لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 90
1- نگرش کلی بر توربینهای گاز
دنیای توربین گاز اگر چه دنیای جوانی است لیکن با وسعت کاربردی که از خود نشان داده، خود را در عرصهی تکنیک مطرح کرده است . زمینههای کاربرد توربینهای گاز در نیروگاهها و بهخصوص در مواردی که فوریت در نصب و بارگیری مدنظر است میباشد. همچنین به عنوان پشتیبان واحد بخار و نیز مواقعی که شبکه سراسری برق از دست میرود یعنی در خاموشی مورد استفاده قرار میگیرد.
مضافاً اینکه توربوکمپرسورها که از انرژی حاصله روی محور توربین برای تراکم و بالا بردن فشار گاز استفاده میشود، در سکوهای دریایی ، هواپیماها و ترنها استفاده میشود .
مختصری از سرگذشت توربینهای گاز از سال 1791 میلادی تا به امروز بهشرح زیر میباشد .
اولین نمونه توربین گاز در سال 1791 توسط Jonh Barber ساخته شد . نمونه بعدی در سال 1872 توسط Stolze ساخته شد که شامل یک کمپرسور جریان محوری چند مرحلهای به همراه یک توربین عکسالعملی چند مرحلهای بود که یک اتاق احتراق نیز در آن قرار داشت . اولین نمونه آمریکایی آن در 24 ژوئن 1895 توسط Charles G.Guritis ساخته شد. اما اولین بهرهبرداری و تست واقعی از توربین گاز در سال 1900 م بوسیله Stolz صورت گرفت که راندمان آن بسیار پایین بود . در همین سال ها در پاریس یک توربین گاز بوسیله برادرانArmangand ساخته شد که دارای نسبت فشار تقریبی 4 و چرخ کوریتس به ابعاد 5/93 سانتیمتر قطر با سرعت rpm 4250 بود که دمای ورودی به توربین حدود 560اندازهگیری شد و راندمان آن در حدود 3% بود. H.Holzwarth اولین توربین گاز با بهره اقتصادی بالا را طراحی کرد، که در آن از سیکل احتراق بدون پیشتراکم استفاده میشد و قسمت اصلی یک ماشین دوار با تراکم متناوب بود.
همچنین Stanford سال 1919 یک توربین گاز که دارای سوپر شارژر بود، ساخت که در هواپیما نیز از آن استفاده شد. اولین توربین گازی که برای تولید قدرت مورد استفاده قرار گرفت بهوسیله Brown Boveri ساخته شد. وی از یک توربین گاز برای راندن هواپیما استفاده کرد. همچنین در سال 1939 م، وی یک توربین گاز با خروجی MW 4 ساخت که بر اساس سیکل ساده طراحی شده بود و کارکرد پایینی داشت. این توربین تنها به مدت 1200 ساعت مورد بهرهبرداری قرارگرفت و عیوب مکانیکی فراوان داشت . از جمله اصلاحات وی برروی توربین ، بالا بردن راندمان آن به میزان 18% بود.
در انگلستان گروهی به سرپرستی Whittle در سال 1936 م یک کمپرسور سانتریفوژتک مرحلهای با ورودی دوطرفه و یک توربین تک مرحلهای کوپل شده به آن را به همراه یک اتاق طراحی کردند. اما با تست این موتور نتایج چندان راضیکنندهای بهدست نیامد. در سال 1935م در آلمان شخصی بهنام Hans Von یک توربوجت با کمپرسور سانتریفوژ ساخت که از مزایای خوبی نسبت به نمونههای قبلی برخوردار بود. در آمریکا کمپانیAlis Chalmers اصلاحات فراوانی برروی راندمان توربینهای گاز و کمپرسورها انجام داد و راندمان کمپرسور را به 70% - 65% و راندمان توربین را به 65% -60% رسانید.
در سال 1941م کمپانی British Wellond یک توربوجت ساخت که در هواپیما مورد استفاده قرار گرفت . این توربوجت با آب خنککاری میشد. در سال 1942م کمپانی German Jumo یک توربوجت ساخت که در جنگ جهانی دوم نیز از آن استفاده شد. در این سالها استفاده از موتور توربوجت برای هواپیماها رشد فزایندهای به خود گرفت و هواپیماهای جنگی بسیاری در آمریکا، آلمان و انگلیس ساخته شد. در سال 1941م در سوئیس از یک توربین گاز برای راهاندازی لوکوموتیو استفاده شد که دارای قدرت 1700 اسب بخار و راندمان 4/18% به همراه بازیاب حرارتی بود.
در سال 1950م کمپانی Rovet Car از توربین گاز در اتومبیلها استفاده کرد که شامل کمپرسور سانتریفوژ، توربین تکمرحلهای جهت گرداندن کمپرسور و توربین قدرت جداگانه بود که از مبدل حرارتی نیز در آن استفاده شد. در سال 1962م کمپانی General Motors یک توربین گاز به هماه بازیاب ساخت که مصرف سوخت آن نسبت به نمونه مشابه 36% کاهش داشت .
در سال 1979م با توافق بین سازندگان بزرگ توربین گاز، استانداردی جهت کاهش میزان NOx وCO دود خروجی ازتوربین گاز نوشته شد . در خلال سالهای بعد تغییرات فراوانی در نوع سوخت، متریال روشهای خنککاری و کاهش نویز و سر و صدا بهوسیله شرکت NASA صورت گرفت.
در 15 سال گذشته توربین گاز، خدمات فزآیندهای را در صنعت و کاربردهای پتروشیمی در سراسر جهان ارائه داده است. انسجام ، وزن کم و امکان کاربرد سوخت چندگانه موجب استفاده از توربین گاز در سکوهای دریایی نیز شدهاست .
امروزه توربینهای گازی وجود دارند که با گاز طبیعی ، سوخت دیزل ، نفت ،متان ، گازهای حرارتی ارزش پایین ، نفت گاز تقطیرشده و حتی فضولات کار میکنند و روز به روز تلاشها در جهت تکمیل و اصلاح عملکرد آن ادامه دارد.
1-2- مقایسه نیروگاه گازی با نیروگاههای دیگر
شکل (1-2) مقایسه میزان حرارت در چهار نمونه سیکل داده شده را نشان میدهد.
باتوجه به شکل (1-2) بدیهی است که هرچه درجه حرارت توربین افزایش مییابد میزان حرارت بیشتر جلب توجه میکند.
بعضی از عوامل قابل ملاحظه در تصمیمگیری برای انتخاب نوع نیروگاه که متناسب با نیازهای موجود باشند، عبارتند از:
هزینه سرمایهگذاری
زمان لازم از برنامهریزی و طراحل تا اتمام کار هزینههای تعمیراتی و هزینههای سوخت.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 40
– خوردگی در چاه های نفت و گاز
مقدمه
از سال 1950 به بعد، صنعت بهره برداری و استخراج نفت و گاز ، پیشرفت های زیادی کرده است. متاسفانه این پیشرفت ها منجر به بروز خوردگی ها و شکست های شدیدتری نیز شده است . سیستم های بهره برداری ثانویه به وسیله بخار، گاز و پلیمر ها باعث بروز شکست های غیر منتظره ای در قطعات شده است.
با کمتر شدن منابع و ذخایر نفت و گاز، نیاز به حفر چاه های عمیق تر، روز به روز افزون تر می گردد. با عمیق تر شدن چاه ها ، فشار و دمای انتهای چاه نیز افزایش می یابد و بدیهی است که مشکلات ناشی از خوردگی نیز افرایش یابد، بطوری که گزارش شده است ، امروزه چاه هایی با عمق (9100m) 30000 ft و دمای (400-500 F) 200-260 C نیز حفر می شوند. خوشبختانه با پیشرفت علم و تکنولوژی در صنایع مختلف از جمله استخراج نفت و گاز ، پیشرفت های جالبی نیز در زمینه روش های مانیتورینگ ( پایش ، دیده بانی) و کنترل خوردگی ، صورت گرفته است . بروز چنین حالتی باعث می شود که نیاز به مهندسین خوردگی محسوس تر از قبل شود. با این وجود باید اعتراف کرد که هرچقدر هم که روش های خوردگی ، پیشرفت کنند باز هم شکست ها و خوردگی هایی بروز می کند که نشانگر این مهم است که شناخت خوردگی و روش های کنترل آن ، باعث کاهش خسارات می گردند نه توقف آنها!
بطور کلی خوردگی هایی که در چاه ها و وسایل مرتبط با آن رخ می دهند بسیار شبیه به خوردگی های خطوط لوله می باشند. با این تفاوت که شرایط فشار و دما، بیشتر و طبیعتا خوردگی های شدیدتری رخ می دهد. (24و 25)
بطور کلی مراحل استخراج را به دو دسته تقسیم می کنند. یکی بهره برداری اولیه و دیگری بهره برداری ثانویه . در بهره برداری اولیه ، فشار ذخایر نفتی به حدی است که قادر است نفت را به سطح زمین منتقل کند. مخازن گاز نیز معمولا جزء این نوع بهره برداری قرار می گیرند، چرا که فشار گاز در ذخایر ، همواره بیشتر از فشار اتمسفر می باشد. هنگامی که مخازن نفتی دچار افت فشار شدند ( پس از گذشت سالها) به کمک تکنیک های مختلفی نفت را به سطح زمین می رسانند. در حقیقت در بهره برداری ثانویه، با اعمال فرآیندهای جانبی ، به صورت مصنوعی ( نه طبیعی) باقیمانده نفت را استخراج می کنند. تجربه نشان داده است که بهترین تکنیک ها تحت بهترین شرایط قادرند تا 80% نفت موجود در مخازن را استخراج کنند. متداول ترین روش های بهره برداری ثانویه عبارتند از : تزریق گاز (معمولاCO2) ، تزریق آب ( معمولا آب استخراج شده از خود چاه استفاده می شود، انتخاب مواد جهت تجهیزات تزریق آب در چاهها بر اساس NACE RP0475 انجام می گیرد) و پمپاژ کردن ، لازم به ذکر است که ساختمان و طراحی انتهای چاه تاثیر زیادی بر روی نحوه تزریق ممانعت کننده های خوردگی می گذارد ( اصلی ترین روش جنت کنترل خوردگی در تجهیزات داخل چاه ، تزریق ممانعت کننده هایی با پایه نیتروژن / فسفر / گوگرد [N/P/S] می باشد). لازم به ذکر است که مشخصات لوله های حفاری در API 5D موجود است در حالیکه مشخصات تیوب و جداره های چاه در API 5CT موجود می باشد. (24و25)
انواع خوردگی
بطور کلی خوردگی در تجهیزات در چاه های نفت و گاز ، بسیار شبیه به خوردگی خطوط انتقال می باشد با این تفاوت که به دلیل وجود دما و فشار بیشتر، خوردگی ها کمی شدیدتر می باشند. قبل از مطالعه گونه های خورنده در چاه ها ، لازم است که بطور مختصر درباره فازهای مختلف صحبت شود. بطور کلی در چاه ها با سه فاز آب / گاز / نفت مواجه هستیم . چاه های گاز حاوی هیدروکربنهای گازی ( متان {ماده غالب حدود 805} + اتان + پروپان + بوتان) و آب ( بصورت مایع و بخار که با کاهش دما و فشار در حین بالا آمدن از تیوب چاه ، کندانس می شود) و نفت ( که شامل میعانات گازی {پروپان و بوتان} نیز می شود) می باشند. چاه های نفت نیز حاوی هیدروکربنهای مایع و آب و مقداری گاز ( متان و اتان) می باشند. لازم به ذکر است که همواره عناصر مضری نظیر CO2,H2S3و نمک ، در چاه ها موجود می باشند که معمولا مقداری از آنها در آب چاه حل می شوند.(23)
خوردگی میکروبی
میکروارگانیزم های موجود در کانال ، آب ( آب دریا، آب خنک کننده و ...) و یا خاک ، نه تنها باعث بروز خوردگی در خطوط لوله خواهند شد، بلکه پتانسیل حفاظت ( در حفاظت کاتدی) را نیز تغییر می دهند. باکتری ها ، انواع مختلفی داشته که جهت سهولت کار ، آنها را به دو گروه 1 SRB, 2 SRB تقسیم میکنند. انواع SRB، بی هوازی بوده و با مصرف کردن سولفات، تولید سولفید( سولفید هیدروژن، H2S) کرده و باعث افزایش خوردگی و تغییر پتانسیل حفاظت ( ودر نتیجه ، پیچیده شدن و مشکلتر شدن اعمال حفاظت کاتدی) می شوند. باکتریهای SOB، هوازی بوده و با مصرف سولفیدها ، تولید سولفات ( مثل اسید سولفوریک) می کنند. این نوع باکتری قادر است که درصد اسید سولفوریک را در سطح فولاد، تا میزان 10% نیز افزایش دهد. بدیهی است که تحت چنین شرایطی ، خوردگیهای شدیدی در خطوط لوله ، رخ خواهد داد. خوردگیهای میکروبی ، بطور معمول بصورت خوردگی موضعی ( حفره) بروز می کنند. جدول 1 اسامی باکتریهای معروف را در دو گروه SRB, SOB به همراه شرایط زیست محیطی و فلزی را که مورد هجوم قرار می دهند ، ذکر می کند. (23)
جدول (1) انواع میکرو ارگانیسمهایی که با عث بروز خوردگی می شوند{23}
یکی از راههای عملی جهت تشخیص وقوع خوردگی میکروبی ، چکاندن یکی دو قطره اسید کلریدریک بر روی منطقه خورده شده ( محصولات خوردگی ) می باشد. چرا که اگر خوردگی میکروبی رخ داده باشد، بوی گند ( تخم مرغ گندیده ) ناشی از آزاد شده H2S به مشام می رسد. راههای دیگر تشخیص خوردگی میکروبی ، آزمایشگاهی می باشند و لازم است که نمونه مورد نظر را پس از خارج سازی از محیط ، سریعا به آزمایشگاه منتقل
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 106
موقعیت نفت و گاز کشور در بازارهای نفت و گاز جهان
میزان ذخایر بالفعل و بالقوه نفت خام کشور و تاثیر تزریق گاز بر آنها
میزان ذخایر« نفت خام در جای» کشور حدود 450 میلیارد بشکه تخمین زده می شود. از این میزان، تا پایان سال 1380 جمعاً حدود 54 میلیارد بشکه از مناطق خشکی و دریایی برداشت شده است.
میزان ذخایر بالفعل نفت خام کشور با توجه به ذخایر کشف شده جدید، حدود 37 میلیارد بشکه است. این رقم بر اساس گزارش های ارائه شده از مناطق خشکی و اطلاعات نگارنده از مناطق دریایی است. ارقام رسمی ارائه شده با توجه به حجم میعانات گازی و حجم نفت خام بالقوه از حدود 92 میلیارد بشکه تا 130 میلیارد بشکه بوده است.
میزان ذخایر بالقوه نفت خام ( برداشت ثانویه) کشور حدود 50 میلیارد بشکه است. این رقم، حدود 5 میلیارد بشکه نفت قابل بهره برداری- که در 50 تاقدیس شناخته شده کوچک، واقع شده است ـ را شامل میشود که هنوز حفاری اکتشافی در آنها شروع نشده است؛ 45 میلیارد بشکه دیگر نیز در مخازن نفتی شناخته شده واقع شده است.
تنها راه بالفعل نمودن حدود 45 میلیارد بشکه نفت موجود در مخازن ایران، تزریق گاز به میزان لازم و کافی در آنهاست. میزان گاز مورد نیاز جهت تزریق در این مخازن به منظور بالفعل نمودن این ذخایر، حدود 20 میلیارد پای مکعب در روز است. چنین حجمی از گاز مورد نیاز را می توان از ذخایر پارس جنوبی، پارس شمالی ( مخازن گاز کشف شده G و F واقع در خلیج فارس)، گازهای همراه که قسمت اعظم آن سوخته می شود و سایر مخازن گاز ایران تامین نمود. بر اساس محسبات مهندسی مخازن انجام شده قبل و بعد از انقلاب، به ازای تزریق 5/2 تا 4 هزار پای مکعب گاز می توان یک بشکه نفت اضافی از مخازن نفتی ایران به دست آورد.
بنابراین اگر قیمت نفت را حدود 24 دلار برای هر بشکه فرض نماییم « قیمت سایه ای» هزار پای مکعب گاز، حدود 6 تا 10 دلار است. قیمت گاز صادراتی ایران به ترکیه بر اساس قیمت نفت 24 دلار، کمتر از 3 دلار برای هر هزار پای مکعب در نظر گرفته شده است، ضمن آنکه فاصله آن حدود 1000 کیلومتر دورتر از محل تزریق است. علاوه بر این، باید به این نکته توجه کرد که گاز تزریقی برای نسل های آینده باقی خواهد ماند.
ملاحظه می شود که تزریق گاز در مخازن نفتی، با صرفه ترین نحوه استفاده از آن است. در عین حال، این روش از نظر اصول، تنها راه صیانت از مخازن نفتی و تبدیل نفت بالقوه به نفت بالفعل برای نسلهای آینده کشور است.
سیاستهای تزریق گاز و مقایسهای از ذخایر نفت و گاز ایران با ذخایر نفت عربستان
ذخایر واقعی نفت عربستان حدود 200 میلیارد بشکه است، در حالی که ذخایر نفت و گاز ایران 37 میلیارد بشکه نفت بالفعل و 50 میلیارد نفت بالقوه و حدود 800 تریلیون پای مکعب گاز را شامل میشود. در نتیجه، مجموع حجم نفت و گاز ایران حدود 220=133+37+50 میلیارد بشکه ( معادل نفت خام) است. در صورتی که فرض شود ایران روزانه به طور متوسط 5/3 میلیارد بشکه نفت و عربستان به طور متوسط روزانه حدود 10 میلیون بشکه نفت بهرهبرداری می کند در نتیجه در 15 سال آینده، ذخایر نفت ایران در حدود 201=19-220 میلیارد بشکه و ذخایر نفت عربستان حدود 145=55-200 میلیارد بشکه خواهد بود.
ملاحضه می شود که در 15 سال آینده، ایران در مقام اول و عربستان در مقام دوم از نظر ذخایر نفت و گاز در خاورمیانه خواهند بود. لازم به تذکر است ذخایر گازی که احتمالاً در عربستان در فرایند اکتشاف تولید خواهد شد، به مصارف داخلی، شامل تولید برق و تهیه آب آشامیدنی ( شیرین سازی آب) خواهد رسید. ایران نیز امکان کشف ذخایر گازی جدید را داراست.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 87
بازرسی مسیر گاز داغ
دمونتاژ
عمل -1 سقف کوپه توربین را جهت برداشتن آماده کنید.
1- سیم های موتورفن ونت کوپه توربین را جدا کنید.
2- لوله کشی به دمپرفن ونت در قسمت زیری سقف را باز کنید.
3- هر بخشی از لوله سخت (RIGID CONDUCIT) سیم برق را که به سقف توربین وصل می شود: جدا کرده و بردارید.
4- هر فیکسچر یا لوله برق روشنایی داخلی یا خارجی را که با برداشتن سقف تداخل داشته باشد، بردارید.
5- کلیه لوله کشی های هوای مرحله پنجم را از بالای سقف کوپه توربین بازکرده و بردارید.
6- ونت یاتاقان شماره 2 را از بالای لفاف احتراق باز کنید لوله کشی ونت را از سمت بالا بلند کرده و از میان سقف از فیت موجود در لفاف خارج کرده و روی پایه چوبی(CRibbiNG) قرار دهید.
7- لوله کشی هوای مرحله پنجم واقع در سمت راست پوسته توربین در محل فلنچ واقع در زیر قسمت بالای تیر کناری شاسی (BASE SAID DRAM ) را باز کنید.
8- سرپوش آب رو(FLASHING CAP ) بین پوشش های سقف فوروارد و آفت را بردارید.
9- پنج عدد سیل انتهایی واقع در انتهای آفت پوشش سقف را بردارید.
10- بولتهای قسمت آفت سقف را از فریم های دیواره های خارجی، باز کنید.
11- بمنظور اطمینان از آزادبودن قسمت آفت سقف از نظر مکانیکی جهت بلندکردن، چک لازم را بعمل آورید.
عمل 2- پانل های دسترسی (ASSESS PANELS) کانال اگزوز و ورودی را بردارید.
1- پانل های عایق پوششی ساختمان را بردارید.
2- بولت های پانل دسترسی کانال اگزوز را باز کنید.
3- بولت های پانل دسترسی ورودی را باز کنید.
4- پانل ها را با وایر بسته( ریگری کرده) بلند کرده، از واحد آزاد کرده و با فاصله نسبت به زمین نگهداری کنید.
عمل 3- سقف و پانل های جانبی کوپه توربین را بردارید.
1- چهارعدد آی بولت به محل های رزوه شده قسمت سقف که جهت بلند کردن تعبیه شده اند وصل کنید. فن و دمپر را می توان بطور محلق به سقف باقی گذاشت.
2- به سقف وایر وصل کرده و آنرا بلند کنید و روی پایه چوبی مناسبی قرار دهید.
3- پانل های جانبی عمودی کوپه توربین را بردارید تا دسترسی به محوطه توربین جهت درآوردن بولت و لوله کشی آسانتر باشد.
4- درها، و ( یا ) پانل ها را در وضعیت ایستاده (PRIGHT) د رجای محفوظی نگهداری کنید.
عمل 4- عملیات دمونتاژ در روش بازرسی احتراق از شماره 1 تا 8 را اجرا کنید.
NOTE
« جهت اطلاع از روشهای دمونتاژ برای عملیات ذیل به بازرسی احتراق بخش A 4 از این دستورالعمل تعمیراتی مراجعه کنید.»
1- خطوط سوخت مایع را درآورید
2- خطوط هوای آتمایزینگ را درآورید.
3- خطوط گاز را درآورید( در صورت اطلاق)
4- چک والوهای سوخت مایع را درآورید.
5- نازل های سوخت را درآورید.
6- دتکتورهای شعله و جرقه زنها را درآورید.
7- بولت های در پوش های محفظه های احتراق را باز کرده و درپوشها را باز کنید.
8- نگهدارنده های لوله های انتقال شعله، لوله های انتقال شعله، لاینرهای احتراق، و فلواسلیوها را در آورید.
عمل 5- چک های مقدماتی وضعیت مکانی (POSITIONING)* کمپرسور و روتور را انجام دهید.
* : یا استقرار
NOTE
«چک های وضعیت مکانی روتور در حالی باید انجام شود که کلیه پوسته ها با بولت در مکان خود بسته شده باشند و واحد روی ساپورت های خود قرار گرفته باشد.»
سوراخهای اندازه گیری کلیرنس (CLEARANCEOMETER) و سوراخ های پروب(PROBE) را با هم اشتباه نگیرید. سوراخ های اندازه گیر کلیرنس(90%) اینچ بوده و جهت یک میکرومتر عمق سنج (DEPTH MICROMETER) خیلی کوچک هستند. از سوراخهای پروپ جهت اخذ کلیرنس های نوک پره هایTIP CLEARANCES) ) در توربین و کمپرسور استفاده کنید.
1- در ضمن کاربرد یک پره علامت گذاشته شده مرحله اول کمپرسور، روتور را چرخانده تا چک های کلیرنس در شش نقطه انجام شود: خط المرکزین بالا، خط المرکزین پائین، و بالا و پائین اتصالات فنی هر طرف. یافته ها را در فرم بازرسی ISE/GT-FF-9000 ثبت کنید.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 80
توربینهای گاز
دنیای توربین گاز اگر چه دنیای جوانی است لیکن با وسعت کاربردی که از خود نشان داده، خود را در عرصهی تکنیک مطرح کرده است . زمینههای کاربرد توربینهای گاز در نیروگاهها و بهخصوص در مواردی که فوریت در نصب و بارگیری مدنظر است میباشد. همچنین به عنوان پشتیبان واحد بخار و نیز مواقعی که شبکه سراسری برق از دست میرود یعنی در خاموشی مورد استفاده قرار میگیرد.
مضافاً اینکه توربوکمپرسورها که از انرژی حاصله روی محور توربین برای تراکم و بالا بردن فشار گاز استفاده میشود، در سکوهای دریایی ، هواپیماها و ترنها استفاده میشود .
مختصری از سرگذشت توربینهای گاز از سال 1791 میلادی تا به امروز بهشرح زیر میباشد .
اولین نمونه توربین گاز در سال 1791 توسط Jonh Barber ساخته شد . نمونه بعدی در سال 1872 توسط Stolze ساخته شد که شامل یک کمپرسور جریان محوری چند مرحلهای به همراه یک توربین عکسالعملی چند مرحلهای بود که یک اتاق احتراق نیز در آن قرار داشت . اولین نمونه آمریکایی آن در 24 ژوئن 1895 توسط Charles G.Guritis ساخته شد. اما اولین بهرهبرداری و تست واقعی از توربین گاز در سال 1900 م بوسیله Stolz صورت گرفت که راندمان آن بسیار پایین بود . در همین سال ها در پاریس یک توربین گاز بوسیله برادرانArmangand ساخته شد که دارای نسبت فشار تقریبی 4 و چرخ کوریتس به ابعاد 5/93 سانتیمتر قطر با سرعت rpm 4250 بود که دمای ورودی به توربین حدود 560اندازهگیری شد و راندمان آن در حدود 3% بود. H.Holzwarth اولین توربین گاز با بهره اقتصادی بالا را طراحی کرد، که در آن از سیکل احتراق بدون پیشتراکم استفاده میشد و قسمت اصلی یک ماشین دوار با تراکم متناوب بود.
همچنین Stanford سال 1919 یک توربین گاز که دارای سوپر شارژر بود، ساخت که در هواپیما نیز از آن استفاده شد. اولین توربین گازی که برای تولید قدرت مورد استفاده قرار گرفت بهوسیله Brown Boveri ساخته شد. وی از یک توربین گاز برای راندن هواپیما استفاده کرد. همچنین در سال 1939 م، وی یک توربین گاز با خروجی MW 4 ساخت که بر اساس سیکل ساده طراحی شده بود و کارکرد پایینی داشت. این توربین تنها به مدت 1200 ساعت مورد بهرهبرداری قرارگرفت و عیوب مکانیکی فراوان داشت . از جمله اصلاحات وی برروی توربین ، بالا بردن راندمان آن به میزان 18% بود.
در انگلستان گروهی به سرپرستی Whittle در سال 1936 م یک کمپرسور سانتریفوژتک مرحلهای با ورودی دوطرفه و یک توربین تک مرحلهای کوپل شده به آن را به همراه یک اتاق طراحی کردند. اما با تست این موتور نتایج چندان راضیکنندهای بهدست نیامد. در سال 1935م در آلمان شخصی بهنام Hans Von یک توربوجت با کمپرسور سانتریفوژ ساخت که از مزایای خوبی نسبت به نمونههای قبلی برخوردار بود. در آمریکا کمپانیAlis Chalmers اصلاحات فراوانی برروی راندمان توربینهای گاز و کمپرسورها انجام داد و راندمان کمپرسور را به 70% - 65% و راندمان توربین را به 65% -60% رسانید.
در سال 1941م کمپانی British Wellond یک توربوجت ساخت که در هواپیما مورد استفاده قرار گرفت . این توربوجت با آب خنککاری میشد. در سال 1942م کمپانی German Jumo یک توربوجت ساخت که در جنگ جهانی دوم نیز از آن استفاده شد. در این سالها استفاده از موتور توربوجت برای هواپیماها رشد فزایندهای به خود گرفت و هواپیماهای جنگی بسیاری در آمریکا، آلمان و انگلیس ساخته شد. در سال 1941م در سوئیس از یک توربین گاز برای راهاندازی لوکوموتیو استفاده شد که دارای قدرت 1700 اسب بخار و راندمان 4/18% به همراه بازیاب حرارتی بود.
در سال 1950م کمپانی Rovet Car از توربین گاز در اتومبیلها استفاده کرد که شامل کمپرسور سانتریفوژ، توربین تکمرحلهای جهت گرداندن کمپرسور و توربین قدرت جداگانه بود که از مبدل حرارتی نیز در آن استفاده شد. در سال 1962م کمپانی General Motors یک توربین گاز به هماه بازیاب ساخت که مصرف سوخت آن نسبت به نمونه مشابه 36% کاهش داشت .
در سال 1979م با توافق بین سازندگان بزرگ توربین گاز، استانداردی جهت کاهش میزان NOx وCO دود خروجی ازتوربین گاز نوشته شد . در خلال سالهای بعد تغییرات فراوانی در نوع سوخت، متریال روشهای خنککاری و کاهش نویز و سر و صدا بهوسیله شرکت NASA صورت گرفت.
در 15 سال گذشته توربین گاز، خدمات فزآیندهای را در صنعت و کاربردهای پتروشیمی در سراسر جهان ارائه داده است. انسجام ، وزن کم و امکان کاربرد سوخت چندگانه موجب استفاده از توربین گاز در سکوهای دریایی نیز شدهاست .
امروزه توربینهای گازی وجود دارند که با گاز طبیعی ، سوخت دیزل ، نفت ،متان ، گازهای حرارتی ارزش پایین ، نفت گاز تقطیرشده و حتی فضولات کار میکنند و روز به روز تلاشها در جهت تکمیل و اصلاح عملکرد آن ادامه دارد.
1-2- مقایسه نیروگاه گازی با نیروگاههای دیگر
شکل (1-2) مقایسه میزان حرارت در چهار نمونه سیکل داده شده را نشان میدهد.
باتوجه به شکل (1-2) بدیهی است که هرچه درجه حرارت توربین افزایش مییابد میزان حرارت بیشتر جلب توجه میکند.
بعضی از عوامل قابل ملاحظه در تصمیمگیری برای انتخاب نوع نیروگاه که متناسب با نیازهای موجود باشند، عبارتند از:
هزینه سرمایهگذاری
زمان لازم از برنامهریزی و طراحل تا اتمام کار هزینههای تعمیراتی و هزینههای سوخت.
توربین گاز کمترین هزینه تعمیراتی و سرمایهگذاری را دارد. همچنین سریعتر از هر نوع نیروگاه دیگری اتمام مییابد و به مرحله بهرهبرداری میرسد.
از معایب آن میتوان به اتلاف حرارتی زیاد اشاره کرد
طراحی هر توربین گاز باید در برگیرنده معیارهای اساسی براساس ملاحظات بهرهبرداری باشد. بعضی از معیارهای عمده عبارتند از :
راندمان بالا
قابلیت اطمینان بالا و در نتیجه قابلیت دسترسی بالا
سهولت سرویس
سهولت نصب و تست
تطابق با استانداردهای مربوط به شرایط محیط
ترکیب سیستمهای کمکی و کنترل که در نتیجه درجه قابلیت اطمینان بالایی را بهدست میدهند.
قابلیت انعطاف در تطابق با سرویسها و نیز سوختهای مختلف