لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 80
1- نگرش کلی بر توربینهای گاز
دنیای توربین گاز اگر چه دنیای جوانی است لیکن با وسعت کاربردی که از خود نشان داده، خود را در عرصهی تکنیک مطرح کرده است . زمینههای کاربرد توربینهای گاز در نیروگاهها و بهخصوص در مواردی که فوریت در نصب و بارگیری مدنظر است میباشد. همچنین به عنوان پشتیبان واحد بخار و نیز مواقعی که شبکه سراسری برق از دست میرود یعنی در خاموشی مورد استفاده قرار میگیرد.
مضافاً اینکه توربوکمپرسورها که از انرژی حاصله روی محور توربین برای تراکم و بالا بردن فشار گاز استفاده میشود، در سکوهای دریایی ، هواپیماها و ترنها استفاده میشود .
مختصری از سرگذشت توربینهای گاز از سال 1791 میلادی تا به امروز بهشرح زیر میباشد .
اولین نمونه توربین گاز در سال 1791 توسط Jonh Barber ساخته شد . نمونه بعدی در سال 1872 توسط Stolze ساخته شد که شامل یک کمپرسور جریان محوری چند مرحلهای به همراه یک توربین عکسالعملی چند مرحلهای بود که یک اتاق احتراق نیز در آن قرار داشت . اولین نمونه آمریکایی آن در 24 ژوئن 1895 توسط Charles G.Guritis ساخته شد. اما اولین بهرهبرداری و تست واقعی از توربین گاز در سال 1900 م بوسیله Stolz صورت گرفت که راندمان آن بسیار پایین بود . در همین سال ها در پاریس یک توربین گاز بوسیله برادرانArmangand ساخته شد که دارای نسبت فشار تقریبی 4 و چرخ کوریتس به ابعاد 5/93 سانتیمتر قطر با سرعت rpm 4250 بود که دمای ورودی به توربین حدود 560اندازهگیری شد و راندمان آن در حدود 3% بود. H.Holzwarth اولین توربین گاز با بهره اقتصادی بالا را طراحی کرد، که در آن از سیکل احتراق بدون پیشتراکم استفاده میشد و قسمت اصلی یک ماشین دوار با تراکم متناوب بود.
همچنین Stanford سال 1919 یک توربین گاز که دارای سوپر شارژر بود، ساخت که در هواپیما نیز از آن استفاده شد. اولین توربین گازی که برای تولید قدرت مورد استفاده قرار گرفت بهوسیله Brown Boveri ساخته شد. وی از یک توربین گاز برای راندن هواپیما استفاده کرد. همچنین در سال 1939 م، وی یک توربین گاز با خروجی MW 4 ساخت که بر اساس سیکل ساده طراحی شده بود و کارکرد پایینی داشت. این توربین تنها به مدت 1200 ساعت مورد بهرهبرداری قرارگرفت و عیوب مکانیکی فراوان داشت . از جمله اصلاحات وی برروی توربین ، بالا بردن راندمان آن به میزان 18% بود.
در انگلستان گروهی به سرپرستی Whittle در سال 1936 م یک کمپرسور سانتریفوژتک مرحلهای با ورودی دوطرفه و یک توربین تک مرحلهای کوپل شده به آن را به همراه یک اتاق طراحی کردند. اما با تست این موتور نتایج چندان راضیکنندهای بهدست نیامد. در سال 1935م در آلمان شخصی بهنام Hans Von یک توربوجت با کمپرسور سانتریفوژ ساخت که از مزایای خوبی نسبت به نمونههای قبلی برخوردار بود. در آمریکا کمپانیAlis Chalmers اصلاحات فراوانی برروی راندمان توربینهای گاز و کمپرسورها انجام داد و راندمان کمپرسور را به 70% - 65% و راندمان توربین را به 65% -60% رسانید.
در سال 1941م کمپانی British Wellond یک توربوجت ساخت که در هواپیما مورد استفاده قرار گرفت . این توربوجت با آب خنککاری میشد. در سال 1942م کمپانی German Jumo یک توربوجت ساخت که در جنگ جهانی دوم نیز از آن استفاده شد. در این سالها استفاده از موتور توربوجت برای هواپیماها رشد فزایندهای به خود گرفت و هواپیماهای جنگی بسیاری در آمریکا، آلمان و انگلیس ساخته شد. در سال 1941م در سوئیس از یک توربین گاز برای راهاندازی لوکوموتیو استفاده شد که دارای قدرت 1700 اسب بخار و راندمان 4/18% به همراه بازیاب حرارتی بود.
در سال 1950م کمپانی Rovet Car از توربین گاز در اتومبیلها استفاده کرد که شامل کمپرسور سانتریفوژ، توربین تکمرحلهای جهت گرداندن کمپرسور و توربین قدرت جداگانه بود که از مبدل حرارتی نیز در آن استفاده شد. در سال 1962م کمپانی General Motors یک توربین گاز به هماه بازیاب ساخت که مصرف سوخت آن نسبت به نمونه مشابه 36% کاهش داشت .
در سال 1979م با توافق بین سازندگان بزرگ توربین گاز، استانداردی جهت کاهش میزان NOx وCO دود خروجی ازتوربین گاز نوشته شد . در خلال سالهای بعد تغییرات فراوانی در نوع سوخت، متریال روشهای خنککاری و کاهش نویز و سر و صدا بهوسیله شرکت NASA صورت گرفت.
در 15 سال گذشته توربین گاز، خدمات فزآیندهای را در صنعت و کاربردهای پتروشیمی در سراسر جهان ارائه داده است. انسجام ، وزن کم و امکان کاربرد سوخت چندگانه موجب استفاده از توربین گاز در سکوهای دریایی نیز شدهاست .
امروزه توربینهای گازی وجود دارند که با گاز طبیعی ، سوخت دیزل ، نفت ،متان ، گازهای حرارتی ارزش پایین ، نفت گاز تقطیرشده و حتی فضولات کار میکنند و روز به روز تلاشها در جهت تکمیل و اصلاح عملکرد آن ادامه دارد.
1-2- مقایسه نیروگاه گازی با نیروگاههای دیگر
شکل (1-2) مقایسه میزان حرارت در چهار نمونه سیکل داده شده را نشان میدهد.
باتوجه به شکل (1-2) بدیهی است که هرچه درجه حرارت توربین افزایش مییابد میزان حرارت بیشتر جلب توجه میکند.
بعضی از عوامل قابل ملاحظه در تصمیمگیری برای انتخاب نوع نیروگاه که متناسب با نیازهای موجود باشند، عبارتند از:
هزینه سرمایهگذاری
زمان لازم از برنامهریزی و طراحل تا اتمام کار هزینههای تعمیراتی و هزینههای سوخت.
توربین گاز کمترین هزینه تعمیراتی و سرمایهگذاری را دارد. همچنین سریعتر از هر نوع نیروگاه دیگری اتمام مییابد و به مرحله بهرهبرداری میرسد.
از معایب آن میتوان به اتلاف حرارتی زیاد اشاره کرد
طراحی هر توربین گاز باید در برگیرنده معیارهای اساسی براساس ملاحظات بهرهبرداری باشد. بعضی از معیارهای عمده عبارتند از :
راندمان بالا
قابلیت اطمینان بالا و در نتیجه قابلیت دسترسی بالا
سهولت سرویس
سهولت نصب و تست
تطابق با استانداردهای مربوط به شرایط محیط
ترکیب سیستمهای کمکی و کنترل که در نتیجه درجه قابلیت اطمینان بالایی را بهدست میدهند.
قابلیت انعطاف در تطابق با سرویسها و نیز سوختهای مختلف
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 40
– خوردگی در چاه های نفت و گاز
مقدمه
از سال 1950 به بعد، صنعت بهره برداری و استخراج نفت و گاز ، پیشرفت های زیادی کرده است. متاسفانه این پیشرفت ها منجر به بروز خوردگی ها و شکست های شدیدتری نیز شده است . سیستم های بهره برداری ثانویه به وسیله بخار، گاز و پلیمر ها باعث بروز شکست های غیر منتظره ای در قطعات شده است.
با کمتر شدن منابع و ذخایر نفت و گاز، نیاز به حفر چاه های عمیق تر، روز به روز افزون تر می گردد. با عمیق تر شدن چاه ها ، فشار و دمای انتهای چاه نیز افزایش می یابد و بدیهی است که مشکلات ناشی از خوردگی نیز افرایش یابد، بطوری که گزارش شده است ، امروزه چاه هایی با عمق (9100m) 30000 ft و دمای (400-500 F) 200-260 C نیز حفر می شوند. خوشبختانه با پیشرفت علم و تکنولوژی در صنایع مختلف از جمله استخراج نفت و گاز ، پیشرفت های جالبی نیز در زمینه روش های مانیتورینگ ( پایش ، دیده بانی) و کنترل خوردگی ، صورت گرفته است . بروز چنین حالتی باعث می شود که نیاز به مهندسین خوردگی محسوس تر از قبل شود. با این وجود باید اعتراف کرد که هرچقدر هم که روش های خوردگی ، پیشرفت کنند باز هم شکست ها و خوردگی هایی بروز می کند که نشانگر این مهم است که شناخت خوردگی و روش های کنترل آن ، باعث کاهش خسارات می گردند نه توقف آنها!
بطور کلی خوردگی هایی که در چاه ها و وسایل مرتبط با آن رخ می دهند بسیار شبیه به خوردگی های خطوط لوله می باشند. با این تفاوت که شرایط فشار و دما، بیشتر و طبیعتا خوردگی های شدیدتری رخ می دهد. (24و 25)
بطور کلی مراحل استخراج را به دو دسته تقسیم می کنند. یکی بهره برداری اولیه و دیگری بهره برداری ثانویه . در بهره برداری اولیه ، فشار ذخایر نفتی به حدی است که قادر است نفت را به سطح زمین منتقل کند. مخازن گاز نیز معمولا جزء این نوع بهره برداری قرار می گیرند، چرا که فشار گاز در ذخایر ، همواره بیشتر از فشار اتمسفر می باشد. هنگامی که مخازن نفتی دچار افت فشار شدند ( پس از گذشت سالها) به کمک تکنیک های مختلفی نفت را به سطح زمین می رسانند. در حقیقت در بهره برداری ثانویه، با اعمال فرآیندهای جانبی ، به صورت مصنوعی ( نه طبیعی) باقیمانده نفت را استخراج می کنند. تجربه نشان داده است که بهترین تکنیک ها تحت بهترین شرایط قادرند تا 80% نفت موجود در مخازن را استخراج کنند. متداول ترین روش های بهره برداری ثانویه عبارتند از : تزریق گاز (معمولاCO2) ، تزریق آب ( معمولا آب استخراج شده از خود چاه استفاده می شود، انتخاب مواد جهت تجهیزات تزریق آب در چاهها بر اساس NACE RP0475 انجام می گیرد) و پمپاژ کردن ، لازم به ذکر است که ساختمان و طراحی انتهای چاه تاثیر زیادی بر روی نحوه تزریق ممانعت کننده های خوردگی می گذارد ( اصلی ترین روش جنت کنترل خوردگی در تجهیزات داخل چاه ، تزریق ممانعت کننده هایی با پایه نیتروژن / فسفر / گوگرد [N/P/S] می باشد). لازم به ذکر است که مشخصات لوله های حفاری در API 5D موجود است در حالیکه مشخصات تیوب و جداره های چاه در API 5CT موجود می باشد. (24و25)
انواع خوردگی
بطور کلی خوردگی در تجهیزات در چاه های نفت و گاز ، بسیار شبیه به خوردگی خطوط انتقال می باشد با این تفاوت که به دلیل وجود دما و فشار بیشتر، خوردگی ها کمی شدیدتر می باشند. قبل از مطالعه گونه های خورنده در چاه ها ، لازم است که بطور مختصر درباره فازهای مختلف صحبت شود. بطور کلی در چاه ها با سه فاز آب / گاز / نفت مواجه هستیم . چاه های گاز حاوی هیدروکربنهای گازی ( متان {ماده غالب حدود 805} + اتان + پروپان + بوتان) و آب ( بصورت مایع و بخار که با کاهش دما و فشار در حین بالا آمدن از تیوب چاه ، کندانس می شود) و نفت ( که شامل میعانات گازی {پروپان و بوتان} نیز می شود) می باشند. چاه های نفت نیز حاوی هیدروکربنهای مایع و آب و مقداری گاز ( متان و اتان) می باشند. لازم به ذکر است که همواره عناصر مضری نظیر CO2,H2S3و نمک ، در چاه ها موجود می باشند که معمولا مقداری از آنها در آب چاه حل می شوند.(23)
خوردگی میکروبی
میکروارگانیزم های موجود در کانال ، آب ( آب دریا، آب خنک کننده و ...) و یا خاک ، نه تنها باعث بروز خوردگی در خطوط لوله خواهند شد، بلکه پتانسیل حفاظت ( در حفاظت کاتدی) را نیز تغییر می دهند. باکتری ها ، انواع مختلفی داشته که جهت سهولت کار ، آنها را به دو گروه 1 SRB, 2 SRB تقسیم میکنند. انواع SRB، بی هوازی بوده و با مصرف کردن سولفات، تولید سولفید( سولفید هیدروژن، H2S) کرده و باعث افزایش خوردگی و تغییر پتانسیل حفاظت ( ودر نتیجه ، پیچیده شدن و مشکلتر شدن اعمال حفاظت کاتدی) می شوند. باکتریهای SOB، هوازی بوده و با مصرف سولفیدها ، تولید سولفات ( مثل اسید سولفوریک) می کنند. این نوع باکتری قادر است که درصد اسید سولفوریک را در سطح فولاد، تا میزان 10% نیز افزایش دهد. بدیهی است که تحت چنین شرایطی ، خوردگیهای شدیدی در خطوط لوله ، رخ خواهد داد. خوردگیهای میکروبی ، بطور معمول بصورت خوردگی موضعی ( حفره) بروز می کنند. جدول 1 اسامی باکتریهای معروف را در دو گروه SRB, SOB به همراه شرایط زیست محیطی و فلزی را که مورد هجوم قرار می دهند ، ذکر می کند. (23)
جدول (1) انواع میکرو ارگانیسمهایی که با عث بروز خوردگی می شوند{23}
یکی از راههای عملی جهت تشخیص وقوع خوردگی میکروبی ، چکاندن یکی دو قطره اسید کلریدریک بر روی منطقه خورده شده ( محصولات خوردگی ) می باشد. چرا که اگر خوردگی میکروبی رخ داده باشد، بوی گند ( تخم مرغ گندیده ) ناشی از آزاد شده H2S به مشام می رسد. راههای دیگر تشخیص خوردگی میکروبی ، آزمایشگاهی می باشند و لازم است که نمونه مورد نظر را پس از خارج سازی از محیط ، سریعا به آزمایشگاه منتقل
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 22
فهرست مطالب
آئین کار پیشگیری و مقابله با نشت گاز آمونیاک در سردخانه ها
هدف
دامنه کاربرد
تعاریف
اثرات نشت گاز بر پایه میزان غلظت گاز آمونیاک
5- نشت گاز آمونیاک
اثرات زیست محیطی ناشی از نشت آمونیاک
اصول پیشگیری از نشت گاز آمونیاک
روش مقابله با نشت آمونیاک
آئین کار پیشگیری و مقابله با نشت گاز آمونیاک در سردخانه ها
1- هدف
هدف از تدوین این استاندارد، تعیین آئین کار پیشگیری و مقابله با نشت گاز آمونیاک در سردخانه های ثابت می باشد.
2- دامنه کاربرد
این استاندارد در مورد سردخانه های ثابت که از گاز آمونیاک به عنوان شاره سرمازا استفاده می کنند، کاربرد د ارد.
3- تعاریف
در این استاندارد واژه ها و اصطلاحات با تعاریف زیر بکار برده می شود:
3-1- سردخانه های ثابت آمونیاکی - مجموعه ایست از ساختمان و تجهیزات که بتواند شرایط ویژه نگهداری مواد خوراکی و فاسد شدنی را عمدتأ از نظر دما، دمه نسبی (رطوبت نسبی ) و در صورت لزوم سایر شرایط موردنیاز را با استفاده از آمونیاک تامین نماید. (رجوع شود به استاندارد ملی 1899)
3-2- آمونیاک - ترکیبی است با فرمول شیمیایی NH3و در شرایط متعارفی بصورت گاز بی رنگ ، با بوی بسیار نافذ ، قلیائی ، سبکتر از هوا و تقریبأ 50درصد وزن هوا می باشد.
3-3- شاره سرمازا - به ماده ای که برای جذب گرما و تولید سرما در سیستم های گرماگیر (سرمازا) بکار می رود اطلاق می شود.
3-4- فشارنده یا کمپرسور - ابزاری است که به صورت مکانیکی بر فشار بخار شاره سرمازا می افزاید
3-5- واحد کمپرسور 1 - تشکیلات متراکم کننده شاره سرمازا بدون تقطیر کننده و مخزن مایه را گویند.
3-6- تقطیر کننده یا کندانسور 2 - بخشی است که در آن با تبادل حرارت ، شاره سرمازای فشرده شده ، گرما از دست داده و به مایع تبدیل می شود.
3-7- واحد تقطیر 3 - ترکیب ماشین آلات ویژه ای شامل : یک یا چند کمپرسور پرقدرت ، تقطیر کننده ، مخزن مایع (در صورت نیاز) و دیگر لوازم فرعی در سیستم سردساز می باشد.
3-8- صفحه انفجاری 4 - صفحه یا ورقه ای است که در فشار معینی (تعیین شده در آزمایش ) می ترکد.
3-9- تبخیر کننده 5 - بخشی از سیستم سردساز که در آن شاره سرماساز را که به شکل مایع وجود دارد، برای فرآیند تبرید به بخار تبدیل می کند.
3-10- واحد تبخیر کننده - ترکیب ویژه ماشین آلاتی است که در یک سیستم سردساز وجود دارد و شامل یک یا چند کمپرسور قوی ، تبخیر کننده ، مخزن مایع (در صورت نیاز) و دیگر لوازم فرعی است .
3-11- نیمه پرفشار سیستم 6 - بخشی از سیستم سردساز است که تقریبأ در فشاری معادل فشار موجود در تقطیر کننده عمل می کند.
3-12- نیمه کم فشار سیستم 7 - بخشی از سیستم سردساز است که تقریبأ در فشاری معادل فشار موجود در تبخیر کننده عمل می کند.
3-13- فشار بیشینه هنگام کار 8 - میزان فشاری است که نبایستی فشار درون سیستم ، چه در حالت فعالیت و چه در حال خاموشی از آن افزوده شود (البته بجز محدوده ای که قطعه فشارشکن در آن محدوده عمل می کند.)
3-14- کمپرسور بدون تغییر مثبت حجم 9 - نوعی کمپرسور که فشار بخار در آن بدون تغییر در حجم اتاقک فشار ازدیاد می یابد.
3-15- سوختن گرم - سوختن ناشی از حرارت تولید شده در اثر مجاورت آمونیاک و عرق سطحی پوست بدن می باشد.
3-16- سوختن سرد - سوختن در اثر انجماد سریع پوست بوده که ناشی از تبخیر سریع آمونیاک می باشد.
3-17- کمپرسور باتغییر مثبت حجم - نوعی کمپرسور که فشار بخار در آن ، با تغییر در حجم اتاقک فشار ازدیاد می یابد.
3-18- نشت گاز آمونیاک - خروج ناخواسته گاز آمونیاک از کلیه وسایل و تجهیزات بکار رفته در سردخانه های آمونیاکی را نشت گویند.
3-19- پیشگیری و مقابله - کلیه تدابیر و روشهایی که بمنظور جلوگیری از نشت شاره سرمازا و مهار آن اعمال می شود.
4- اثرات نشت گاز بر پایه میزان غلظت گاز آمونیاک
4-1- آستانه بویائی گزارش شده از 10 50ppm- 1متغیر است .
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 115
فصل اول:
مقدمه
1-1- مقدمه:
کشور ایران یکی از غنیترین کشورهای جهان از نظر ذخایر گاز طبیعی است. با برخورداری از چنین ذخیرهای، گاز به عنوان سوخت و انرژی میتواند در صدر منابع مورد استفاده قرار گیرد تا پاسخگوی رشد روزافزون مصرف انرژی و همچنین منبعی برای درآمدهای حاصل از صادرات تلقی گردد. گاز آن طور که در طبیعت موجود است کمتر مورد استفاده قرار میگیرد، زیرا گازی که از منابع نفتی حاصل میشود، دارای مقادیر متفاوتی هیدروژن سولفوره (H2S) و دیاکسیدکربن (CO2) به عنوان ناخالصی میباشد و اصطلاحاً گاز ترش نامیده میشود.
گرچه مقدار زیاد CO2 به علت نداشتن ارزش حرارتی، مطلوب نیست ولی (H2S) بااهمیتترین ناخالصی در گاز است که باید آنرا تفکیک نمود. در واقع به علت سمی بودن زیاد، (H2S) قابل مقایسه با سیانید هیدروژن (HCN) بوده و بایستی از گاز تصفیه شود.
از مهمترین دلایل لازم برای جداسازی ترکیبات حاوی CO2 و SO2 میتوان به موارد زیر اشاره نمود:
خوردگی ترکیبات اسیدی
آلودگی محیط زیست بوسیله ترکیبات گوگرددار.
منجمدشدن دیاکسیدکربن در فرآیندهای سرمایشی به منظور بازیافت محصول مایع (NGL)
تأثیرات نامطلوب این ترکیبات بر کاتالیزورهای صنایع پالایشی پاییندستی.
برای تصفیه گاز متداولترین روشی که در ایران مورد استفاده قرار میگیرد، روش جذب برگشتپذیر در فاز مایع است.
2-1- بررسی کلی فرآیندهای شیرینسازی گاز ترش:
الف- فرآیندهای جذبی فیزیکی توسط حلال:
فرآیند جذب فیزیکی عبارت است از مجاورنمودن مخلوط گاز با یک حلال مایع که در اثر انتقال جرم، بعضی از اجزای مخلوط گازی وارد حلال مایع شده و بدین وسیله جداسازی صورت میگیرد. از مهمترین فرآیندهای جذب فیزیکی با حلال میتوان به فرآیندهای Selexol و Flour Solvent اشاره کرد.
ب- فرآیندهای جذب سطحی
در جذب سطحی اجزای مشخصی از مخلوط گازی روی سطح فعال یک ماده جاذب جذب میشود. کاربرد این روش در شرایط خاص میباشد، مثلاً در مواردی که جداسازی تا حد بسیار دقیق و کامل مورد نظر باشد، میتوان از سیلیکاژل، زئولیتها و یا غربالهای مولکولی استفاده کرد.
ج- فرآیندهای شیمیایی:
این روش در حذف CO2 و H2S از گاز طبیعی، کاربرد وسیعی دارد. این روش براساس واکنش شیمیایی برگشتپذیر بین H2S یا CO2 و یک محلول بازی ضعیف قرار دارد که نمک حاصل شده در اثر حرارت به مواد اولیه تجزیه میگردد.
در حال حاضر آلکانول آمینها که عمدتاً به عنوان آمین شناخته شدهاند، به طور گستردهای در صنایع پالایش گاز به عنوان حلال برای جذب هیدروژن سولفوره و دیاکسیدکربن مورد استفاده قرار میگیرند. واکنش آمینها با گازهای اسیدی یک واکنش برگشتپذیر میباشد که در واکنش رفت (برج جذب) گازهای اسیدی و آمین واکنش از نوع اسید و باز را در فشار بالا انجام میدهند و نمک آمین بوجود آمده به کمک حرارت در فشار پایین واکنش برگشت را برای بازیابی آمین و گازهای اسیدی انجام میدهند.
معمولیترین آمینی که تاکنون مورد استفاده قرار گرفته، مونو اتانل آمین (MEA) است که در بین آمینهای گوناگون قویترین باز بوده و به آسانی با H2S و CO2 به صورت غیرانتخابی ترکیب میشود. مونواتانل آمین (MEA) دارای پائینترین مقدار وزن مولکولی بوده و بر پایة وزن یا حجم بالاترین پتانسیل جداسازی را دارا میباشد. فراتر از آن از نظر شیمیایی پایدار است و به آسانی مورد بازیابی قرار میگیرد، ناگفته نماند که واکنش آن با CS2 و COS به صورت غیربرگشتی بوده که منجر به از دست رفتن محلول شده و باعث شکلگیری جامدات در محلول میشود. اگرچه MEA از بسیاری جهات آمین مناسبی است و در حقیقت بسیاری از اشکالات سیستمهای آمین در این واحدها مورد مطالعه قرار میگیرند اما توسعه فرآیندهای خاص بر پایة آمینهای دیگر در افزایش ظرفیتهای جداسازی و گزینشپذیری (Selectivity) برای H2S و سرانجام کاهش انرژی مورد نیاز برای بازیابی مورد توجه قرار گرفته است. آمینهایی که به این ترتیب مورد استفاده قرار میگیرند عبارتند از
دی اتانل آمین (DEA)
تری اتانل آمین (TEA)
دیایزوپروپانل آمین (DIPA)
متیل دی اتانل آمین (MDEA)
دی گلایکول آمین (DGA)
دی اتانل آمین، آمین نوع دومی است که خاصیت بازی ضعیفتری نسبت به مونو اتانل آمین دارد، در نتیجه به حرارت کمتری در واکنش بازیابی نیاز دارد. از نظر وزنی DEA نسبت به MEA دارای بازدهی کمتری است و بنابراین موجب بالارفتن شدت جریان و یا غلظت میگردد. از خصوصیات دیگر DEA اینست که نسبت به MEA گزینشپذیری بیشتری برای جذب H2S دارد و با COS و CS2 واکنش نمیدهد.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 17
منابع گاز
نگهداری منابع گازهای پزشگی ومراقبت از کپسولهای گازهای پزشگی معمولاً تحت نظارت مهندسین وافراد فنی بیمارستان است ولی متخصصین هوشبری که از این منابع گازی وگپسولها استفاده می کنند باید شناختی دراین باره داشته باشند .
کپسولهای گاز
اغلب کپسولهای گازی بزرگ را در وضعیت سرپا وبعضی از کپسولهای کوچکتر وکپسولهای کوچکتر وکپسولهای اتانوکس را خوابیده نگهداری می کنند . کپسولها را باید داخل درهای بسته نگهداشت وآنها را در برابر هوا وسرما وگرهای شدید محافظت کرد . همچنین محل نگهداری کپسولهای پر وخالی باید جدا از هم باشد . کپسولهای محتوی گازهای پزشگی را باید جدا از انواع دیگر کپسولها نگهداشت وبرای گازهای اشتعال پذیری مانند سیکلو پروپان فضای جداگانه ای اختصاص داد . این کپسولها را برای اینکه بتوانند فشارهای بالایی را متحمل شوند از فولادی با کربن زیاد ، فولاد ومنگنز یا آلیاژ آلومینیم می سازند ، هر چند اگر کپسول روی سطح آسفالتی سختی بیافتد این فولادها نیز از خطر انفجار مصون نخواهد ماند .
کپسولها علاوه برداشتن برچسب به کد رنگ نیز مجهزند . در استاندارد بین المللی رنگها گازهای پزشکی (ISO/R32) کپسولهای اکسیژن سیاه اند با درژوش سفید ، اکسیدازت آبی ، سیکلو پروپان نارنجی ، ودی اکسید کربن خاکستری است . در بریتانیا از سیستم بین المللی پیروی میشود ولی در آمریکا وبرخی از کشورهای دیگر ممکن است هنوز کدهای رنگ مختلفی را دید .
دور گلوگاه هر کپسول در بریتانیا دیسک پلاستیکی وجود دارد که رنگ وشکل آن معرف آخرین سالی است که کپسول بازرسی شده است (شکل 21-1) . سازندگان کپسولها به طور منظم کپسولها را بازرسی وامتحان می کنند . این بازرسی شامل بازرسی درونی کپسول با اندوسکوپ نیز هست وکپسولهای معیوب را از رده خارج می کنند . مدت زمان بین بازرسی ها متغیر بوده وبسته به نوع گاز از پنج تا ده سال است .
در بالای کپسول بر چسب شناسایی قرار دارد که موارد ایمنی را فهرست وار روی آن نوشته اند . اگر روغن یا معایعات اشتعال پذیر دیگر با اکسیژن ، اکسید ازت یا اتانوکس فشار بالا تماس حاصل کنند خطر انفجار یا آتش سوزی وجود خواهد داشت چون این گازها احتراق پذیرند .
گرم کردن کپسولها خطرناک است چون فشار داخل آنها را افزایش می دهد . با وجود این بالا رفتن دما در تابستان مهم نیست زیرا کپسولها می توانند فشارهایی بمراتب بالاتر از فشاری را که درآن کار می کنند تحمل کنند . مقدار واقعی فشاری که کپسول می تواند تحمل کند به نوع کپسول وگاز داخل آن بستگی دارد ومعمولاً 65 تا 70% فشار کاری کپسول است .
قبل از اتصال کپسول به ماشین هوشبری باید موقتاً دریچه آن را باز کرد . با این کارگرد وغبار یا هر ماده ای که در خروجی کپسول گیر کرده باشد بیرون می آید که در غیر این صورت وارد دستگاه هوشبری می شود .
پس از اتصال کپسول توصیه می شود که دریچه آن را به آرامی باز کرد تا از گرمادهی آدیاباتیک جلوگیری شود . دریچه را باید دوباره کامل چرخاند چون دریچه ای که نیمه باز باشد وقتی که فشار درون کپسول افت کند جریان گاز خروجی را محدود می کند . سرانجام نباید دریچه را محکم بست چون در این صورت نشیمنگاه دریچه آسیب می بیند .
شکل 12-2 جزئیات مقطع نشیمنگاه دریچه را نشان می دهد . محوری با روکش پلاستیکی در نشیمنگاه دریچه پیچ می شود . اگر دریچه را محکم ببندیم این روکش پلاستیکی خراب می شود . اطراف محور زیر مهره بالایی واشر پلاستیکی تراکم پذیری وجود دارد معروف به گلاند که در عین حال که امکان چرخاندن محور را می دهد از نشت جلوگیری می کند .
روی تنه دریچه سوراخهایی هستند که با سوزنهای روی یوغ ماشین هوشبری متناظرند . این آرایش سیستم شاخص سوزنی را تشکیل می شود که ابزاری است برای اینکه کپسول نادرستی به یوغ ماشین هوشبری وصل نشود . برای هر یک از گازهای پزشکی پیکربندی شاخص سوزنی خاص وجود دارد وشکل 21-1 این پیکر بندی را برای اکسیژن ، اتانوکس واکسید ازت نشان می دهد .
روی کپسولهای بزرگ به جای سیستم شاخص سوزنی از دو سیستم دیگر استفاده می شود .برای اکسیژن از کپسولهای بزرگ استفاده می کنند که در سمت چپ شکل 21-3 نشان داده شده است. خروجی این کپسول شیارهای داخلی راستگردی دارد که با آنهایی که روی کپسول بزرگ هوا ،هلیوم وازت وجود دارد یکی است . با وجود این هیدروژن وگازهای اشتعال پذیر دیگر خروجی کپسول شیار چپ گردی دارد که تا حدی از اتصال کپسول نادرست جلوگیری می کند .
نمودار سمت راست دریچه بزرگ کپسول اکسید ازت را نشان می دهد . توجه کنید که این کپسول اتصال شیاردار خارجی وشیرفلکه دارد . کپسولهای فلکه دار مشابهی خارج بریتانیا نیز وجود دارند که اغلب حاوی گازهای دیگر هستند ولی نقش سیار متفاوتی دارند . با وجود این ، سیستمها تا حدی از خطر اتصال نادرست جلوگیری می کنند .
منابع اکسیژن لوله کشی شده
به منظور جلوگیری از تعویض مکرر کپسولهای گاز در اتاق عمل شلوغ ونیز بدلایل اقتصادی گازها را از منابع ذخیره دوردست لوله کشی می کنند . متداولترین منبع لوله کشی اکسیژن است ومنبع مرکزی می تواند تعداد چند کپسول یا تانک اکسیژن مایع باشد . با وجود این ، درهر دوی