لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 35
«پایداری و درجه نامعینی سازه ها»
یک سازه وقتی در حال تعادل است که سه معادله ی زیر برقرار باشند:
دو حالت خاص و ساده تعادل موجود است:
1. عضو دو نیرویی:
جسمی که تحت اثر دو نیروی مساوی و مخالف جهت در حالت تعادل باشد،جسم دو نیرویی نامیده می شود.
2. عضو سه نیرویی:
جسمی که تحت اثر 3 نیروی متقارب در تعادل باشد جسم 3 نیرویی است.
پایداری:
یک سازه را پایدار میگوییم که تحت اثر هیچ مجموعه ای از نیروها تغییر موقعیت ندهد و تغییر شکلهای بزرگ در آن بوجود نیاید. در یک جسم صلب به 6 قید مناسب برای پایداری در فضا احتیاج داریم. این قیدها نباید همگی موازی یا متقارب باشند. در این صورت جسم پایدار نیست.
ناپایداری 3 نوع است:
1. ناپایداری ایستایی:
چنانچه درجه نامعینی سازه ای منفی شود به آن معنی است که سازه قید لازم را برای حفظ تعادل دارا نیست و ناپایداری ایستایی محسوب میشود.
2. ناپایداری هندسی داخلی:
هندسه ی داخلی سازه نمیتواند شرایط تعادل را ارضاء کند.
3. ناپایداری هندسی خارجی:
به علت وضعیت نامناسب تکیهگاهها رخ میدهد که شامل 2 نوع است:
الف) همه عکسالعملها موازی باشند.
ب) همه عکسالعملها متقارب باشند.
درجه نامعینی: D.O.I # Degree Of Indeterminacy
درجه نامعینی سازهها، مجموع درجات نامعینی داخلی و خارجی سازه است که برابر است با تفاضل تعداد کل مجهولات سازه از کل معادلات تعادل سازه.
درجه نامعینی داخلی سازه همان تعداد مولفههای داچلی سازه اعم از برش و نیروی محوری و لنگر خمشی که نمیتوان آنرا از روابط استاتیک بدست آورد و درجه نامعینی خارجی سازه همان تعداد عکس العمل های تکیه گاهی که نمی توان از روابط استاتیک بدست آورد.
اگر تعداد کل معادلات تعادل سازه بیشتر از کل مجهولات باشد،سازه ناپایدار است.
اگر تعداد معادلات تعادل مساوی مجهولات باشد سازه معین است ولی پایداری اش باید بررسی شود.
اگر تعداد معادلات کمتر از مجهولات باشد سازه نامعین است ولی پایداری اش باید بررسی گردد.
«به سازههای معین ایزو استاتیک می گویند».
به سازههای نامعین هیپرا استاتیک میگویند».
درجه نامعینی انواع مختلف سازه ها
1.خرپای مسطح:
تعداد اعضای :M
تعداد گره ها N:
عکس العمل های تکیه گاهی R:
D.O.I = M +R – 2 N
2. خرپای فضایی:
D.O.I = M + R – 3 N
3. قاب مسطح:
اگر تعداداعضای قاب M و تعداد گره ها N و عکس العمل های تکیه گاهی R و شرایط داخلی C باشد:
D.O.I = (3M +R) – (3N +C)
خمشی برشی محوری محوری، خمشی
C = 2 C = 1 C = C = M - 1
4.قاب فضایی:
D.O.I = (6M+R) – (6N+C)
مثال:
درجه نامعینی در قاب روبرو چند است؟
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 35
«پایداری و درجه نامعینی سازه ها»
یک سازه وقتی در حال تعادل است که سه معادله ی زیر برقرار باشند:
دو حالت خاص و ساده تعادل موجود است:
1. عضو دو نیرویی:
جسمی که تحت اثر دو نیروی مساوی و مخالف جهت در حالت تعادل باشد،جسم دو نیرویی نامیده می شود.
2. عضو سه نیرویی:
جسمی که تحت اثر 3 نیروی متقارب در تعادل باشد جسم 3 نیرویی است.
پایداری:
یک سازه را پایدار میگوییم که تحت اثر هیچ مجموعه ای از نیروها تغییر موقعیت ندهد و تغییر شکلهای بزرگ در آن بوجود نیاید. در یک جسم صلب به 6 قید مناسب برای پایداری در فضا احتیاج داریم. این قیدها نباید همگی موازی یا متقارب باشند. در این صورت جسم پایدار نیست.
ناپایداری 3 نوع است:
1. ناپایداری ایستایی:
چنانچه درجه نامعینی سازه ای منفی شود به آن معنی است که سازه قید لازم را برای حفظ تعادل دارا نیست و ناپایداری ایستایی محسوب میشود.
2. ناپایداری هندسی داخلی:
هندسه ی داخلی سازه نمیتواند شرایط تعادل را ارضاء کند.
3. ناپایداری هندسی خارجی:
به علت وضعیت نامناسب تکیهگاهها رخ میدهد که شامل 2 نوع است:
الف) همه عکسالعملها موازی باشند.
ب) همه عکسالعملها متقارب باشند.
درجه نامعینی: D.O.I # Degree Of Indeterminacy
درجه نامعینی سازهها، مجموع درجات نامعینی داخلی و خارجی سازه است که برابر است با تفاضل تعداد کل مجهولات سازه از کل معادلات تعادل سازه.
درجه نامعینی داخلی سازه همان تعداد مولفههای داچلی سازه اعم از برش و نیروی محوری و لنگر خمشی که نمیتوان آنرا از روابط استاتیک بدست آورد و درجه نامعینی خارجی سازه همان تعداد عکس العمل های تکیه گاهی که نمی توان از روابط استاتیک بدست آورد.
اگر تعداد کل معادلات تعادل سازه بیشتر از کل مجهولات باشد،سازه ناپایدار است.
اگر تعداد معادلات تعادل مساوی مجهولات باشد سازه معین است ولی پایداری اش باید بررسی شود.
اگر تعداد معادلات کمتر از مجهولات باشد سازه نامعین است ولی پایداری اش باید بررسی گردد.
«به سازههای معین ایزو استاتیک می گویند».
به سازههای نامعین هیپرا استاتیک میگویند».
درجه نامعینی انواع مختلف سازه ها
1.خرپای مسطح:
تعداد اعضای :M
تعداد گره ها N:
عکس العمل های تکیه گاهی R:
D.O.I = M +R – 2 N
2. خرپای فضایی:
D.O.I = M + R – 3 N
3. قاب مسطح:
اگر تعداداعضای قاب M و تعداد گره ها N و عکس العمل های تکیه گاهی R و شرایط داخلی C باشد:
D.O.I = (3M +R) – (3N +C)
خمشی برشی محوری محوری، خمشی
C = 2 C = 1 C = C = M - 1
4.قاب فضایی:
D.O.I = (6M+R) – (6N+C)
مثال:
درجه نامعینی در قاب روبرو چند است؟
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 35
الگوریتم(پایگاه داده ها)
چکیده : در این گزارش ما به بررسی ویژگی های الگوریتمهای کنترل همروندی توزیعی که بر پایه مکانیزم قفل دو مرحله ای(2 Phase Locking) ایجاد شده اند خواهیم پرداخت. محور اصلی این بررسی بر مبنای تجزیه مساله کنترل همروندی به دو حالت read-wirte و write-write میباشد. در این مقال، تعدادی از تکنیکهای همزمان سازی برای حل هر یک از قسمتهای مساله بیان شده و سپس این تکنیکها برای حل کلی مساله با یکدیگر ترکیب میشوند.
در این گزارش بر روی درستی و ساختار الگوریتمها متمرکز خواهیم شد. در این راستا برای ساختار پایگاه داده توزیعی یک سطحی از انتزاع را در نظر میگیریم تا مساله تا حد ممکن ساده سازی شود.
1. مقدمه : کنترل همروندی فرآیندی است که طی آن بین دسترسی های همزمان به یک پایگاه داده در یک سیستم مدیریت پایگاه داده چند کاربره هماهنگی بوجود میآید. کنترل همروندی به کاربران اجازه میدهد تا در یک حالت چند برنامگی با سیستم تعامل داشته باشند در حالیکه رفتار سیستم از دیدگاه کاربر به نحو خواهد بود که کاربر تصور میکند در یک محیط تک برنامه در حال فعالیت است. سخت ترین حالت در این سیستم مقابله با بروز آوری های آزار دهنده ای است که یک کاربر هنگام استخراج داده توسط کاربر دیگر انجام میدهد. به دو دلیل ذیل کنترل همروندی در پایگاه داده های توزیعی از اهمیت بالایی برخوردار است:
کاربراان ممکن است به داده هایی که در کامپیوترهای مختلف در سیستم قرار دارند دسترسی پیدا کنند.
یک مکانیزم کنترل همروندی در یک کامپیوتر از وضعیت دسترسی در سایر کامپیوترها اطلاعی ندارد.
مساله کنترل همروندی در چندین سال قبل کاملا مورد بررسی قرار گفته است و در خصوص پایگاهدادههای متمرکز کاملا شناخته شده است. در خصوص این مسال در پایگاه داده توزیعی با توجه به اینکه مساله در حوزه مساله توزیعی قرار میگیرد بصورت مداوم راهکارهای بهبود مختلف عرضه میشود. یک تئوری ریاضی وسیع برای تحلیل این مساله ارائه شده و یک راهکار قفل دو مرحله ای به عنوان راه حل استاندارد در این خصوص ارائه شده است. بیش از 20 الگوریتم کنترل همروندی توزیعی ارائه شده است که بسیاری از آنها پیاده سازی شده و در حال استفاده میباشند.این الگوریتمها معمولا پیچیده هستند و اثبات درستی آنها بسیار سخت میباشد. یکی از دلایل اینکه این پیچیدگی وجود دارد این است که آنها در اصطلاحات مختلف بیان میشوند و بیان های مختلفی برای آنها وجود دارد. یکی از دلایل اینکه این پیچدگی وجود دارد این است که مساله از زیر قسمتهای مختلف تشکیل شده است و برای هر یک از این زیر قسمتها یک زیر الگوریتم ارائه میشود. بهترین راه برای فائق آمدن بر این پیچدگی این است که زیر مساله ها و الگوریتمهای ارائه شده برای هر یک را در ی.ک سطح از انتزاع نگاه داریم.