انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

سیمان کوره ای

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 13 صفحه

 قسمتی از متن .doc : 

 

سیمان کوره ای پورتلند شامل بیش از 70% جوش کوره ای و قسمتی دانه دانه ی زمین ، ما باقی مانده ی سوخته ی ذغال سنگ پورتلند و سنگ گچ اندک است ، تمام ساختارها قدرت نهایی را تولیدیی کنند، اما محتوای کف افزایش می یابد، نیروی اولیه کاهش می یابد در حالی که مقاومت سولفات افزایش می یابد و تحول گرما گکاهش می یابد ، استفاده از یک جایگزین اقتصادی در مقامت سولفات پورتلند و سیمان های کم دما.

سیمان خاکستری پورتلند حاوی بیش از 30% خاکستر حاصل از ذغال سنگ چینی وار است تا این که نیروی نهایی حفظ شود . زیرا اضافه ی خاکستر محتوی آب بتون کم تری دارد . نیروی اولیه هم چنین می توان نگهداری شود مکانی که خاکستر ارزان با کیفیت خوب موجود است این موضوع می توان یک جایگزین اقتصادی برای سیمان پورتلند معمولی باشد.

سیمان چینی وار (پوزولان) پورتلند شامل سیمان خاکستر است زیرا خاکستر یک پوزولان است اما شامل سیمان های ساخته شده از پوزولان های طبیعی یا مصنوعی دیگر است در کشورهایی که خاکسترهای آتشفشانی در دسترسی هستند (مثل ایتالیا ، شیلی ، مکزیک ، فیلیپین ) این سیمان ها اغلب رایج ترین شکل در کاربرد هستند.

سیمان بخار سیلیکانی پورتلند اضافه ی بخار پورتلند طبق انتظار می توان نیروهای زیادی را حاصل کند و سیمان دارای %20-5 بخار سیلیکا به طور اتفاقی تولید می شود به هر حال ، بخار سیلیکا معمولا بسیار به سیمان پورتلند در ترلیک بتون اضافه می شوند.

سیمان های بنایی برای تهیه ی ملاط های آجرپزی و گچ کاری استفاده می شود و نباید در بتون استفاده شود.آن ها معمولا ساختارهای ویژه ای حاوی آجر جوش پورتلند و مقداری از ترکیبات دیگر مرکب شده اند که ممکن است دارای سنگ آهک ، آهک هیدرات، ورودی های هوا ، تعویق دهنده ها ، ضد آب ها و عوامل رنگی هستند.

آن ها فرمول سازی شده اند تا سیمان های قابل استفاده ای حاصل شود که فرصت کار بنایی سریع و مقاوم را پیدا کنند . انواع دقیق سیمان های بنایی در us سیمان های پلاستیکی و سیمان های آجر جوش هستند . این سیمان ها برای تولید رج چینی کنترل شده با بلوک های طراحی شده اند.

محتوی سیمان های قابل انبساط به اضافه ی آجر جوش های پورتلند ، آجر جوش های انبساطی (معمولا آجر جوش های سولفوآلومیناک ) و برای جبران اثرات کاهش خشک شدن طراحی شده اند یعنی به طور معمول با سیمان های هیدرولیک مواجه می شوند این به بلوک های سقف بزرگ هستند (بالای 60 متر مربع ) و بدون اتصالات انقباضی تهیه می شوند.

سیمان های ترکیبی سفید ممکن است از آجر جوش سفید و مواد مکمل مثل متاکوآلین ساخته شوند سیمان های رنگی برای اهداف تزیینی استفاده می شوند در بعضی استانداردها اضافه ی مواد رنگی برای تولید « سیمان پورتلند رنگی » منظور می شود. در استانداردهای دیگر (مثل ASTM ) مواد رنگی ، عناضر سیمان پورتلند محسوب نمی شوند و سیمان های رنگی به عنوان سیمان های هیدرولیک ترکیبی به فروش می رسند .

سیمان های زمینی بسیار عالی از ترکیبات سیمان با شن یا با بلوک یا مواد معدنی نوع یوزولان دیگر ساخته می شوند که نوع زمینی بسیار عالی هستند چننین سیمان هایی می توانند شاخصه های فیزیکی یکسان مثل سیمان معمولی داشته باشند اما به خصوص سیمان کم 50% ، منطقه ی سطحی افزاینده ای برای واکنش شیمیایی به وجود می آید .

حتی با آسیاب کردن زیاد آن های می توانند از انرژی کم 50% استفاده کنند تا سیمان های پورتلند معمولی را بسازند

سیمان EMC

سیمان های هیدرولیک غیر پورتلندی : سیمان های آهک – پوزلان : ترکیب پوزولان زمینی و آهک سیمان هایی هستند که توسط رومانی ها استفاده می شوند و در ساختارهای رومانی یافت می شوند (مثل پانتئون) در روم ). آن ها به آرامی نیرو را توسعه می دهند. ما نیروی نهایی آن ها می تواند بسیار بالا باشد. هیدروژن تولید می شود و نیروی تولید شده ضرورتا به طور یکسان تولید می شوند آنها توسط سیمان یورتلند ایجاد می شوند . سیمان های بلوک – آهک – آهک – بلوک کوره ای دمشی دانه دانه ی زمینی در نوع خودش هیدرولیک نیست آهک پوزولان در ویژگی هایشان شبیه هستند. تنها بلوک دانه دانه (مثل سرد کردن ناگهانی آب ،بلوک شیشه ای به عنوان یک جزء سیمان موثر است.

سیمان های سوپر سولفات . این نوع سیمان ها تقریبا دارای 80% بلوک کوره ای دمشی دانه دانه ای زمینی ، 15% سنگ گچ یا هیدرویت و مقدار کمی آجر جوش پورتلند یا آهک به عنوان یک فعال کننده است.

آن ها نیرویی با ساختار ellrinqite با رشد نیروی مشابه به سیمان پورتلند آرام تولیدمی کنند آن ها مقاومت خوبی برای عوامل متهورانه از جمله سولفات هستند.

سیمان های آلومینات کلسیم سیمان های هیدرولیکی هستند که ابتدا از سنگ آهک و بوکسیت ساخته شده اند .

ترکیبات فعال آلومینات منوکلسیم CaA I2 O1 (CA در علائم شیمی سیمان ) و مانییت CA12 AI14 O44 (CCN در C12 A6) هستند . نیرو توسط هیدروژن های آلومینات کلسیم شکل می گیرد . آن ها تنظیم های خوبی برای استفاده در بتون مقاوم در برابر حرارت (مقاوت در دمای بالا ) به طور مثال برای جداره های کوره ای هستند.

سیمان های سولفوآلومینات کلسیم از آجر جوش هایی ساخته شده اند که شامل ye, elimite



خرید و دانلود  سیمان کوره ای


کوره آفتابی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 13

 

مقدمه

کوره آفتابی وسیله‌ای است برای تولید گرما بوسیله تجمع و تمرکز نور خورشید در یک نقطه خاص و استفاده از حرارت آن نقطه برای تولید آب گرم و بخار آب گرم. کوره آفتابی به شکل بشقاب کاو (مقعر) و آینه‌ای و صیقلی (که نورهای تابیده شده به طرف خود را بازتاب می‌کند) است. نورهای تابیده شده از بی نهایت دور موازی هستند، بنابراین همه آنها بعد از بازتابش نقطه خاصی به نام کانون می‌گذرند. برای ورود به بحث با چند اصطلاح آشنا می‌شویم.

مرکز آینه (C): نقطه‌ای است که فاصله تمام نقاط سطح از آن نقطه ثابت است.

کانون (F): نصف فاصله سطح تا مرکز را کانون می‌نامند و فاصله و سطح بشقاب (رأس آینه) تا کانون فاصله کانونی (f) نامیده می‌شود.

محور اصلی: خطی فرضی که وسط (رأس) بشقاب را به مرکز وصل کرده و کانون روی آن نیز کانون اصلی نامیده می‌شود.

 

پرتو نورهای تابیده شده نسبت به محور اصلی در بازتاب تقارن آینه‌ای دارند. پرتو نورهایی که موازی محور اصلی بتابد حتما بازتاب آنها از کانون می‌گذرد (کانون اصلی) ، پس در آن نقطه حرارت و گرما بسیار بالاتر از اطراف است. پس اگر منبع آب در آن نقطه قرار داده شود آب در اثر انرژی دریافتی از خورشید بسیار گرم خواهد شد و این اساس یک کوره آفتابی است.

نمونه کوچک و قدیمی کوره آفتابی ذره‌بین است که از شیشه محدب یا حتی یخ تراشیده شفاف ساخته می‌شد. امروزه از اجسام آینه‌ای با توجه به ویژگی ساختمانی گفته شده برای تولید آب گرم منازل در ابعاد محدود در پشت بامها و در ابعاد بزرگتر ساختمان بلند که نمای بیرونی آن به شکل کاو طراحی شده و در نمای جلویی آن از شیشه‌های رفلکس و آینه‌ای برای بازتاب نور استفاده می‌شود، بطوری که بازتابها در یک نقطه در مقابل یعنی کانون جمع می‌شوند.

در کانون یک منبع آب قرار می‌دهند و با لوله کشیهایی به توربین تولید برق وصل می‌کنند، با توجه به ابعاد ساختمان انرژی گرمایی دریافتی فوق العاده بالاست و بخار آب تولید شده با جریان شدید در لوله‌ها به توربین رسیده و باعث چرخش آن و تولید برق ارزان قیمت در چنین مجموعه نیروگاهی برق - آبی می‌گردد.با توجه به پیشرفت صنعتی ، نیاز روز افزون به انرژی ، گرانی ، محدودیت منابع ، ناوگان حمل و نقل ، آلودگیهای زیست محیطی برخی منابع انرژی مثل سوختهای فسیلی ، پسماندها و ... . استفاده از انرژی خورشید به عنوان منبع سالم و تجدید پذیر انرژی در زمین راه کار مناسبی برای منازل در جهت کاهش هزینه و آلودگی و ... باشد، بویژه که برخی مناطق به دلیل صعب العبور بودن و هزینه انتقال و تلفات انرژی بالایی دارند.

 

برای افزایش بهره‌وری در استفاده از بشقابها و نیروگاهها می‌توان موارد زیر را در نظر گرفت. موقعیت جغرافیایی ، اقلیمی ، ویژگیهای آب و هوا با توجه به آفتابی بودن ، طول روز مسیر ظاهری حرکت خورشید در آسمان از طلوع تا غروب و با استفاده از منابع اطلاعاتی در این مورد می‌توان اطلاعات لازم را بدست آورد.استفاده از مواد مناسب و طراحی آنها در جهت افزایش نسبت بازتاب به نور تابشی و همچنین برنامه رایانه‌ای و یک موتور برای چرخاندن دستگاه و مجموعه برای افزایش کارایی توصیه می‌شود، طوری که بشقاب و مجموعه همواره مسیر حرکت خورشید را تعقیب کرده و متناسب با آن بچرخد. در برنامه رایانه‌ای استفاده از روش و نمودار رویدات و سلرز - مدار میل خورشید بر حسب عرض جغرافیایی ، انرژی رسیده به سطح و توان جذب و بازتاب سطح در منبع فوق سودمند است.

 

انرژی خورشیدی(1)

برای تبدیل حرارتی می‌توان یا از جمع کننده‌های تخت و یا از آینه‌های متمرکز کننده استفاده کرد. از نظر ترمودینامیکی از جمع کننده‌های تخت ، دمای نسبتا کمتری گرفته می‌شود در صورتی که با آینه‌های سهموی دمای بالاتر و حتی در بعضی شرایط دمای بیشتر از تحمل مواد مورد استفاده بدست می‌آید. روش تبدیل انرژی خورشیدی به انرژی الکتریکی یا تبدیل انرژی حرارتی به ترموالکتریکی توسط ماشین حرارتی خورشیدی که به مولد الکتریکی ترمو - یونی جفت شده ، انجام می‌پذیرید (هنوز در مرحله آزمایش است). با جریان هوای گرم که توسط انرژی خورشیدی تولید می‌شود، می‌توان یک دستگاه ماشین بادی را بکار انداخت، ولی هنوز مثال عملی در این مورد وجود ندارد.



خرید و دانلود  کوره آفتابی


تحقیقی درباره انواع کوره ها

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 4

 

اولین ذوب

کوره ای که تازه نسوز کوبی شده است باید به آهستگی و با سوزاندن چوب درون آن تا حدی که چوب کاملا به زغال تبدیل شود خشک شود . به منظوراطمینان از نتیجه عملیات این کار باید طی دو روز انجام شودبرای اولین ذوب دو مقوا با ضخامت های مختلف را زیر بوته ای قرار دهید و سپس بوته را روی آن بگذارید در کوره را باز کنید و بار فلزی را به صورت نه چندان متراکم در بوته بگذارید بار را در بوته به طور فشرده جا ندهید چون نباید در مقابل انبساط آن مانع ایجاد کنید فشرده کردن بار در بوته ممکن است منجر به ترک خوردن بوته شود اکنون یک تکه گونی آغشته به بنزین یا گرد زغال را در فاصله 30 سانتی متر از ورودی مشعل و در راستای جهت شعله قرار دهید گونی باید کاملا در فضای بین زیر بوته ای و دیواره کوره جای داده شود این کار از خروج آن از کوره یا فاصله گرفتن آن از مشعل جلوگیری می کند گونی باید در جای خود باقی بماندو بسوزد تا دیواره کوره به دمای اشتعال برسد برای روشن کردن مشعل شیر کنترل هوای دمنده را تا نیمه باز کنید گونی را روشن کنید و به آن اجازه دهید که به سرعت و به خوبی بسوزد دمنده را روشن کنید وارسی کنید که آیا گونی هنوز به خوبی می سوزد یا نه در صورتی که باد آنرا خاموش کرده است دمنده را خاموش و کار را دوباره آغاز کنید وقتی که مطمئن شدید که با روشن بودن دمنده گونی همچنان می سوزد شیبر گاز را باز کنید تا گاز مشتعل شود .

گاز را چنان تنظیم کنید که حداکثر اشتعال بیشترین صدای شعله ایجاد شود در این حالت بیشترین احتراق به ازای خروجی دمنده حاصل میشود کوره باید 5 دقیقه با این وضعیت کار کند بعد از سپری شدن این زمان دیواره کوره باید به اندازه کافی داغ باشد که احتراق را تداوم بخشد . در کوره را در جای خود قرار دهید و میزان گاز ورودی و نیز خروجی دمنده را آنقدر افزایش دهید که شیر گاز کاملا باز شود و هوا نیز بیشترین وزش و غرش را داشته باشد حال خروجی دمنده را کمی افزایش دهید این کار سبب اکسیدی شدن محیط کوره به میزان کم می شود . که برای عملیات ذوب بهترین وضعیت هنگام روشن کردن ونیز طی دوره 5 دقیقه ای که در کوره باز است دست خود را روی شیر گاز بگذارید در صورتی که در طی این مدت شعله خاموش شد یکمرتبه شیر گاز را ببندید و صبر کنید تا دمنده به مدت 1 یا 2 دقیقه به کار خود ادامه دهد تا مخلوط گاز هوا را از کوره بیرون براند . سپس دمنده را ببندید و مجددا سیستم را راه اندازی کنید. هرگز کوره را دون دمنده ای که با ضرفیتی دست کم نصف ظرفیت مورد نیاز کار می کند روشن نکنید .پایین بودن بیش از حد ظرفیت دمنده سبب برگشت شعله به درون دمنده در نتیجه فشار متقابل موجود در کوره می شود دمنده باید قدرت کافی داشته باشدتا بر فشار متقابل غلبه کند به نحوی که اشتعال در کوره رخ دهد به دلیل مشابه هیچ گاه کوره را با در بسته روشن نکنید در صورت قطع برق و از کار افتادن دمنده بلافاصله گاز را خاموش کنید هیچ گاه کوره را در حال ذوب به حال خود رها نکنید برای خاموش کردن کوره ابتدا گاز را ببندید و سپس دمنده را خاموش کنید کوره های نفت سوز نیز با همین روش خاموش و روشن می شوند.

کوره کک سوز

کوره های کک سوز با تهویه طبیعی از لحاظ ساختمانی ساده و ارزان هستند اما به سبب سرعت کم و کار نه چندان تمیز امروزه از آنها استفاده نمی شود برای راه اندازی کوره کک سوز یک آجر نسوز روی شبکه قرار دهید سطح شبکه را با چوب و کاغذ قابل اشتعال بپوشانید و سپس آنرا با یک لایه 5در7 سانتی متری کک پوشش دهید لایه فبل اشتعال را روشن کنید و وقتی که کک مشتعل و گداخته شد لایه دیگری روی ان بریزید اضافه کردن لایه های کک را تا زمانی ادامه دهید که بستری با عمق مناسب از کک سرخ داغ داشته باشد کمی از کک را از وسط این بستر بردارید و بوته را در گودال ایجاد شده قرار دهید سپس یک لایه کک تازه اضافه کنید تا ارتفاع آن همسطح با لبه بالایی بوته شود بوته را از فلز پر کنید و در کوره را ببندید سیستم تهویه را چنان تنظیم کنید که بیبشترین احتراق صورت گیرد به تدریج که کک می سوزد و به خاکستر تبدیل می شود آنرا با کک جدید جایگزین کنید .

وقتی فلز به دمای مورد نظر رسید کک اطراف بوته را کنار بزنید و بوته را با انبر بیرون بکشید آنرا درون دسته کفچه بگذارید و عمل ذوب ریزی را انجام دهید از آجر روی شبکه برای نگهداری بوته استفاده می شود تا بوته خیلی پایین نرود . در مناطقی که سطح آب زیر زمینی زیاد بالا نباشد می توان کوره بوته ای را به آسانی درزمین ساخت .

کوره بوته ای خروجی دار

از این نوع کوره معمولا کسانی استنفاده می کنند که به صورت انفرادی قطعات کوچک تا متوسط می ریزند . یا فضای کمی برای بیرون کشیدن بوته دارند این کوره روی یک چهارپایه ساخته میشود و در قسمت پایینی جلو ان یک دریچه وجود دارد ابعاد این دریچه باید حد اقل 10 در 10 سانتی متر باشد در قسمت جلو بوته و همسطح با کف آن سوراخ ایجاد می شود تا به فلز اجازه خروج بدهد.

برای بارگیری و روشن کردن این کوره از همان روش معمول استفاده میشود . بعد از 5 دقیقه آجر را برمی دارند و در را می بندند و احتراق تنظیم می شود یک پاتیل با دیواره نسوز را هنگام عملیات ذوب روی آجر های بالای دریچه خروج دود (روی در کوره)قرار می دهند و بدین شکل آن را پیش گرم می کند .

وقتی فلز آماده ذوب ریزی شد پاتیل داغ را با دسته پاتیل برمی دارند و در مقابل کوره می گذارند توپی رسی موجود در سوراخ بوته را با یک میله فولادی نوک تیز به قطر 25ر1 سانتیمتر را بیرون می کشند مذاب به درون پاتیل می ریزند سپس از پاتیل برای ذوب ریزی درقالب استفاده می کنند .

برای بستن سوراخ درذوب بعدی یک توپ مخروطی روی میله تعبیه می شود ومحکم در سوراخ جا زده میشود.میله توپی کمی پیچانده می شودتاتوپی از آن آزاد شود حرارت کوره و بوته باعث پخته شدن واتصال توپی در جای خود می شود.

بوته به نحوی در کوره قرار داده می شود که سوراخ خروجی آن در مقابل دریچه جلوی کوره قرار گیرد کانالی از جنس مواد نسوز در فاصله لبه پایینی سوراخ خروجی تا دریچه کوره ساخته میشود تا فلز را به سمت پاتیل هدایت کند.نحوه کار بسیار ساده است سوراخ خروجی با مخلوطی از ماسه سیلیسی وخاک نسوز نرم (به نسبت 1:1) بسته می شود مخلوط را مرطوب می کنندتا گل سفتی حاصل شود واین گل را در سوراخ می فشراند برای روشن کردن کوره زیر لبه در آن یک تکه آجر نسوز قرار میدهند تا بالاتر بایستد در صورتی که سوراخ هنگام ذوب نشتی داشته باشد (که این امر به ندرت اتفاق میافتد) یک گلوله از جنس مواد نسوز روی میله توپی می گذارند وآنرا با فشار در محل نشتی می چسبا نند.

ذوب ریزی در قالب

ریختن فلز مذاب در قالب مرحله ای مهم در عملیات ریخته گری است اکثر ضایعات ریخته گری از اشکال در ذوب ریزی ناشی می شوند تا سایر عوامل . برخی از قوانین مربوط به ریخته گری ثقلی در قالبی که به وسیله بوته یا پاتیل پر می شود عبارتند از :

نکات ایمنی ریخته گری

اگر قالب ترک خورد و مذاب از آن بیرون زد سعی نکنید مانع خروج مذاب شوید

اگر قالب شروع به جرقه زدن و پرتاب مذاب از محل بار ریزی و یا هواکش ها کرد بار ریزی را متوقف کنید ادامه بارریزی در قالب مرطوبی که مذاب را پرتاب می کند می تواند منجر به حادثه ای مثل انفجار شود

از انبار یا دسته پاتیل ضعیف استفاده نکنید

از بوته های ظریف و ضعیف برای ذوب ریزی استفاده نکنید

از ماسک و ساق پیچ ایمنی استفاده کنید

در صورتی که ذوب ریزی را شب انجام می دهید حوضچه ی بار ریز را با آرد گندم (با تکان دادن یک کیسه)پوشش دهید تا منطقه ذوب ریزی مشخص تر شود

وقتی با دسته پاتیل دو نفره ذوب ریزی می کنید مطمئن شوید که فرد مقابل با شما هماهنگ است (پس از شروع ذوب ریزی هیچ یک از شما نباید حرکت کند یا تکان بخورد)

از داشتن بستر شوشه خشک و مناسب جهت ریختن مذاب اضافی اطمینان حاصل کنید

وقتی با استفاده از دسته پاتیل در تعداد زیادی قالب که در یک ردیف چیده شده اند ذوب ریزی می کنید کار را از انتهای ردیف شروع کنید و به سمت عقب حرکت کنید اگر بعد از پر کردن هر قالب (برای پر کردن قالب بعدی ) به سمت جلو حرکت کنید النگشتان دست شما که نزدیک به پاتیل هستند درست روی آخرین قالبی که در آن ذوب ریزی انجچام شده است قرار خواهند گرفت

در وضعیت نامناسب اقدام به ذوب ریزی نکنید باید آسوده باشید تا از ایمنی مناسب برخوردار شوید

سعی نکنید مقدار زیادی فلز مذاب را با دست جابه جا کنید یا در قالب بریزید برای ریختن ذوب های بیشتر از 20 کیلو گرم با دسته پاتیل یک نفره یا بیش از 90 کیلو گرم با دسته پاتیل دونفره از جرثقیل استفاده کنید

نکات مربوط به کیفیت قطعات

هنگام ذوب ریزی دهانه پاتیل یا بوته را تا حد امکان به حوضچه بار ریز نزدیک کنید

در تمام مدت بار ریزی حوضچه ی بار ریز را کاملا پر نگه دارید

کمی بیش از آنچه که فکر می کتید مورد نیاز است مذاب در حوضچه ی بار ریز بریزید

ریخته گری را در دمای بالا انجام دهید بیشتر قطعات در اثر ریختن مذاب خیلی سرد خراب می شوند تا مذاب خیلی گرم

بعد از تثبیت جریان در راه گاه جریان مذاب را کاهش ندهید

مذاب را به داخل قالب نچکانید یا جریان مذاب را قطع نکنید

وقتی با دسته پاتیل ذوب ریزی می کنید دسته پاتیل را به زانوی خود تکیه دهید

وقتی قالب های متعددی را با یک پاتیل یا بوته پر می کنید ابتدا قالب قطعات سبک و ظریف را پر کنید

سعی نکنید تعدادزیادی قالب را بایک ذوب پر کنید

قبل ازبارریزی مطمئن شوید که درجه ها بسته وچفت شده وخوب وزنه گذاری شده اند

اگر مذاب موجود درپاتیل یا بوته روشن تمیز شفاف و داغ نیست آن رادرقالب نریزید

ذوب ریزی درقالب های برزگ غالباً باقراردادن یک ورقه ازبست روی رهگاه باریک که یک مخزن ماسه ای بزرگ روی آن قراردارد انجام مبی شود مذاب رابه میزان مورد نیاز درمخزن می ریزند وازیک میله برای سوراخ کردن ورقه آزبستی استفاده می کنمند تا مذاب بتواند قالب را پرکند .



خرید و دانلود  تحقیقی درباره انواع کوره ها


تحقیق در مورد رنگهای کوره ای

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 28 صفحه

 قسمتی از متن .doc : 

 

سولفاتها و کروماتها

در بحث ساختار کانیهای سولفیدی , دیدیم که گوگرد به صورت آنیون سولفیدی بزرگ دو ظرفیتی ظاهر می شود. این یون از پر شدن دو ظرفیت لایه الکترونی خارجی یا ظرفیتی به وسیله الکترونهای تسخیر شده ایجاد می شود . شش الکترونی که معمولا در این لایه وجود دارند , می توانند جدا شده و یک یون کوچک با بار مثبت زیاد و به شدت قطبنده را ایجاد کنند . این یون با اکسیژنهای اطراف خود , با همارایی چهاروجهی ظاهر می شود. پیوند گوگرد- اکسیژن در این گروه آنیونی بسیار قوی بوده و خواص آن کووالانسی است و گروههای در هم فشرده ای را به موجود می آورد که قادر به اشتراک گذاشتن اکسیژن نیستند . این گروههای  آنیونی (SO4) واحدهای اساسی ساختار کانیهای سولفاتی است .

سولفاتها ترکیباتی از اکسیژن و گوگرد و یک یا چند فلزاند. در این یون یک اتم S به وسیله چهار اتم اکسیژن که در گوشه های یک تترائدر قرار دارند , در میان گرفته شده است . دو بار اضافی منفی به طور یکنواخت بین اتمهای O توزیع شده اند . سولفاتها کانیهای پیچیده ای هستند زیرا راههایی که کاتیونها بدان وسیله می توانند میان یونهای SO4 ساخت یک بلور جای گیرند زیاد است . متجاوز از 150 سولفات نامگذاری شده اند . بسیاری از آنها قویا هیدراته هستند , و بسیاری از آنها نادراند .

مهمترین و رایجترین سولفاتهای بدون آب , اعضای گروه باریت ( گروه فضایی Pnma ) با کاتیونهای بزرگ دوظرفیتی هماراییده با یون سولفات هستند , از میان سولفاتهای آبدار , ژیپس , 2H2O , CaSO4, مهمترین و فراوانترین کانی است . بسترهای عظیم آن در سنگهای رسوبی با سنگ آهک , شیل رسوبی , ماسه سنگ و گل رس بدست می آیند . سنگ نمک و نهشتهای گوگردی ممکن است همراه آن باشند . به صورت ژیپس معمولی و سه قسم دارای خویهای متفاوت دیده می شود : آلاباستر , توده شده , سلنیت شفاف و ورقه ورقه و ساتین اسپار , رشته ای با جلای ابریشمی و مرواریدی .در این فرایند ژیپس را حرارت می دهند و 75% آبش از دست می رود . آنچه بدست می آید نیمه آبدار است ( گچ ) و باسانی آب می گیرد و دوباره به ژیپس تبدیل می گردد . با این عمل ذراتش دوباره متبلور می شوند و محکم به هم می چسبند .

کروم , Cr , مثل فلزات حد واسط به طور کلی , با اکسیژن ترکیب می شود و چند حالت اکسیداسیون بوجود می آورد . کروکوئیت و تاراپاکائیت از معروفترین کروماتهای نمونه ای هستند که در آنها Cr در حالت اکسیداسیون 5+ است . یون کرومات مثل یون سولفات یک تترائدر است . بارهای منفی یونهای کرومات به وسیله یونهای فلزی که در میان تترائدرها جای گرفته اند موازنه می شود و ساخت را با هم نگه می دارند . اندازه این یونها و راه جای گیری آنها در میان تترائدها ساخت را مشخص می کند . کروماتها منبع کرومی هستند که در آب کروم دادن فولاد , مثل سپر ها و تزیینات بدنه اتومولیلها بکار  می رود. همچنین با آهن آلیاژی از آن ساخته می شود که همان فولاد زنگ نزن است

کانی باریت

 کانی باریت از دسته سولفاتها جزء گروه عناصر قلیایی خاکی و دارای فرمول شیمیایی BaSO4 بوده و منبع اصلی تهیه عنصر باریم محسوب می شود. باریم دارای عدد اتمی56،عدد جرمی 34/137، الکترونگاتیویته 85/0، شعاع یونی 36/1 آنگستروم و پتانسیل یونی 5/1 می باشد. فراوانی این عنصر به صورت ترکیب قابل حل BaSO4 در آب دریا 20 میکروگرم در لیتر است.میانگین عنصر باریم در پوسته 425 گرم درتن یا قسمت در میلیون(ppm ) است ( یعنی 0425/0% ). میانگین آن در گرانیت ppm 1220 ودر دیاباز ppm 160 می باشد. در فلدسپات3 %، در پلاژیو کلازها3/7 %، در مسکوویت 9/9 % و در بیوتیت 8-6 % BaO می توان وجود داشته باشد. 7/65 درصد BaO و 3/34 درصد SO3 در ساختمان باریت خالص وجود دارد. حلالیت این کانی در آب و اسید، در درجه حرارتهای عادی، بسیار کم است، بنابراین می توان ازآن به عنوان ماده شیمیایی خنثی استفاده کرد. از هرگرم باریت در درجه حرارت عادی در حدود 2 میلی گرم در هرلیتر آب حل می شود. با افزایش حرارت به میزان حلالیت باریت زیادتر شده، به طوری که از هر گرم باریت در درجه حرارت 500 تا 1000 درجه سانتیگراد بخار آب، 40 میلی گرم آن در هرلیتر آب حل می شود. حلالیت باریت با حضور کلرید در آب افزایش می یابد ( هسلی و مورگ 1951 ). در اثر شیمیایی باریت، ویتریت (BaCO3 ) که کربنات باریم طبیعی است، حاصل می شود. این کانی به سختی گداخته می گردد وساختمان بلورین آن در اثر گرما ( شعله فوتک ) شکسته می شود. این کانی دارای خاصیت لومینسانس بوده و حرارت دادن شدید آن سبب تظاهر رنگ سبز متمایل به زرد می گردد. اگر پودر این کانی به داخل شعله دمیده شود، رنگ سبز متمایل به زرد به شعله می دهد. باریم با شعاع یونی 36/1 انگستروم، پتانسیل یونی 5/1، الکترونگاتیوی 85/0، عدد کوردینانسیون 8 بوده و از عناصر لیتوفیل محسوب می شود. باریم از نظر شیمیایی بسیار شبیه به کلسیم است و فرم خالص آن به رنگ سفید- نقره مشابه سرب است. این فلز زمانی در معرض هوا قرار می گیرد، بسیار آسان اکسید می شود و با آب و الکل واکنش پذیری بالایی دارد و توسط آب و یا الکل تجزیه می شود.بیشتر مواد مرکب حاوی عنصر باریم به علت وزن مخصوص بالای آن‌ ( بالاتر از 2/4 گرم بر سانتی مترمکعب ) که ناشی از وزن اتمی بالای آن ( 137) می باشد، کانی شفاف و سنگین نامیده می شوند.

توزیع 56 الکترون باریم بدین صورت است:

1s2 , 2s2 2p6 , 3s2 3p6 3d10 , 4s2 4p6 4d10 , 5s2 5p6 , 6s2باریم به صورت یک عنصر کمیاب در بسیاری از سنگ ها وجود دارد، این عنصر بیشتر در سنگ های آذرین اسیدی یافت می شود و هنگام واکنش های بین آب و سنگ، به محیط آبی وارد می شود، ولی انحلال آن به تشکیل کانی سولفات باریم یا باریت وابسته است. بنابراین تمرکز باریم در آب های سطحی و زیرزمینی به طور معکوس به تمرکز سولفات بستگی دارد.باریم به سرعت در هوا اکسید می شود و دستیابی به این فلز در شکل خالص آن مشکل بدست می آید. باریم به صورت اولیه به صورت کانی باریت (سولفات باریم متبلور) یا ویتریت (BaCo3) Witherite یافت می شود. باریم از نظر اقتصادی از طریق الکترولیز کلرید باریم مذاب (BaCl2) ایجاد می شود. Ba2+ +2e - : Ba Cl - : ½ Cl2(g) + e-(Cathode) اکسیداسیون در باریم به آسانی اتفاق می افتد و باریم به ندرت به شکل خالص باقی می ماند بنابراین باریم باید در زیر نفت سفید و یا مایعات دارای اکسیژن آزاد مناسب نگهداری شوند.مهمترین مواد مرکب باریم پروکسید، کلرید، سولفات، کربنات، نیترات و کلرات هستند. زمانی که باریم می سوزد، نمک های باریم به رنگ سبز درخشان در می آیند.باریم با منشأ طبیعی مخلوطی از 7 ایزوتوپ پایدار است. 22 ایزوتوپ آن شناسایی شده اند اما این ایزوتوپهای با خاصیت رادیواکتیو بالا و نیمه عمری از رنج چندین هزارم ثانیه به چندین دقیقه می باشد. تنها یک مورد استثناء Ba133 با نیمه عمر 51/10 سال می باشد. پودر باریت BaSo4 به صورت پودری سنگین با وزن مخصوص 5/4، سختی 5/3- 5/2، سفید رنگ تا خاکستری با جلای شیشه ای، کلیواژ کامل در جهت {001}، بدون بو و غیرمحلول در آب و حلال های آلی است و به علت محلول نبودن در آب خاصیت سمی ندارد حال آن که سولفید باریم به علت محلول بودن و آزاد شدن یون باریم در آب به شدت سمی است. باریت خالص از 7/65 % SO3 و 3/43 % BaO تشکیل شده است ولیکن در طبیعت باریت با ناخالصی هایی همراه است که این ناخالصی ها از وزن مخصوص آنها می کاهند.

جدول 2-برخی از ترکیبات باریم دار (عای الهی ؛1372با تغییرات )

در جدولهای ( 3 ) و ( 4 ) به ترتیب ویژگیهای عمومی باریم و برخی از مشخصات شیمیایی باریت، نشان داده شده است.

جدول شماره 3-ویژگیهای عمومیباریم (علی الهی ؛1372 با تغییرات )

جدول شماره 3-

جدول شماره 4-برخی از مشخصات شیمیایی باریت (علی الهی ؛1372با تغییرات )

عمل جداسازی ناخالصیهای همراه هر کانسنگ را تغلیظ، فرآوری یا کانه آرایی می گویند. عمل کانه آرایی شامل یک یا ترکیبی از روشهای زیر است.



خرید و دانلود تحقیق در مورد رنگهای کوره ای


خوردگی در دیگ بخار

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 10

 

عوامل خوردگی کوره دیگ بخار:

یکی از مشکلات اساسی که می تواند باعث بروز مشکل برای کوره ها باشد، خوردگی در نقاط و وسایل مختلف آن است که ضمن هدر رفتن

مقدار زیادی انرژی، آسیب های مکانیکی متعددی به کوره وارد می

کند. از آنجا که هر کوره از بخش های متعددی همچون بدنه، اطاقک

احتراق (Fire Chamber)، دودکش، مشعل و سایر تجهیزات جانبی تشکیل

شده، لذا علل خوردگی و راه حل های پیشنهادی در هر یک از بخش ها

به طور مجزا مورد بحث و بررسی قرار می گیرد.

بدنه کوره :

معمولاً بدنه یا دیواره خارجی کوره ها را از ورقه استیل16/3 و کف

آن را از ورقه 4/1 می سازند.

در طراحی ها عموماً اتلاف حرارتی از بدنه کوره حدود 2 درصد منظور

می شود. نوع و ضخامت عایق کاری بدنه داخلی کوره باید طوری در نظر

گرفته شود که دمای سطح خارجی کوره بیش از (1800° F) نشود. اصولاً

عایق کاری و عایق های به کار رفته در کوره ها از نظر سرویس دهی

مناسب، عمر معینی دارند و به مرور زمان ساختمان کریستالی آنها

تغییر یافته و ضخامت آنها کم می شود و این تغییرات ساختمانی سبب

تغییر ضریب انتقال حرارت و اتلاف انرژی به بیرون خواهد بود.

مطالعات میکروسکپیک و کریستالوگرافیک چند نمونه عایق کار کرده،

با نوع تازه آن موید این مطلب است. در صورتی که عایق دیواره های

کوره بر اثر بنایی ناصحیح، عدم انجام صحیح Curing بر مبنای

دستورالعمل، حرارت زیاد و یا شوک های حرارتی ترک بردارد، نشت

گازهای حاصل از احتراق که عبارتند از: So x، No x، N2،Co2

(درصورتی که نفت کوره به عنوان سوخت مصرف شود) و بخار آب در

لابلای این ترک ها و تجمع آنها در لایه بین بدنه کوره و عایق

دیواره و سرد شدن تدریجی آنها تا دمای نقطه شبنم، باعث خوردگی

بدنه می شود.

تداوم این امر ضمن اتلاف مقدار بسیار زیاد انرژی (از طریق بدنه

کوره به محیط اطراف)، باعث ریختن عایق و در نتیجه اتلاف بیشتر

انرژی و گسترش خوردگی بر روی بدنه کوره و سایر نقاط آن خواهد شد.

در یک بررسی ساده بر روی کوره ای که چندین سال از عمر عایق آن می

گذشت ملاحظه شد که دمای اندازه گیری شده واقعی سطح کوره در اکثر

نقاط بسیار بیشتر از میزان طراحی است. این مقدار در بعضی از

موارد به (1800° F) نیز می رسید.

در این کوره ضمن جدا شدن عایق از دیواره کوره و گسترش خوردگی در

نقاط مختلف بدنه، گرم شدن بدنه کوره نیز موجب خم شدن دیواره ها

شده و سرعت خوردگی را افزایش داده و باعث خرابی قسمت های مختلف

کوره شده است. به طور کلی برای جلوگیری و یا کاهش مشکلات خورندگی

بر روی بدنه کوره لازم است به هنگام تعمیرات اساسی ضمن توجه به

عمر عایق دیواره در صورتی که عمر آنها از حد معمول گذشته باشد

(البته با توجه به درجه حرارتی که درهنگام کار کردن واحد درمعرض

آن بوده اند) آنها را با عایق مناسب و استاندارد تعویض کرد و در

صورت وجود ترک (قبل و یا بعد از بنایی)، محل ترک ها را با الیاف

مخصوص KAOWOOL پر کرد. همچنین در بنایی، عملیات Curing را مطابق

دستور العمل انجام داد تا پیوند هیدرولیکی در عایق های بکار رفته

در بنایی، به پیوند سرامیکی تبدیل شده و میزان رطوبت باقیمانده

در دیواره از 0.4 gr/m2 بیشتر نشود.

البته چنانچه Ceramic Fiber (الیاف سرامیکی) به عنوان عایق

دیواره کوره مورد استفاده قرار گیرد، بدلیل عدم نیاز به Curing و

Drying و سبکی وزن، مشکلات احتمالی استفاده از عایق های نیازمند

به Curing را نخواهیم داشت. ضمن این که عمر بیشتر و چسبندگی

بهتری به دیواره، نسبت به دیگر عایق های موجود دارند.

تیوب ها یا لوله های داخل کوره:

معمولاً کوره ها متشکل از دو بخش RADIATION و CONVECTION هستند

که بایستی ظرفیت گرمایی (DUTY) کوره از نظر درصد، تقریباً به

نسبت70 و30 درصد بین این دو بخش تقسیم شود.

از آنجا که لازم است سیال به اندازه دمای مورد نظرگرم شود بایستی

حرارت مورد نیاز خود را از طریق هدایتی از لوله ها و تیوب های

داخل کوره دریافت کند، این لوله ها نیز حرارت مورد نیاز برای این

انتقال حرارت را از طریق تشعشعی و جابجایی در اثر احتراق سوخت در

داخل کوره جذب می کنند. انتخاب آلیاژ مناسب جهت لوله با توجه به

نوع سیال و ترکیبات آن و میزان حرارت دریافتی توسط لوله و در

معرض شعله قرار گرفتن از اهمیت بسزایی برخوردار است.

مسائلی که به بروز مشکلاتی برای تیوب ها منجر می شود عبارتند از:

سرد و گرم شدن ناگهانی لوله، گرم شدن بیش از حد لوله و بالا رفتن

دمای تیوب از حداکثر مجاز آن، در معرض شعله قرار گرفتن و برخورد

شعله به لوله (impingement) ، ایجاد یک لایه کُک بر روی جداره

داخلی لوله، Carborization، Hogging، Bending، Bowing، Sagging،

Creeping، خوردگی جداره داخلی لوله بر اثر وجود مواد خورنده در

سیال عبوری، خوردگی جداره بیرونی لوله در اثر رسوبات حاصل از

احتراق سوخت مایع بر روی جداره خارجی لوله، کارکرد لوله بیش از

عمر نامی آن (80 هزار الی 110 هزار ساعت)

سرد و گرم شدن ناگهانی لوله، ممکن است به Creeping (خزش) که

نتیجه آن ازدیاد قطر لوله می باشد منجر شود که در این صورت

احتمال پارگی لوله و شکنندگی آن را افزایش می دهد. چنانچه در اثر

Creeping مقدار ازدیاد قطر از 2 درصد قطرخارجی لوله بیشتر شود،

لوله مزبور بایستی تعویض شود.

در یک اندازه گیری عملی که برای برخی از تیوب های هشت اینچی و شش

اینچی کوره (کوره تقطیر در خلا) H-151 در هنگام تعمیرات اساسی

صورت پذیرفت، محاسبات زیر بدست آمد:

برای تیوب "8

OD = 8.625 (اصلی)

OD = 8.75 (اندازه گیری شده)

(OD = (0.125 (افزایش قطر لوله)

(OD ALLOWABLE = (8.625x2%=0.1725

هنوز می توان از تیوب مزبور استفاده کرد.

برای تیوب "6

OD = 8.625 (اصلی)

OD = 8.675 (اندازه گیری شده)

(OD = (0.05 (افزایش قطر لوله)

(OD ALLOWABLE = (6.625x2%=0.1325

که هنوز می توان از تیوب شش اینچی مزبور استفاده کرد.

همان طور که مشخص است تیوب 8 حدوداً بیش از دو برابر تیوب 6

ازدیاد قطر داشته است.

برای لوله "6

کوره H-101 (اتمسفریک)

OD =6.625 (اصلی)

OD = 6.635 (اندازه گیری شده)

OD =0.01 (اندازه قطر لوله)

(OD ALLOWABLE = (6.625x2%=0.1325

بالا نگه داشتن دمای پوسته تیوب ها سبب کاهش مقاومت لوله ها و

کاهش عمر مفید و گارانتی حدود یکصد هزار ساعتی آنها می شود.

تجربه نشان داده است که اگر به مدت 6 هفته سطح خارجی (پوسته)

لوله ای 900°C بیش از مقدار طراحی در معرض حرارت قرار بگیرد، عمر

تیوب ها نصف می شود.

یکی دیگر از مشکلات پیش آمده برای لوله ها، برخورد شعله به لوله

(IMPINGEMENT) است، که باعث OVER HEATING کوره و در نهایت HOT

SPOT می شود. این امر می تواند ضمن لطمه زدن در محل برخورد شعله

به لوله، باعث تشدید عمل کراکینگ مواد داخل لوله شود و مواد

مزبور به دو قسمت سبک و سنگین تبدیل گردند.

مواد سنگین به جداره داخلی لوله چسبیده و کک ایجاد می کنند. به

ازای تشکیل یک میلی لیتر ضخامت کک با توجه به ضریب هدایتی کک که

برابر مقدار خاصی می باشد برای یک شارژ حرارتی معمول در قسمت

تشعشعی کوره H-101 (اتمسفریک) می باشد، معادل فرمول زیر است:

می بایستی 300°C دمای پوسته تیوب بالاتر رود تا سیال موجود در

تیوب به همان دمای موردنظر برسد. در این صورت ملاحظه می شود بالا

رفتن دمای تیوب به چه میزان اتلاف سوخت و انرژی، داشته و به طور

کلی به مرور زمان چه لطمه ها و آسیب هایی به کل کوره وارد می

شود. به عبارت دیگراختلاف دمای پوسته تیوب های کوره که در طراحی

عموماً 1000°F بالاتر از دمای متوسط سیال درون آن در نظر گرفته

می شود، به مرور زمان با تشکیل کک (با رسوبات بیرونی) بیشتر می

شود.

مشکل دیگر که به علت دمای بالا برای تیوب های کوره ها ایجاد می

شود خمیدگی در جهت های مختلف این تیوب هاست.

یکی دیگر از مسائلی که باعث خم شدن و شکستگی لوله ها می شود

پدیده کربوریزیشن (carborization) است که بر اثر ترکیب کربن با

آهن پدید می آید: این واکنش که باعث تولید کربور آهن خواهد شد در

دمای بالاتر از 7000°c ایجاد می شود 7000°C)تا 14000°C). این

حالت عمدتاً در زمان Curing و drying کوره پدید می آید. البته

Hot spot نیز بیشتر در این زمان ها اتفاق می افتد.

وجود ناخالصی های مختلف مثل فلزات سدیم، وانادیم، نیکل و غیر...،

فلزاتی مثل گوگرد و ازت به صورت ترکیبات آلی در سوخت های مایع،

مسائل عدیده ای را باعث می شوند، که از آن جمله کاهش انتقال

حرارت از طریق سطح خارجی تیوب به سیال درون تیوب است که به علت

تشکیل رسوبات مربوط به ناخالصی های مزبور بخصوص رسوبات فلزی بر

روی تیوب هاست. به همین دلیل برای رسیدن به دمای مورد نظر سیال

موجود در لوله، مجبور به مصرف سوخت بیشتر خواهیم شد. در نتیجه

مشکلات ایجاد گرمای بیشتر در کوره و مسائل زیست محیطی در اثر

تشکیل SOX، NOX و ... را خواهیم داشت. از طرفی به دلیل نشست این

رسوب ها بر روی تیوب ها مسئله خوردگی و سوراخ شدن پیش خواهد آمد.

علت این خوردگی که از نوعHigh temp corrosion می باشد پدیده

سولفیدیش است، که در دماهای بین630°C تا700°C بوقوع می پیوندد.

همان طور که گفته شد علت اصلی آن وجود عناصر وانادیم، گوگرد،

سدیم و نیکل به همراه گازهای حاصل از احتراق سوخت است.

فلزات ذکر شده (بصورت اکسید) به کمک این گازها بالا رفته و بر

روی تیوب های قسمت تشعشع و جابه جایی می نشینند. خوردگی و سوراخ

شدن تیوب، بر اصل اکسید شدن و ترکیب عناصر مزبور باآلیاژ تیوب

استوار بوده که باعث ایجاد ترکیبات کمپلکس با نقطه ذوب پایین می

شود.

ترکیب اولیه پس از Na2SO4، سدیم وانادایت به فرمول Na2O6V2O5 است

که نقطه ذوب آن 6300°C می باشد. عمده ترکیبات دیگر که شامل

کمپلکسی از ترکیب پنتا اکسید وانادیم و سدیم است در شرایطی به

مراتب ملایم تر و درجه حرارتی پایین تر ذوب می شوند. برای مثال

مخلوط وانادیل وانادیت سدیم به فرمول Na2OV2O411V2O5 و

متاوانادات سدیم به فرمول Na2OV2O5 در 5270°C ذوب می شوند. ذوب

این کمپلکس ها شرایط مساعدی را برای تسریع خوردگی بوجود می آورد.

در اینجا ترکیبات حاصل از احتراق نه تنها به نوع ناخالصی بلکه به

نسبت آنها نیز بستگی کامل دارد و در مورد وانادیم میزان سدیم از

اهمیت خاصی برخوردار است.

البته سدیم وانادیل وانادایت پس از تولید و ذوب شدن، با فلز

آلیاژ مربوط به تیوب، ترکیب شده و بر اثر سیال بودن از سطح آلیاژ

کنار رفته و سطوح زیرین تیوب مربوطه در معرض ترکیب جدید قرار می

گیرد. ادامه این وضع به کاهش ضخامت تیوب و در نهایت سوراخ شدن و

از کار افتادن آن منجر می شود.

مشعل ها و سوخت:

نقش کیفیت نوع سوخت و نوع مشعل ها شاید از همه عوامل یاد شده در

کارکرد مناسب، راندمان بیشتر و کاهش خوردگی بیشتر برخوردار باشد.

چنانچه از مشعل های Low excess air و یا نوع مرحله سوز (stage

burning) استفاده شود، هوای اضافی مورد نیاز به میزان قابل توجهی

کاهش یافته و به حدود 3 و 5 درصد می رسد که ضمن کاهش و به حداقل

رساندن گازهای خورنده و مضر زیست محیطی مثل NOx، Sox، در بالا

بردن راندمان کوره بسیار موثر خواهد بود. این امر باعث کاهش مصرف

سوخت شده، و در نتیجه باعث کاهش گازهای حاصل از احتراق و آسیب

رساندن به تیوب ها، بدنه کوره و دود کش ها خواهد شد. وضعیت

عملکرد مشعل ها بایستی به طور مداوم زیر نظر باشد. بد سوزی مشعل

ها می تواند دلایل متضادی، همچون نامناسب بودن سوخت، عیب

مکانیکی، کک گرفتگی سرمشعل و یا بالعکس، رفتگی و سائیدگی

(Errosion) بیش از حد سر مشعل، کمبود بخار پودر کننده و ...

داشته باشد. وجود مواد آسفالتی، افزایش مقدار کربن باقیمانده

(carbon residue) ، بالا بودنِ مقادیر فلزات مثل سدیم، نیکل،

وانادیم و هم چنین سولفور در سوخت مسائل متعددی را در سیستم

احتراق ایجاد می کند که این مسائل به طور کلی به دو دسته تقسیم

می شوند.

الف - مسائل عملیاتی قبل از مشعل ها و احتراق:

این مسایل در اثر وجود آب و نمک ها و ته نشین شدن آنها در ذخیره

سازی نفت کوره بوجود می آیند. در این رابطه عدم تخلیه مداوم مخزن

ذخیره سازی، خوردگی و مشکلات ایجاد شده به طور خلاصه عبارتست از:

تشکیل لجن (sludge) در مخزن در اثر عدم استخراج کامل نفت کوره و

آب، انباشته شدن لجن در فیلترها در اثر محصولات ناشی از خوردگی و

پلیمریزاسیون هیدروکربورهای سنگین به علت اثر کاتالیزوری محصولات

ناشی از خوردگی، انباشته شدن لجن و صمغ های آلی در گرم کننده

سوخت، گرفتگی و خوردگی در نازل های پودر کننده نفت کوره



خرید و دانلود  خوردگی در دیگ بخار