انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

طراحی تقویت کننده ترانزیستوری RF

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 70

 

فصل9 طراحی تقویت کننده ترانزیستوری RF

طراحی تقویت کننده در RF بطور چشمگیری با روشهای مداری فرکانس پایین مرسوم فرق دارد و در نتیجه به بررسی و ملاحظه ویژه ای نیاز دارد . علی الخصوص این واقعیت که موجهای ولتاژ و جریان روی عنصر فعال تاثیر می گذارد ، تطبیق مناسبی جهت کاهش VSWRو جلوگیری از نوسانات (تغییرات ) نامطلوب را ایجاب می نماید . به این دلیل معمولاً اولین قدم برای طراحی این پروسه یک تحلیل پایداری می باشد که به همراه دوایر عدد نویز و بهره جزء اساسی مورد نیاز برای بهبود مدارهای تقویت کننده ای است که اغلب با مقادیر بهره ، بهره هموار ، توان خروجی ، پهنای باند و شرایط با یاس مواجه می شود .

این فصل براساس مطالب گفته شده در فصلهای 2 و3 توسعه یافته است بطوریکه روابط توان خطوط انتقال خروجی برسی شده است .

بر هر حال بر خلاف مدار پسیو ، فصل 9 به ادوات اکتیو می پردازد بطوریکه به نظر می آید بررسی دقیق بهره و فیدبک دارای اهمیت اصلی باشد .

مواردی از قبیل بهره توان یک طرفه و دو طرفه مدار و نمایش گرافیکی آنها در نمودار اسمیت ، نقطه شروعی برای آنالیز گسترده عملکرد تقویت کننده ترانزیستوری فرکانس بالا می باشد .

خواننده باید به انعطاف پذیری نمودار اسمیت توجه کنید . که دایره بهره ثابت ، VSWRو پایداری میتوانند براساس ضرایب انعکاس و امپدانس بحث شده در فصل 3 روی آن قرار بگیرد .

بعلاوه حتی آنالیز یک نویز هم با تبدیل عدد نویز یک تقویت کننده به دوایری که در نمودار اسمیت نشان داده می شود؛ قابل برسی است.

بعد از توجه به ابزار اساسی طراحی ، همچنین فصل 9 مدلهای مختلفی از تقویت کننده های توان و مشخصه های آنها از قبیل بهره هموار ؛ پهنای باند و اعوجاج درونی را به خوبی اختلافات بین تقویت کننده های یک و چند طبقه بررسی می کند .

1.9 مشخصه های تقویت کننده ها

شاید مهمترین و پیچیده ترین عمل در تئوری مدار آنالوگ ، تقویت یک سیگنال ورودی از میان یک مدار ترانزیستوری یک یا چند طبقه است . یک نمای کلی تقویت کننده یک یا چند طبقه که بین شبکه های تطبیق ورودی و خروجی قرار گرفته شده در شکل 9-1 نشان داده شده است .

شکل (9-1) سیستم کلی تقویت کننده

شبکه های تطبیق ورودی و خروجی که در فصل 8 بحث شده اند نیازمند کاهش انعکاسهای نامطلوب بودند و در نتیجه نیاز به بهبود انتشار توان داشتند .

در شکل 9-1 تقویت کننده توسط ماتریس S خودش در یک نقطه با یاس DC ویژه رسم شده است. بر حسب عملکرد ویژه ، لیست زیر از یک سری پارامترهای کلیدی تقویت کننده تشکیل شده است.

بهره و اندازه بهره (برحسب dB )

فرکانس کاری و عرض باند (برحسب Hz)

توان خروجی (برحسب dBm)

شرایط انعکاس ورودی و خروجی (VSWR)

عدد نویز (برحسب dB)

بعلاوه باید اینطور در نظر گرفته شود که چنین پارامترهایی بعنوان اعوجاج درونی؛ تولید هارمونیک ، فیدبک و اثرات گرمایی می کند که همه آنها می تواند در عملکرد تقویت کننده تاثیر بگذارد .

برای طراحی پروسه تقویت کننده به صورت سازمان یافته ، ابتدا نیاز به چند تعریف برای روابط مختلف توان داریم . این کار توسط چندین ابزار انالیزی مهم که نیازمند تعاریفی برای پایداری ، نویز؛ بهره و عملکرد VSWR هستند انجام می گیرد .

وجه مشترک همه چهار مورد بالا این است که آنها می توانند توسط معادلات دایره بیان شوند و در نمودار اسمیت به نمایش در آیند .

2ـ9 روابط توان تقویت کننده

9-2-1 منبع RF

چندین تعریف برای بهره توان وجود دارد که همه آنها برای درک چگونگی عملکرد تقویت کننده RF ، بحرانی هستند بدین دلیل به ما اجازه دهید تا شکل (9-1) را براساس روابط ناشی از توان بررسی کنیم .

با فرض اینکه دو شبکه تطمیق در امپدانس منبع و بار وجود دارد . سیستم به صورت شکل (9-2-a) خلاصه می شود . نقطه شروع برای آنالیز توان ، منبع RF متصل به شبکه تقویت کننده است .

برای قرار داد نشان داده شده در شکل (2ـ9) بحث مطرح شده سیگنال در بخش 5.4.4 را (82.4 و 83.4 را ببنید) باز خوانی می کنیم و برای ولتاژ منبع می نویسیم :

(1ـ9)

a) شماتیک مختصر شده یک تقویت کننده یک طبقه b ) گراف جریان سیگنال

شکل (2ـ9) منبع و بار متصل به یک شبکه تقویت کننده یک طبقه

موج توان تابشی در رابطه با توسط :

(2ـ9)

داده شده است که توان تابشی بسوی تقویت کننده است .

توان ورودی واقعی Pin دیده شده در ترمینال ورودی تقویت کننده از امواج توان تابشی و انعکاسی تشکیل شده است ، که با کمک ضریب انعکاس ورودی می توانیم بنویسیم :

(3ـ9)

حداکثر انتقال توان از منبع به تقویت کننده زمانی حاصل می گردد که امپدانس ورودی بصورت مزدوج مختلط تطبیق شده باشند . یا برحسب ضریب انعکاسی ، باشد .

تحت شرایط ماکزیمم انتقال توان ما توان قابل دسترسی PA را تعریف می کنیم :

(4ـ9)

این عبارت وابستگی به را روشن می سازد . اگر Fin و از (2ـ9) و (4 ـ 9) دیده می شود که

2-2-9 بهره توان انتقالی

اکنون می توانیم بهره توان انتقالی را بررسی کنیم که بهره تقویت کننده ای که بین منبع و بار قرار دارد را تعیین می کند .

= توان تحویلی به بار =

توان قابل دسترسی از منبع

یا با بدست می آوریم :

(5 .9)

در این عبارت باید نسبت ، تعیین گردد . با کمک مطالب بحث شده در بخش d .4 .4 و بر اساس شکل (2ـ9) بدست می آوریم :

(a6 ـ.9)



خرید و دانلود  طراحی تقویت کننده ترانزیستوری RF


تمیز کننده های هوا

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 26

 

کاربرد تمیز کننده هوا

هنگامی که پرتو باریکی از نور خورشید از روزنه ای به داخل اتاق تاریکی می تابد می توانید ذرات ریز گردوغبار، دوده و خاکستر را در هوا ببینید. بعضی از این ذرات بطور طبیعی در فضا موجوداند و بعضی توسط دستگاه های ساخت بشر و کارخانه ها تولید می شوند. این ذرات هوا را تاریک واطراف ما را آلوده می کند و سلامتی بشر را به خطر می اندازد. برای کنترل آلودگی ناشی از ذرات در صنعت از صافی های متعددی استفاده می شود.

فرآیند فیلتر سازی پیچیده است زیرا مقاومت هوا جدائی ذرات از هوا را متشکل می سازد. از این رو در صنعت و خانه ها از تمیزکننده الکتریکی استفاده می کنند. این تمیزکننده ها بااستفاده از نیروهای الکترومغناطیسی ذرات را از هوا جدا می کند. این نیروها همان نیروهایی هستند که سبب بهم چسبیدن لباس ها بعد از خارج کردن آنها از خشک کن می شود. در این بخش خواهیم دید که چگونه این نیروهای الکترومغناطیسی در تصفیه هوا به ما کمک می کند.

سئوالاتی را که راجع به آنها باید فکر کرد: چه عاملی گرد وغبار را در هوا نگه می دارد و چرا نیروی کرنشی روی آنها اثری ندارد؟ اگر گرانش نمی تواند هوا را تصفیه کند چگونه نیروهای دیگر قادر به این کار می باشند. چرا در صنعت از فیلترهای کاغذی برای جداسازی گردوغبار از دود استفاده نمی کنند. چرا لباس های تازه شسته شده یکدیگر را بجای جذب کردن دفع می کنند؟

گردو غبار، دوده و خاکستر: گردوغبار عمدتاً درخاک و خاشاک و مواد آلی می باشند که به ذرات خیلی ریز تبدیل شده اند همچنین گردوغبار شامل مواد طبیعی مثل گرده های گیاهان و درختان و دانه های آنها و هاگها نیز می باشند. دوده ناشی از سوخت ناقص مواد آلی است که عمدتاً شامل روغن نیز می باشد از اینرو دوده معمولاً چرب و گریسی است.

گردوغیار دوده و خاکستر جرم و وزن ندارد و انتظار داریم که توسط نیروی گرانش از حرکت آنها در هوا جلوگیری بعمل آید. در حالی که عملاً چنین نیست و این ذرات درهوا معلق اند و توط هوا نگه داشته می شوند، دو نوع نیرو بر این ذرات وارد می شود: نیروی بالا نگهدارنده و نیروی ویسکوزیته. نیروی بالانگهدارنده توسط آتمسفر ایجاد شود و از سقوط درهوا جلوگیری می کند. اما ذرات فوق از هوا تراکم جرم و وزن بیشتری دارند بطوریکه هوا قادر به نگهداشتن ذرات نمی باشد.

از طرف دیگر، ذرات کوچک فوق عمدتاً تحت تأثیر نیروی کشش ویسکوزیته می باشند. این نیرو نوعی از مقاومت هواست و نظیر اصطکاک عمل می کند و حرکت ذرات را درهوا کند می سازد. در حالیکه وزن ذرات آنها را به سمت پائین می کشد نیروی کشش وسیکوزیته از سقوط ناگهانی آنها جلوگیری می کند. در نتیجه ذرات به آهستتگی با یک سرعت حد به سمت پائین می روند. این سرعت در حدود یا کمتر از آن است و بنابراین ذرات هرگز به زمین نمی رسد.

گرانش زمین ضعیف تر از آن است که بتواند گروغبار را از هوا جدا کند. از این رو به نیروی کمکی قوی تری به نام نیروی الکترواستاتیکی نیاز است تا این منظور برآورده گردد.

گردوغبار و بار الکتریکی:

بار الکتریکی خاصیت ذاتی، ماده است. اکثر ذرات تشکیل دهنده اتم بار دارند و بار آنها در ایجاد بار نهایی ذرات دخالت دارد. از آنجا که بار الکتریکی با جسمی که صاحب آن است درآمیخته است اغلب به اینگونه اجسام، اشیا باردار یا بطورساده بار گفته می شود.

همچنان که قبلاً گفته شد دو نوع بار در طبیعت وجود دارد که اثر بارهای هم نام برهم نیروی دفعی و اثر بارهای غیرهمنام برهم نیروی جذبی است. این نیروهای بین اشیاء باردار نیروی الکترومغناطیسی خوانده می شود.

تمیزکننده های هوا برا ی جذب گرد وغبار از هوا از نیروهای الکترواستاتیکی استفاده می کنند.

بطورکلی تمیزکننده های هوا ذرات گردوغبار را بار منفی باردار می کنند و آنها را روی یک صفحه از بارهای مثبت جمع می کنند سئوال این است که چگونه یک ذره گردوغبار را با بار منفی باردار کنیم.

این سوال سه نکته مهم در مورد بارها را گوشزد می کند. اول آنکه تمیزکننده هوا نمی تواند بار تولید کند زیرا براساس اصل بقای بار، بار نمی تواند بوجود آید و نمی تواند از میان برود. فقط می تواند ازجسمی به جسم دیگر منتقل گردد. بنابراین اگر تمیز کننده هوا بخواهد به گردوغبار بار منفی بدهد، باید بار منفی را از جای به آن انتقال دهد. نمونه هایی از انتقال های مکرر بار در اطراف ما نظیر انتقال بار درهنگام شانه کردن موی سر و نیز صاعقه در آسمان را اغلب مشاهده کرده اید.

دوم آنکه از« باردارکردن با بارمنفی» منظور ما این نیست که گردوغبار نمی تواند با بار مثبت باردار شود. مواد معمولی همواره ترکیبی از بار مثبت و منفی را رد خود دارند و گروغبار از این قاعده مستثنی نیست. در حقیقت نیروهای الکترواستاتیکی بین بارهای مثبت و منفی گردوغبار است که دانه های آن را بهم پیوسته نگه می دارد.

اما ذرات گردوغبار یک بارالکتریکی خالص دارند که مجموع همه بارهای آنها است. این برآیند بار نیروی استاتیکی نهایی را که ذرات گردوغبار درحین عبور از تمیزکننده هوا خواهند دید تعیین میکند. میتونان این بار برآیند را با اضافه کردن بار مثبت و کاهش یارهای منفی نهایتاً بار مثبت خواند. سوم آنکه ممکن است گروعبار یا با بار صفر وارد تمیزکننده هوا شود. زیرا بارهای مخالف توسط گردودغبار جذب می شوند و بار بر آیند به سمت صفر میل خواهد کرد. وقتی بار به ضصفر برسد می گوییم به لحاظ الکتریکی خنثی است.

این امککان که برآیند بار دقیقاً برابر صفر گردد با ویژگی مهم دیگر بار یعنی کوانتیزهبودن آن مرتبط است. بارهمواره به صورت مضربی صحیح از یک



خرید و دانلود  تمیز کننده های هوا


تیریستور

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 22

 

1-1-تیریستور (یا یکسو کننده قابل کنترل p-n-p-n )

تیریستور یک وسیله نیمه هادی چهار لایه سه اتصالی با سه خروجی است و از لایه های نوع p و n سیلیکونی که به طور متناوب قرار گرفته اند ساخته شده اند .. ناحیه p انتهایی آند ، ناحیه n انتهای کاتد و ناحیه p داخلی دریچه یا گیت است . آند از طریق مدار به طور سری به کاتد وصل می شود . این وسیله اساساً یک کلید است و همواره تا زمانی که به پایانه های آند و دریچه ولتاژ مثبت مناسبی به کاتد اعمال نشده است در حالت قطع (حالت ولتاژ مسدود کننده ) باقی می ماند و امپدانس بینهایتی از خود نشان خواهد داد . در حالت وصل و عبور جریان بدون احتیاج به علامت (یا ولتاژ) بیشتری روی دریچه به عبور جریان ادامه خواهد داد . در این حالت به طور ایده آل هیچ امپدانسی در مسیر جریان از خود نشان نمی دهد . برای قطع کلید و یا برگرداندن تیریستور به حالت خاموشی بایستی روی دریچه علامت و یا ولتاژی نباشد و جریان در مسیر آند به کاتد به صفر تقلیل یابد . تیریستور عبور جریان را فقط در یک جهت امکان پذیر می سازد .

اگر به پایانه های تیریستور ولتاژ بایاس خارجی اعمال نشود ، حاملهای اکثریت در هر لایه تا زمانی که ولتاژ الکتروستاتیکی داخلی به وجود آمده از انتشار بیشتر حاملها جلوگیری کند ، منتشر می شوند . اما بعضی از حاملهای اکثریت انرژی کافی جهت عبور از سد تولید شده توسط میدان الکتریکی ترمزکن هر اتصال را دارد . این حاملها پس از عبور ، تبدیل به حاملهای اقلیت می شوند و می توانند با حاملهای اکثریت ترکیب شوند . حاملهای اقلیت هر لایه نیز می توانند توسط میدان الکتریکی ثابتی در هر یک از اتصالها شتابدار شوند ، ولی چون در این حالت (از خارج ولتاژی اعمال نمی شود) مدار خارجی وجود ندارد مجموع جریانهای حاملهای اقلیت و اکثریت بایستی صفر شود .

حال اگر یک ولتاژ بایاس با یک مدار خارجی برای حمل جریانهای داخلی منظور شود ، این جریان ها شامل قسمتهای زیر خواهند بود.

جریان ناشی از :

1-عبور حاملهای اکثریت (حفره ها ) از اتصال

2-عبور حاملهای اقلیت از اتصال

3-حفره های تزریق شده به اتصال که از طریق ناحیه n اشاعه می یابند اتصال را قطع می کند .

4-حاملهای اقلیت از اتصال که از طریق ناحیه n اشاعه یافته و از اتصال عبور کرده است . عیناً نیز از شش قسمت و از چهار قسمت تشکیل خواهد یافت .

برای تشریح اصول کار تیریستور از دو روش متشابه مدلهای دیودی و یا دو ترانزیستوری می توان استفاده کرد .

(الف) مدلهای دیودی تیریستور

تیریستور که یک نیمه هادی سه اتصالی ، شبیه سه دیودی است که به طور سری اتصال یافته اند . اگر دریچه بایاس نشود ولی به دو سر آند و کاتد ولتاژ بایاسی اعمال شود این ولتاژ هر قطبیتی که داشته باشد همواره حداقل یک اتصال معکوس بایاس شده ، وجود خواهد داشت تا از هدایت تیریستور جلوگیری کند .

اگر کاتد توسط ولتاژ منبع تغذیه (نسبت به آند ) منفی شود و دریچه نسبت به کاتد به طور مثبت بایاس شود لایه p دریچه توسط کاتد از الکترون لبریز می شود و خاصیت خودش را به عنوان لایه p از دست می دهد . در نتیجه تیریستور به دیود هدایتی معادلی تبدیل می شود .

(ب)مدل دو ترانزیستوری تیریستور

پولک p-n-p-n را می توان به صورت دو ترانزیستور با دو ناحیه پایه در نظر گرفت . کلکتور ترانزیستور n-p-n ، جریان محرکی برای پایه ترانزیستور p-n-p که جریان کلکتورش اضافه جریان دریچه به مثابه جریان محرک پایه ترانزیستور n-p-n است ، مهیا کند .

برای روشن کردن تریستور جریان دریچه به جزء خیلی حساس ترانزیستور n-p-n از اتصال p-n-p-n اعمال می شود . اولین ده درصد افزایش جریان آند ، در اصل جریان کلکتور ترانزیستور n-p-n است . پایه n ترانزیستور p-n-p توسط جریان کلکتور ترانزیستور n-p-n باردار می شود . در نتیجه فیدبک مثبتی توسط جریان کلکتور ترانزیستور p-n-p به منظور افزایش بارهای ایجاد شده در پایه p ترانزیستور n-p-n دایر می شود . به این ترتیب جریان تیریستور شروع به افزایش می کند ، به سرعت به مقدار اشباع می رسد و جریان تیریستور فقط توسط امپدانس بار محدود می شود .

بهتر است به منظور تشریح مشخصه و خواص تیریستور حالتهای مختلف آن را (از نظر بایاس ) مورد بررسی قرار دهیم .

1-2-مشخصات تیریستور

برای اینکه بتوان وسیله های الکترونیکی را با کیفیت کافی مورد استفاده قرار داد و از آنها محافظت کرد بایستی مشخصات و خواص آنها کاملا معلوم شوند . مشخصات تیریستور را می توان با ملاحظه سه حالت مختلف اصلی این وسیله تعیین کرد :

شرایط بایاس معکوس

بایاس مستقیم و مسدود

بایاس مستقیم و هدایت

1-2-1-بایاس معکوس تیریستور (کاتد نسبت به آند مثبت)

در این حالت اتصالات اول و سوم به طور معکوس اتصال دوم به طور مستقیم بایاس می شوند و درست مثل یک اتصال p-n مقدار کمی جریان نشتی از کاتد به آند عبور خواهد کرد .

اعمال ولتاژ محرک مثبتی به دریچه تیریستور در حالی که آند هنوز منفی است سبب می شود که تیریستور رفتاری شبیه ترانزیستور داشته باشد و جریان معکوس نشتی آند تا مقدار قابل ملاحظه مقایسه ای با جریان دریچه افزایش یابد ، از این رهگذر اتلاف قدرت قابل ملاحظه ای در تیریستور وقوع خواهد یافت . زیاد گرم شدن اتصال می تواند سبب افسار گسیختگی حرارتی شود .

جریان آند با جریان اشباع معکوس اتصال اول به اضافه کسری از

جریان دریچه برابر است . جریان اشباع بستگی به درجه حرارت دارد . بنابراین بالا رفتن درجه حرارت اتصال باعث افزایش جریان اشباع می شود که آن نیز موجب گرم شدن بیشتر اتصال می شود . ولتاژ بیشینه دریچه در شرایط بایاس معکوس غالباً توسط سازندگان برای محدود کردن اثر حرارت معین می شود .

افزایش ولتاژ بایاس معکوس باعث پهن شدن لایه های تهی اتصالات اول و سوم می شود . اتصال اول معمولاً بخش اعظم ولتاژ آند به کاتد را مسدود می کند ، لذا منطقه تهی این اتصال غالباً پهن است . به خاطر اینکه ولتاژ مسیر سوراخ کنی توسط تماس لایه های تهی اتصالات و به وجود نیاید لایه n وسطی را کمی پهن می سازند .

1-3-2-تیریستور بایاس مستقیم و مسدود (آند نسبت به کاتد مثبت)

اتصالات اول و سوم بایاس مستقیم و اتصال دوم بایاس معکوس می شود . جریان آند در خلال مدتی که یک اتصال p-n بایاس معکوس وجود دارد ، خیلی کم است و مقدارش برابر با جریان اشباع اتصال دوم به اضافه قسمتی از جریان دریچه است . جریان دریچه در طول این شیوه عمل با این که خودش بایستی کوچک باشد جریان آند را افزایش می دهد .

1-2-3-تیریستور بایاس مستقیم و هدایت

چهار روش برای روشن کردن تیریستور وجود دارد و به محض اینکه هدایت شروع شد امپدانس صفر در مسیر عبور جریان از خود نشان می دهد . همان طوری که از مشخصه کلی ولتاژ جریان یک تریستور ، در طول زمانی که تریستور هدایت می کند افت ولتاژ بین آند و کاتد در حدود 1 تا 5/1 ولت است و اصولاً مستقل از جریان آند است . چهار روش راه اندازی تیریستور وجود دارد : 1) فعال سازی نوری 2) علائم الکتریکی 3)ولتاژ بایاس مستقیم با دامنه زیاد و 4)ولتاژ بایاس مستقیم با میزان صعود سریع وجود دارد . روش دوم ، یعنی راه اندازی توسط علائم الکتریکی مهمترین و معمول ترین روش است ، در حالی که آخرین روش به علت طبیعت مزاحمی که دارد قابل اجتناب است .

(الف) روشن کردن توسط نور



خرید و دانلود  تیریستور


تنظیم کننده های ولتاژ

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 60

 

تنظیم کننده های ولتاژ

مقدمه :

در اکثر آزمایشگاههای برق از منابع تغذیه برای تغذیه مدارهای مختلف الکترونیکی آنالوگ و دیجیتال استفاده می شود . تنظیم کننده های ولتاژ در این سیستم ها نقش مهمی را برعهده دارند زیرا مقدار ولتاژ مورد نیاز برای مدارها را بدون افت و خیز و تقریباً صاف فراهم می کنند .

منابع تغذیه DC ، ولتاژ AC را ابتدا یکسو و سپس آن را از صافی می گذرانند و از طرفی دامنه ولتاژ سینوسی برق شهر نیز کاملاً صاف نبوده و با افت و خیزهایی در حدود 10 تا 20 درصد باعث تغییر ولتاژ خروجی صافی می شود.

از قطعات مورد استفاده برای رگولاتورهای ولتاژ می توان قطعاتی از قبیل ، ترانسفورماتور ، ترانزیستور ، دیود ، دیودهای زنر ، تریستور ، یا تریاک و یا آپ امپ (op Amp) و سلف (L) و خازن (C) و یا مقاومت (R) و یا ICهای خاص را نام برد .

* عوامل موثر بر تنظیم ولتاژ :

عوامل مختلفی وجود دارند که در تنظیم ولتاژ در یک تنظیم کننده موثرند از جمله این عوامل را می توان ، تغییرات سطح ولتاژ برق ، ریپل خروجی صافیها، تغییرات دما و نیز تغییرات جریان بار را نام برد .

الف)* تغییرات ولتاژ ورودی :

در تمامی وسایل الکترونیکی و یا سیستم های الکترونیکی و مکانیکی و غیره و در تمامی شاخه های علمی طراحان برای اینکه یک وسیله یا سیستم را با سیستم های مشابه مقایسه کنند معیاری را در نظر می گیرند که این معیار در همه جا ثابت است .

در یک تنظیم کننده معیاری به نام تنظیم خط وجود دارد که میزان موفقیت یک تنظیم کننده ولتاژ در کاهش تغییرات ولتاژ ورودی را با این معیار می سنجند و به صورت زیر تعریف می کنیم :

فرمول (1ـ2)

که در آن ، تغییرات ولتاژ ورودی ، تغییرات ولتاژ خروجی ، ولتاژ خروجی متوسط (DC) می باشد .

ب)تغییرات ناشی از تغییر دما :

یکی دیگر از عاملهای تعیین کننده در یک تنظیم کننده ولتاژ خوب تغییرات ناشی از دماست .

معیاری که تغییرات نسبی ولتاژ را برحسب دما بیان می کند ضریب دمای تنظیم کننده نام دارد که آن را با T.C نشان می دهیم و بصورت زیر تعریف می شود :

(فرمول 2-2)

T.C = Temperature coefficient

در رابطه فوق ، تغییرات ولتاژ خروجی در اثر تغییرات دمای و مقدار متوسط (DC) ولتاژ خروجی است .

معمولاً TC برحسب (Parts - per - million) بیان می شود و به صورت زیر تعریف می شود .



خرید و دانلود  تنظیم کننده های ولتاژ


تحقیق بررسی کنترل ارتعاش محور های متوازن کننده و چگونگی نصب آنها در خودرو

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 22

 

موضوع :

بررسی کنترل ارتعاش محور های متوازن کننده و چگونگی نصب آنها در خودرو

فهرست مطالب

عنوان صفحه

فصل اول

بالانس دو صفحه ای یا دینامیکی……………………………………. ………………1

کنترل ارتعاشات ناشی از لنگی محورهای دوار……………………… ………………..1

بالانس موتورهای رفت و برگشتی…………………………………… ………..……2

کنترل ارتعاشات پیچشی……………………………………………………………3

کنترل فرکانس های طبیعی………………………………………………………….3

فصل دوم

مقدمه……………………………………………………… ………… ….…….4

منابع تولید ارتعاش………… …… ………………………………………….……4

ارتعاش خودرو و مسأله آسایش انسان …………………………………….…....….10

ارتعاش خودرو با یک درجه آزادی………………………………………………..…12

فصل سوم

مقدمه………………………………………………………………………….13

نصب شافت های متوازن کننده……………………………………………….….…16

فصل اول

روشهای کنترل ارتعاشات

2-1 بالانس دو صفحه ای یا دینامیکی

وقتی نامیزانی در بیش از یک صفحه ظاهر شود یک نیرو و یک گشتاور پدیدار می شود . همانطور که قبلاً گفتیم روش بالانس تک صفحه ای عبارت بود از بالانس روتورهای دیسکی شکل صلب،اگر روتور یک جسم طویل صلب باشد ، نامیزانی به شکل یک ارتعاش نسبتاً بزرگ در فرکانس متناظر با سرعت دورانی روتور ظاهر می گردد . در این حالت با افزودن جرم هایی در هر دو صفحه دلخواه می توان به موازنه دست یافت . برای راحتی معمولاً صفحات انتهایی روتور انتخاب می شوند . به طور کلی یک روتور بلند ، مانند آرمیچر موتور یا میل لنگ اتومبیل را می توان به صورت مجموعه ای از دیسکهای نازک ، هر کدام با مقداری نامیزانی در نظر گرفت . این روتورها را می توان چرخاند تا نامیزانی آن آشکار شود .ماشین هایی که برای آشکار سازی و تصحیح نامیزانی روتور به کار می رود ماشینهای بالانسینگ نامیده می شود . اصولاً ماشینهای بالانسینگ تشکیل شده است از یاتاقان های تکیه گاهی که روی فنر نصب می شوند به طوری که با حرکت آنها نیروهای نامیزان آشکار می شوند. با معلوم بودن دامنه هر یاتاقان و فاز نسبی آنها می توان نامیزانی روتور را تعیین و تصحیح کرد .

3-1 کنترل ارتعاشات ناشی از لنگی محورهای دوار

در بخش قبل سیستم روتور- شافت ، صلب در نظر گرفته شد ولی در عمل تمام محورهای دوار انعطاف پذیر هستند بنابراین تمایل دارند که در سرعت های معینی کمانش کرده و به طور پیچیده ای دچار لنگی شوند . لنگی می تواند به صورت دوران صفحه مابین صفحه خمیده شده و خط و اصل مرکز یاتاقان ها تعریف گردد . لنگی ناشی از عواملی است از قبیل نامیزانی، اصطکاک سیال در یاتاقان ها ، نیروهای ژیروسکوپی و استهلاک هیستریک در محور می باشد . لنگی می تواند هم جهت با چرخش محور یا در خلاف جهت آن روی دهد و سرعت چرخش می تواند مساوی با سرعت چرخش محور باشد یا با آن مساوی نباشد.

یک محور در حال گردش در سرعت های معینی ارتعاشات عرضی بیش از حدی از خود نشان می دهد. این سرعت با فرکانس های طبیعی سیستم متناظر می باشد و به سرعت بحرانی موسوم است و در این حالت تشدید رخ می دهد.

در سرعت بحرانی انحراف محور زیاد بوده و نیروی وارده به یاتاقان ها خیلی زیاد است و باعث ارتعاش بدنه ماشین خواهد شدو این می تواند منجر به صدمات ساختمانی به یاتاقان ها و بدنه گردد. به علاوه انحراف زیاد محور موجب تغییر شکل دائمی آن و یا برخورد روتور با محفظه می گردد. دامنه ارتعاش در سرعت بحرانی زمانی به حد خطرناک می رسد که فرصت لازم برای رسیدن به آن دامنه را داشته باشد. بنابراین اگر ماشین از سرعت بحرانی سریع عبور کند دامنه می تواند فابل قبول باشد در حالی که عبور آهسته به توسعه دامنه های بزرگ کمک می کند و می تواند خسارت جبران ناپذیری ایجاد کند.

4-1 بالانس موتورهای رفت و برگشتی

اجزاء متحرک اصلی یک موتور رفت و برگشتی عبارتند از : پیستون ، میل لنگ و شاتون.

ارتعاشات در موتورهای رفت و برگشتی در اثر عوامل زیر رخ می دهد :

تغییرات متناوب فشار گاز درون سیلندر

نیروهای اینرسی که در قسمت های متحرک تمرکز یافته اند .

یک موتور تک سیلندر به طور اجتناب ناپذیری نامیزان است ، در حالی که در یک موتور چند سیلندر می توان با آرایش مناسب لنگ ها ، نیروها و گشتاورهای موجود را بالانس نمود و از میزان ازتعاشاتی که درون موتور ایجاد می شود ، به خاطر حرکت های رفت و برگشتی پیستون و انفجارهای درون سیلندر کاهش می‏یابد .



خرید و دانلود تحقیق بررسی کنترل ارتعاش محور های متوازن کننده و چگونگی نصب آنها در خودرو