهای جدیدتر و خلاقیت دارد می باشد.
بعلاوه همان طور که در فصل دوم نیز اشاره شد می توان بحث را این طور ادامه داد که آنچه در حافظه اهمیت دارد و حیاتی است توجه و کسب " اطلاعات " به وسیله حافظه است. به نظر می رسد که اگر توجه منطقی و برای مدت زمان کافی به مساله ای شود ، اطلاعات بسیار کمی حاصل و ضبط می شود. مضافاً اینکه بدون اطلاعاتی که در ذهن باقی مانده باشد که در صورت لزوم بتوان یاداوری نمود ، تجزیه و تحلیلهای پیچیده و دستکاری آن اطلاعات ممکن نخواهد بود.
۱. Uscful out Coamcs
۲. Basic Proccss
۳. Suport Functions
●●عضو شماره ۲
آموزش خلاق با استفاده از بازیهای فعال
خلاقیت را می توان هماهنگی و گردآوری کیفیتها ، ایده ها و مفاهیم به شکلی جدید که قبلاً وجود نداشته است ، تعریف کرد. در این روند سعی شده که مسئولیت تصمیم گیریها و عمل به دانش آموز واگذار شود و به این وسیله هم دانش آموز تشویق به خلاقیت می شود و هم معلم ملزم به استفاده از بازیها به روشی فعال و خلاق . اگر زمینه مناسب باشد معلمان می توانند برخی از این بازیها را مانند الگوی ارائه شده پیاده کنند. به این معنا که معلم می تواند فضای آموزشی ایجاد کند که : الف : دانش آموز آزادی کافی جهت فعالیت داشته باشد. ب : همزمان بتواند به برخی فعالیتهای آموزشی که قبلاً تشریح شده بپردازد.
معلمان می توانند از نمودار و الگوی ارائه شده به روشهای مختلف استفاده کنند. در معرفی بسیاری از بازیها و فعالیتهای ارائه شده در فصلهای قبل و در توصیفها و طرح شکلهای دیگر ، پیشنهاداتی وجود دارد که با سطح افقی الگویی که بعد ارائه می شود هماهنگ است. معلم می تواند برخی از تصمیم گیریها در یک روز یا در روزهای مختلف را به دانش آموزان واگذار کند. به این معنا که در پریدن روی یک حرف ، در ابتدا معلم نام حرف را می گوید و دانش آموز روی آن می پرد ، سپس وقتی که به درس مربوطه می رسند ، دانش آموز خود باید تصمیم بگیرد که روی کدام مربع بپرد و بعد از انجام بازی مرحله ارزشیابی است که دو بازیکن همراه با هم عمل می کنند و یکی از آنها باید اجرای بازی توسط دوستش را ارزیابی کند که آیا کار را درست انجام داده است یا خیر. و بالاخره تصمیم گیریهای قبل از طراحی را نیز می توان به کودکان واگذار کرد. در مثال حروف ممکن است از دانش آموزان خواسته شود ، بازیهای مختلفی را که در مورد پریدن روی حروف می توان انجام داد طراحی کنند.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 21
از تمامی کاربران فعال پروژههای ویکیمدیا دعوت میشود تا در انتخابات هیئت امنای بنیاد ویکیمدیا شرکت کنند.
فناوری نانو
از ویکیپدیا، دانشنامهٔ آزاد.
Jump to: navigation, search
به نظر میآید مطالب این مقاله از جای دیگری کپی شدهاست. گرچه ممکن است در نوشتن این مقاله از منابع معتبر استفاده شده باشد، وضعیت حقتکثیر مقاله و مأخذ خود مقاله مشخص نیست. اگر تا ۲۹ ژوئیه ۲۰۰۶ اطلاعاتی در این مورد اضافه نشود این بخش برداشته خواهد شد.
زمان کنونی:۰۶:۵۵ ۹ دسامبر ۲۰۰۶
این مقاله را پس از موعد مشخص تعدیل کنید، اگر مایل به حذف آن هستید از رایگیری برای حذف استفاده کنید.
پیشنهاد شده است که این مقاله یا بخش با نانوتکنولوژی/موقت ادغام گردد. (بحث).
فناوری نانو عبارت است از هنر دستکاری مواد در مقیاس اتمی یا مولکولی و به خصوص ساخت قطعات و لوازم میکروسکوپی (مانند روباتهای میکروسکپی)
پزشکی و بدن انسان:
رفتار مولکولی در مقیاس نانومتر، سیستمهای زنده را اداره میکند. یعنی مقیاسی که شیمی]، فیزیک، زیستشناسی(زیستشناسی
از ویکیپدیا، دانشنامهٔ آزاد.
Jump to: navigation, search
زیستشناسی دانش زندگی است. این دانش به بررسی ویژگیها و رفتار سازوارهها، چگونگی پیدایش گونهها و افراد، و نیز به بررسی برهمکنش جانداران با همدیگر و محیط پیرامونشان میپردازد.
فهرست مندرجات [مخفی شود]
۱ سطوح زیستشناسی
۲ گرایشهای گوناگون زیستشناسی
۳ جستارهای وابسته
۴ پیوند به بیرون
[ویرایش] سطوح زیستشناسی
زیستشناسی گستره پهناوری از رشتههای دانشگاهی را دربرمیگیرد. بسیاری از این عرصهها گاه خود به عنوان رشتههای جدا و مستقلی قلمداد میگردند. رویهمرفته این رشتهها به مطالعه زیست در مقیاسها و سطوح گوناگون میپردازند از جمله:
در مقیاس هستهای از راه زیستشناسی مولکولی، زیست شیمی، و تا اندازهای ژنتیک
در مقیاس یاختهای از طریق زیستشناسی یاختهای
در مقیاس چندیاختهای از راه فیزیولوژی، کالبدشناسی، و بافتشناسی
در سطح شکلگیری یا ریختزایی (اونتوژنی) یک سازواره مفرد از راه پژوهش در رشته زیستشناسی تکاملی
در سطح وراثت میان زایندگان و زادگان از راه دانش ژنتیک
در سطح رفتار گروهی از راه رفتارشناسی
در سطح بررسی مجموعه یک جمعیت از طریق ژنتیک جمعیت و در مقیاس چندگونهایتبارها از راه دانش سامانهشناسی
در سطح جمعیتهای وابستهبههم و زیستگاههای ایشان از راه بومشناسی و زیستشناسی فرگشتی و نیز احتمالاً از راه دانش دگرزیستشناسی که به بررسی وجود زیست در ورای کره زمین میپردازد) و شبیهسازی کامپیوتری، همگی به آن سمت درحال گرایش هستند.
فراتر از سهلشدن استفاده بهینه از دارو، نانوتکنولوژی میتواند فرمولاسیون و مسیرهایی برای رهایش دارو(Drug Delivery) تهیه کند، که بهنحو حیرتانگیزی توان درمانی داروها را افزایش میدهد.
مواد زیستسازگار با کارآیی بالا، از توانایی بشر در کنترل نانوساختارها حاصل خواهدشد. نانومواد سنتزی معدنی و آلی را مثل اجزای فعّال، میتوان برای اعمال نقش تشخیصی(مثل ذرات کوانتومی که برای مرئیسازی بکار میرود) درون سلولها وارد نمود.
افزایش توان محاسباتی بهوسیله نانوتکنولوژی، ترسیم وضعیت شبکههای ماکرومولکولی را در محیطهای واقعی ممکن میسازد. اینگونه شبیهسازیها برای بهبود قطعات کاشتهشده زیستسازگار در بدن و جهت فرآیند کشف دارو، الزامی خواهدبود.
دوامپذیری منابع: کشاورزی، آب، انرژی، مواد و محیط زیست پاک:
نانوتکنولوژی منجر به تغییراتی شگرف در استفاده از منابع طبیعی، انرژی و آب خواهد شد و پساب و آلودگی را کاهش خواهدداد. همچنین فنّاوریهای جدید، امکان بازیافت و استفاده مجدد از مواد، انرژی و آب را فراهم خواهند کرد. در زمینه محیط زیست، علوم و مهندسی نانو، میتواند تأثیر قابل ملاحظهای در درک مولکولی فرآیندهای مقیاس نانو که در طبیعت رخ میدهد؛ در ایجاد و درمان مسائل زیستمحیطی از طریق کنترل انتشار آلایندهها؛ در توسعه فنّاوریهای «سبز» جدید که محصولات جانبی ناخواسته کمتری دارند و یا در جریانات و مناطق حاوی فاضلاب، داشتهباشد. لازم به ذکراست، نانوتکنولوژی توان حذف آلودگیهای کوچک از منابع آبی (کمتر از ۲۰۰ نانومتر) و هوا (زیر ۲۰ نانومتر) و اندازهگیری و تخفیف مداوم آلودگی در مناطق بزرگتر را دارد.
در زمینه انرژی، نانوتکنولوژی میتواند بهطور قابل ملاحظهای کارآیی، ذخیرهسازی و تولید انرژی را تحت تأثیر قرار داده مصرف انرژی را پایین بیاورد. به عنوان مثال، شرکتهای مواد شیمیایی، مواد پلیمری تقویتشده با نانوذرات را ساختهاند که میتواند جایگزین اجزای فلزی بدنه اتومبیلها شود. استفاده گسترده از این نانوکامپوزیتها میتواند سالیانه ۵٬۱ میلیارد لیتر صرفهجویی مصرف بنزین به همراه داشتهباشد.
همچنین انتظار میرود تغییرات عمدهای در فنّاوری روشنایی در ۱۰ سال آینده رخ دهد. میتوان نیمههادیهای مورد استفاده در دیودهای نورانی(LEDها) را به مقدار زیاد در ابعاد نانو تولید کرد. در امریکا، تقریباً ۲۰٪ کل برق تولیدی، صرف روشنایی(چه لامپهای التهابی معمولی و چه فلوئورسنت) میشود. مطابق پیشبینیها در ۱۰ تا ۱۵ سال آینده، پیشرفتهایی از این دست میتواند مصرف جهانی را بیش از ۱۰٪ کاهش دهد که ۱۰۰ میلیارد دلار در سال صرفهجویی و ۲۰۰ میلیون تن کاهش انتشار کربن را بههمراه خواهدداشت.
هوا و فضا:
محدودیتهای شدید سوخت برای حمل بار به مدار زمین و ماورای آن، و علاقه به فرستادن فضاپیما برای مأموریتهای طولانی به مناطق دور از خورشید، کاهش مداوم اندازه، وزن و توان مصرفی را اجتنابناپذیر میسازد. مواد و ابزارآلات نانوساختاری، امید حل این مشکل را بوجود آوردهاست.
«نانوساختن»(Nanofabrication) همچنین در طرّاحی و ساخت مواد سبکوزن، پرقدرت و مقاوم در برابر حرارت، موردنیاز برای هواپیماها، راکتها، ایستگاههای فضایی و سکّوهای اکتشافی سیّارهای یا خورشیدی، تعیینکنندهاست. همچنین استفاده روزافزون از سیستمهای کوچکشده تمام خودکار، منجر به پیشرفتهای شگرفی در فنّاوری ساخت و تولید خواهدشد. این مسأله با توجه به اینکه محیط فضا، نیروی جاذبه کم و خلأ بالا دارد، موجب توسعه نانوساختارها و سیستمهای نانو –که ساخت آنها در زمین ممکن نیست- در فضا خواهدشد.
امنیت ملّی:
برخی کاربردهای دفاعی نانوتکنولوژی عبارتاند از: تسلط اطّلاعاتی از طریق نانوالکترونیک پیشرفته بهعنوان یک قابلیت مهم نظامی، امکان آموزش مؤثّرتر نیرو، به کمک سیستمهای واقعیت مجازی پیچیدهتر حاصله از الکترونیک نانوساختاری، استفاده بیشتر از اتوماسیون و رباتیک پیشرفته برای جبران کاهش نیروی انسانی نظامی، کاهش خطر برای سربازان و بهبود کارآیی خودروهای نظامی، دستیابی به کارآیی بالاتر(وزن کمتر و قدرت بیشتر) موردنیاز در صحنههای نظامی و در عینحال تعداد دفعات نقص فنّی کمتر و هزینه کمتر در عمر کاری تجهیزات نظامی، پیشرفت در امر شناسایی و در نتیجه مراقبت عوامل شیمیایی، زیستی و هستهای، بهبود طرّاحی در سیستمهای مورد استفاده در کنترل و مدیریت عدم تکثیر سلاحهای هستهای، تلفیق ابزارهای نانو و میکرومکانیکی جهت کنترل سیستمهای دفاع هستهای. در بسیاری موارد، فرصتهای اقتصادی و نظامی مکمّل هم هستند. کاربردهای دراز مدت نانوتکنولوژی در زمینههای دیگر، پشتیبانی کننده امنیت ملّی است و بالعکس.
کاربرد نانوتکنولوژی در صنعت الکترونیک
ذخیرهسازی اطلاعات در مقیاس فوقالعاده کوچک: با استفاده از این فناوری میتوان ظرفیت ذخیرهسازی اطلاعات را در حد ۱۰۰۰ برابر یا بیشتر افزایش داد و نهایتاً به ساخت ابزارهای ابرمحاسباتی به کوچکی یک ساعت مچی منتهی شود. ظرفیت نهایی ذخیره اطلاعات به حدود یک ترابیت در هر اینچ مربع برسد، و این امر موجب ذخیره سازی ۵۰ عدد DVD یا بیشتر در یک هارد دیسک با ابعاد یک کارت اعتباری میشود. ساخت تراشهها در اندازههای فوقالعاده کوچک بهعنوان مثال در اندازههای ۳۲ تا ۹۰ نانومتر، تولید دیسکهای نوری ۱۰۰ گیگابایتی در اندازههای کوچک نیز میباشد.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 21
از تمامی کاربران فعال پروژههای ویکیمدیا دعوت میشود تا در انتخابات هیئت امنای بنیاد ویکیمدیا شرکت کنند.
فناوری نانو
از ویکیپدیا، دانشنامهٔ آزاد.
Jump to: navigation, search
به نظر میآید مطالب این مقاله از جای دیگری کپی شدهاست. گرچه ممکن است در نوشتن این مقاله از منابع معتبر استفاده شده باشد، وضعیت حقتکثیر مقاله و مأخذ خود مقاله مشخص نیست. اگر تا ۲۹ ژوئیه ۲۰۰۶ اطلاعاتی در این مورد اضافه نشود این بخش برداشته خواهد شد.
زمان کنونی:۰۶:۵۵ ۹ دسامبر ۲۰۰۶
این مقاله را پس از موعد مشخص تعدیل کنید، اگر مایل به حذف آن هستید از رایگیری برای حذف استفاده کنید.
پیشنهاد شده است که این مقاله یا بخش با نانوتکنولوژی/موقت ادغام گردد. (بحث).
فناوری نانو عبارت است از هنر دستکاری مواد در مقیاس اتمی یا مولکولی و به خصوص ساخت قطعات و لوازم میکروسکوپی (مانند روباتهای میکروسکپی)
پزشکی و بدن انسان:
رفتار مولکولی در مقیاس نانومتر، سیستمهای زنده را اداره میکند. یعنی مقیاسی که شیمی]، فیزیک، زیستشناسی(زیستشناسی
از ویکیپدیا، دانشنامهٔ آزاد.
Jump to: navigation, search
زیستشناسی دانش زندگی است. این دانش به بررسی ویژگیها و رفتار سازوارهها، چگونگی پیدایش گونهها و افراد، و نیز به بررسی برهمکنش جانداران با همدیگر و محیط پیرامونشان میپردازد.
فهرست مندرجات [مخفی شود]
۱ سطوح زیستشناسی
۲ گرایشهای گوناگون زیستشناسی
۳ جستارهای وابسته
۴ پیوند به بیرون
[ویرایش] سطوح زیستشناسی
زیستشناسی گستره پهناوری از رشتههای دانشگاهی را دربرمیگیرد. بسیاری از این عرصهها گاه خود به عنوان رشتههای جدا و مستقلی قلمداد میگردند. رویهمرفته این رشتهها به مطالعه زیست در مقیاسها و سطوح گوناگون میپردازند از جمله:
در مقیاس هستهای از راه زیستشناسی مولکولی، زیست شیمی، و تا اندازهای ژنتیک
در مقیاس یاختهای از طریق زیستشناسی یاختهای
در مقیاس چندیاختهای از راه فیزیولوژی، کالبدشناسی، و بافتشناسی
در سطح شکلگیری یا ریختزایی (اونتوژنی) یک سازواره مفرد از راه پژوهش در رشته زیستشناسی تکاملی
در سطح وراثت میان زایندگان و زادگان از راه دانش ژنتیک
در سطح رفتار گروهی از راه رفتارشناسی
در سطح بررسی مجموعه یک جمعیت از طریق ژنتیک جمعیت و در مقیاس چندگونهایتبارها از راه دانش سامانهشناسی
در سطح جمعیتهای وابستهبههم و زیستگاههای ایشان از راه بومشناسی و زیستشناسی فرگشتی و نیز احتمالاً از راه دانش دگرزیستشناسی که به بررسی وجود زیست در ورای کره زمین میپردازد) و شبیهسازی کامپیوتری، همگی به آن سمت درحال گرایش هستند.
فراتر از سهلشدن استفاده بهینه از دارو، نانوتکنولوژی میتواند فرمولاسیون و مسیرهایی برای رهایش دارو(Drug Delivery) تهیه کند، که بهنحو حیرتانگیزی توان درمانی داروها را افزایش میدهد.
مواد زیستسازگار با کارآیی بالا، از توانایی بشر در کنترل نانوساختارها حاصل خواهدشد. نانومواد سنتزی معدنی و آلی را مثل اجزای فعّال، میتوان برای اعمال نقش تشخیصی(مثل ذرات کوانتومی که برای مرئیسازی بکار میرود) درون سلولها وارد نمود.
افزایش توان محاسباتی بهوسیله نانوتکنولوژی، ترسیم وضعیت شبکههای ماکرومولکولی را در محیطهای واقعی ممکن میسازد. اینگونه شبیهسازیها برای بهبود قطعات کاشتهشده زیستسازگار در بدن و جهت فرآیند کشف دارو، الزامی خواهدبود.
دوامپذیری منابع: کشاورزی، آب، انرژی، مواد و محیط زیست پاک:
نانوتکنولوژی منجر به تغییراتی شگرف در استفاده از منابع طبیعی، انرژی و آب خواهد شد و پساب و آلودگی را کاهش خواهدداد. همچنین فنّاوریهای جدید، امکان بازیافت و استفاده مجدد از مواد، انرژی و آب را فراهم خواهند کرد. در زمینه محیط زیست، علوم و مهندسی نانو، میتواند تأثیر قابل ملاحظهای در درک مولکولی فرآیندهای مقیاس نانو که در طبیعت رخ میدهد؛ در ایجاد و درمان مسائل زیستمحیطی از طریق کنترل انتشار آلایندهها؛ در توسعه فنّاوریهای «سبز» جدید که محصولات جانبی ناخواسته کمتری دارند و یا در جریانات و مناطق حاوی فاضلاب، داشتهباشد. لازم به ذکراست، نانوتکنولوژی توان حذف آلودگیهای کوچک از منابع آبی (کمتر از ۲۰۰ نانومتر) و هوا (زیر ۲۰ نانومتر) و اندازهگیری و تخفیف مداوم آلودگی در مناطق بزرگتر را دارد.
در زمینه انرژی، نانوتکنولوژی میتواند بهطور قابل ملاحظهای کارآیی، ذخیرهسازی و تولید انرژی را تحت تأثیر قرار داده مصرف انرژی را پایین بیاورد. به عنوان مثال، شرکتهای مواد شیمیایی، مواد پلیمری تقویتشده با نانوذرات را ساختهاند که میتواند جایگزین اجزای فلزی بدنه اتومبیلها شود. استفاده گسترده از این نانوکامپوزیتها میتواند سالیانه ۵٬۱ میلیارد لیتر صرفهجویی مصرف بنزین به همراه داشتهباشد.
همچنین انتظار میرود تغییرات عمدهای در فنّاوری روشنایی در ۱۰ سال آینده رخ دهد. میتوان نیمههادیهای مورد استفاده در دیودهای نورانی(LEDها) را به مقدار زیاد در ابعاد نانو تولید کرد. در امریکا، تقریباً ۲۰٪ کل برق تولیدی، صرف روشنایی(چه لامپهای التهابی معمولی و چه فلوئورسنت) میشود. مطابق پیشبینیها در ۱۰ تا ۱۵ سال آینده، پیشرفتهایی از این دست میتواند مصرف جهانی را بیش از ۱۰٪ کاهش دهد که ۱۰۰ میلیارد دلار در سال صرفهجویی و ۲۰۰ میلیون تن کاهش انتشار کربن را بههمراه خواهدداشت.
هوا و فضا:
محدودیتهای شدید سوخت برای حمل بار به مدار زمین و ماورای آن، و علاقه به فرستادن فضاپیما برای مأموریتهای طولانی به مناطق دور از خورشید، کاهش مداوم اندازه، وزن و توان مصرفی را اجتنابناپذیر میسازد. مواد و ابزارآلات نانوساختاری، امید حل این مشکل را بوجود آوردهاست.
«نانوساختن»(Nanofabrication) همچنین در طرّاحی و ساخت مواد سبکوزن، پرقدرت و مقاوم در برابر حرارت، موردنیاز برای هواپیماها، راکتها، ایستگاههای فضایی و سکّوهای اکتشافی سیّارهای یا خورشیدی، تعیینکنندهاست. همچنین استفاده روزافزون از سیستمهای کوچکشده تمام خودکار، منجر به پیشرفتهای شگرفی در فنّاوری ساخت و تولید خواهدشد. این مسأله با توجه به اینکه محیط فضا، نیروی جاذبه کم و خلأ بالا دارد، موجب توسعه نانوساختارها و سیستمهای نانو –که ساخت آنها در زمین ممکن نیست- در فضا خواهدشد.
امنیت ملّی:
برخی کاربردهای دفاعی نانوتکنولوژی عبارتاند از: تسلط اطّلاعاتی از طریق نانوالکترونیک پیشرفته بهعنوان یک قابلیت مهم نظامی، امکان آموزش مؤثّرتر نیرو، به کمک سیستمهای واقعیت مجازی پیچیدهتر حاصله از الکترونیک نانوساختاری، استفاده بیشتر از اتوماسیون و رباتیک پیشرفته برای جبران کاهش نیروی انسانی نظامی، کاهش خطر برای سربازان و بهبود کارآیی خودروهای نظامی، دستیابی به کارآیی بالاتر(وزن کمتر و قدرت بیشتر) موردنیاز در صحنههای نظامی و در عینحال تعداد دفعات نقص فنّی کمتر و هزینه کمتر در عمر کاری تجهیزات نظامی، پیشرفت در امر شناسایی و در نتیجه مراقبت عوامل شیمیایی، زیستی و هستهای، بهبود طرّاحی در سیستمهای مورد استفاده در کنترل و مدیریت عدم تکثیر سلاحهای هستهای، تلفیق ابزارهای نانو و میکرومکانیکی جهت کنترل سیستمهای دفاع هستهای. در بسیاری موارد، فرصتهای اقتصادی و نظامی مکمّل هم هستند. کاربردهای دراز مدت نانوتکنولوژی در زمینههای دیگر، پشتیبانی کننده امنیت ملّی است و بالعکس.
کاربرد نانوتکنولوژی در صنعت الکترونیک
ذخیرهسازی اطلاعات در مقیاس فوقالعاده کوچک: با استفاده از این فناوری میتوان ظرفیت ذخیرهسازی اطلاعات را در حد ۱۰۰۰ برابر یا بیشتر افزایش داد و نهایتاً به ساخت ابزارهای ابرمحاسباتی به کوچکی یک ساعت مچی منتهی شود. ظرفیت نهایی ذخیره اطلاعات به حدود یک ترابیت در هر اینچ مربع برسد، و این امر موجب ذخیره سازی ۵۰ عدد DVD یا بیشتر در یک هارد دیسک با ابعاد یک کارت اعتباری میشود. ساخت تراشهها در اندازههای فوقالعاده کوچک بهعنوان مثال در اندازههای ۳۲ تا ۹۰ نانومتر، تولید دیسکهای نوری ۱۰۰ گیگابایتی در اندازههای کوچک نیز میباشد.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 11
کنترل فعال نامتمرکز سازههای بلند با پسخور شتاب
چکیده:
پاسخ سازههای بزرگ مقیاس و بلند را میتوان با بهرهگیری از الگوریتمهای کنترل فعال مناسب و بکار بردن عملگرها در طبقات کاهش داد و استفاده از روشهای نوین کنترل جهت رسیدن به ترازهای ایمنی بالا در این راستا میباشد. در این مقاله روش کنترل نامتمرکز سازههای بلند با پسخور شتاب ارائه شده است. در روش کنترل نامتمرکز، یک سازه بزرگ به چند زیرسازه کوچکتر تقسیم شد و برای هر زیرسیستم، الگوریتم کنترل مخصوص آن استفاده میشود. زیرسیستمهای مختلف با یکدیگر همپوشانی داشته و در نقاط مشترک با یکدیگر تبادل اطلاعات خواهند داشت. الگوریتم مورد استفاده جهت کنترل سازه، الگوریتم کنترل بهینه لحظهای با بهرهگیری از پسخور شتاب بوده و در انتها یک نمونه عددی جهت الگوریتم پیشنهاد شده در این مقاله و بررسی نتایج آن با حالت کنترل متمرکز ارائه گردیده است.
واژههای کلیدی: کنترل، نامتمرکز، سازههای بلند، پسخور.
1) مقدمه
سازههای بلند از انواع سیستمهای سازهای میباشند که ضرورتاً در کنترل لرزشهای آن باید از کنترل غیرمتمرکز استفاده شود. این لرزشها میتوانند شامل دو دسته لرزشهای کلی و لرزشهای موضعی شوند. از طرفی با توجه به بزرگی این سازهها، مطمئناً بهرهگیری از یک مرکز کنترلی ارتعاشات برای این ساختمان منطقی نبوده و باید از چند مرکز کنترل ارتعاشات استفاده شود.
در سازههای بلند از چندین نوع سیستم باربر گرانشی و زلزله استفاده میشود که غیرمتمرکز کردن کنترل سازه تا اندازه زیادی به سیستم باربر جانبی بستگی دارد. در واقع بحث نامتمرکز کردن کنترل در ترازها، در جهت بالا بردن ایمنی کنترل ارتعاشات سازههای بلند بوده و در این حالت در صورت از کار افتادن یکی از مغزهای کنترل با سریسازی خودکار سیستم میتوان کنترل ارتعاشات سازه را به زیرسیستم سالم سپرد.
به طور کلی کنترل فعال (Active control) سازهها شامل دو بخش الگوریتمهای موردنیاز جهت بدست آوردن مقدار نیروی کنترل و مکانیزمهای اعمال نیرو میباشد. در این نوع کنترل، از الگوریتمهای گوناگونی که دارای دیدگاههای متفاوتی میباشند، استفاده میشود. الگوریتمهایی نظیر کنترل بهینه، کنترل بهینه لحظهای (Instantaneous Optimal Control)، جایابی قطبی (Pole Assignment)، کنترل فضای مودی (IMSC)، پالس کنترل و الگوریتمهای مقاوم (Robust) مانند H2، H∞، کنترل مود لغزشی (Sliding Mode Control) و غیره از جمله الگوریتمهای بکار رفته در کنترل سازه میباشند.
کنترل غیرمتمرکز در آغاز در مورد سیستمهای قدرت بکار رفته و سپس توسط افرادی مانند یانگ و سیلژاک (Yanng & Siljack) گسترش یافته است. در این کنترل، ونگ و دیویدسون (Wan g & Davidson) مساله پایداری سیستم را بررسی کردند. آنها یک شرط لازم و کافی را برای اینکه سیستم تحت قوانین کنترلی با پسخور محلی و جبرانسازی دینامیکی پایدار باشد، بیان کردند. یانگ و همکاران (Yang et al) روش مود لغزشی را برای اینکه کنترل غیرمتمرکز سیستمهای بزرگ مقیاس، زیر اثر ورودی خارجی و با وجود عامل تاخیر زمانی در متغیرهای حالت ارائه کردند. طرح کنترل شامل یک قانون کنترلی غیرمتمرکز و یک فوق صفحه سوئیچینگ از نوع انتگرالی است. آنها ابتدا قانون کنترل غیرمتمرکز را به گونهای تعیین کردند تا شرایط رسیدن کلی (Global Reaching low) برقرار شود.
کنترل غیرمتمرکز در مهندسی عمران اولین بار توسط ویلیامز و ژو (Williams & Xu) در سازههای فضایی انعطافپذیر بررسی شد. سپس ریاسیوتاکی و بوسالیس (Ryaciotaki & Boussalis) از روش کنترل تطبیقی مدل مرجع (Reference Adaptive Control Theory Model) برای تعیین قانون کنترلی غیرمتمرکز استفاده کردند. دیکس و همکاران (Dix et al) چندین روش غیرمتمرکز را برای سازههای فضایی بیان کردند. هینو و همکاران (Hino et al) در مورد مسئله کنترل یک سازه ساختمانی چند درجه آزادی مانند یک ساختمان بلندمرتبه با بهرهگیری از کنترل تطبیقی ساده غیرمتمرکز بحث کردهاند. رفویی و منجمینژاد (Rofooei & Monajeminejad) نسبت به کنترل نامتمرکز سازههای بلند با بهرهگیری از کنترل بهینه لحظهای اقدام نمودند. آنها ابتدا به بررسی دلایل ضرورت استفاده از کنترل غیرمتمرکز پرداخته شده و سپس با طراحی کنترلکنندهها و ماتریس بهره (Gain Matrix) به بررسی دو حالت کنترل یکی با بهرهگیری از پسخور سرعت و دیگری کنترل با بهرهگیری از پسخور سرعت و جابجایی پرداختند.
منجمینژاد و رفویی در ارتباط با کنترل غیرمتمرکز در سازههای بلند، در ادامه به بررسی الگوریتم مود لغزشی (Sliding Mode) به صورت غیرمتمرکز پرداختند. مراحل طراحی کنترلکننده در روش مود لغزشی شامل دو مرحله است. مرحله اول شامل طراحی سطوح لغزش بوده و مرحله دوم طراحی رابطه کنترل یا قانون رسیدن (Reaching Law) را در بر میگیرد. باید توجه داشت که نامتمرکز بودن کنترل، قابلیت اعتماد به پایداری سیستم را افزایش داده و در صورت از کار افتادن کنترل یکی از زیرسیستمها، سیستم کنترل دچار آسیب کلی نخواهد گردید. کنترل نامتمرکز میتواند در دو حالت با درنظر داشتن تاثیرات درجات آزادی مشترک بین زیرسیستمها و یا بدون درنظر داشتن این تاثیرات انجام شود که البته در حالت با درنظر داشتن تاثیرات درجات آزادی به پایداری هر زیرسیستم و کل سیستم کنترل میتوان اطمینان بیشتری داشت.
در مقاله حاضر کنترل متمرکز و نامتمرکز سازههای بلند در حالت سه بعدی با درنظر داشتن درجات آزادی مشترک بین زیرسازهها و اثر دوگانه آنها بر یکدیگر بررسی گردیده است. الگوریتم مورد استفاده کنترل بهینه لحظهای (Instantaneous Optimal Control) میباشد که توسط آقایان یانگ و همکارانش بسط داده شده و از پسخور شتاب جهت محاسبه نیروهای کنترل استفاده گردیده است. روش نامتمرکز کردن کنترل در این مقاله بر اساس تعداد درجات آزادی بوده و نمونههای عددی نیز با بکارگیری الگوریتم کنترل نامتمرکز حل و نتایج آنها با حالت کنترل متمرکز مقایسه گردیده و ارائه شدهاند.
2) روابط حاکم
1-2) کنترل نامتمرکز و روابط وابسته
مدل ساختمان برشی در حالت دو بعدی درنظر میباشد. در این مدل هر طبقه به صورت یک درجه آزادی مدل میشود که به دو تراز بالا و پایین بوسیله یک فنر برشی و یک میراگر متصل شده است. مقالات زیادی در حوزه کنترل سازهها بر اساس این مدل نگاشته شدهاند. منجمینژاد و رفویی مدل سازهای را به صورت ساختمان برشی درنظر گرفته است و روابط مربوطه را بدست آوردهاند. در این حالت معادله دیفرانسیل حاکم بر رفتار دینامیکی یک مدل سازهای دوبعدی به صورت زیر است:
(1)
که در آن M ماتریس جرم، K ماتریس سختی، C ماتریس میرایی، H ماتریس موقعیت کنترلرها، U فرمان کنترلی، شتاب زلزله وارد بر ساختمان، بردار تغییر مکانهای طبقات و {1} بردار ستونی است که تمام مولفههای آن عدد یک میباشد. ماتریسهای رابطه به شرح زیر بوده و نحوه ریز کردن سیستم نیز مطابق شکل 1 میباشد.
شکل (1) مدل سازهای یک ساختمان بلند
(2)
n: تعداد طبقات ساختمان؛
r: تعداد کنترل کنندهها؛
ki: سختی برشی طبقه iام؛
mi: وزن طبقه iام.
در این روابط، xi را میتوان به دو صورت زیر تعریف کرد:
xire: جابجایی طبقه iام نسبت به یک دستگاه اینرسی (تغییر مکان اینرسی)