لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 50
1-1-تیریستور (یا یکسو کننده قابل کنترل p-n-p-n )
تیریستور یک وسیله نیمه هادی چهار لایه سه اتصالی با سه خروجی است و از لایه های نوع p و n سیلیکونی که به طور متناوب قرار گرفته اند ساخته شده اند .. ناحیه p انتهایی آند ، ناحیه n انتهای کاتد و ناحیه p داخلی دریچه یا گیت است . آند از طریق مدار به طور سری به کاتد وصل می شود . این وسیله اساساً یک کلید است و همواره تا زمانی که به پایانه های آند و دریچه ولتاژ مثبت مناسبی به کاتد اعمال نشده است در حالت قطع (حالت ولتاژ مسدود کننده ) باقی می ماند و امپدانس بینهایتی از خود نشان خواهد داد . در حالت وصل و عبور جریان بدون احتیاج به علامت (یا ولتاژ) بیشتری روی دریچه به عبور جریان ادامه خواهد داد . در این حالت به طور ایده آل هیچ امپدانسی در مسیر جریان از خود نشان نمی دهد . برای قطع کلید و یا برگرداندن تیریستور به حالت خاموشی بایستی روی دریچه علامت و یا ولتاژی نباشد و جریان در مسیر آند به کاتد به صفر تقلیل یابد . تیریستور عبور جریان را فقط در یک جهت امکان پذیر می سازد .
اگر به پایانه های تیریستور ولتاژ بایاس خارجی اعمال نشود ، حاملهای اکثریت در هر لایه تا زمانی که ولتاژ الکتروستاتیکی داخلی به وجود آمده از انتشار بیشتر حاملها جلوگیری کند ، منتشر می شوند . اما بعضی از حاملهای اکثریت انرژی کافی جهت عبور از سد تولید شده توسط میدان الکتریکی ترمزکن هر اتصال را دارد . این حاملها پس از عبور ، تبدیل به حاملهای اقلیت می شوند و می توانند با حاملهای اکثریت ترکیب شوند . حاملهای اقلیت هر لایه نیز می توانند توسط میدان الکتریکی ثابتی در هر یک از اتصالها شتابدار شوند ، ولی چون در این حالت (از خارج ولتاژی اعمال نمی شود) مدار خارجی وجود ندارد مجموع جریانهای حاملهای اقلیت و اکثریت بایستی صفر شود .
حال اگر یک ولتاژ بایاس با یک مدار خارجی برای حمل جریانهای داخلی منظور شود ، این جریان ها شامل قسمتهای زیر خواهند بود.
جریان ناشی از :
1-عبور حاملهای اکثریت (حفره ها ) از اتصال
2-عبور حاملهای اقلیت از اتصال
3-حفره های تزریق شده به اتصال که از طریق ناحیه n اشاعه می یابند اتصال را قطع می کند .
4-حاملهای اقلیت از اتصال که از طریق ناحیه n اشاعه یافته و از اتصال عبور کرده است . عیناً نیز از شش قسمت و از چهار قسمت تشکیل خواهد یافت .
برای تشریح اصول کار تیریستور از دو روش متشابه مدلهای دیودی و یا دو ترانزیستوری می توان استفاده کرد .
(الف) مدلهای دیودی تیریستور
تیریستور که یک نیمه هادی سه اتصالی ، شبیه سه دیودی است که به طور سری اتصال یافته
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 30
1-1-تیریستور (یا یکسو کننده قابل کنترل p-n-p-n )
تیریستور یک وسیله نیمه هادی چهار لایه سه اتصالی با سه خروجی است و از لایه های نوع p و n سیلیکونی که به طور متناوب قرار گرفته اند ساخته شده اند .. ناحیه p انتهایی آند ، ناحیه n انتهای کاتد و ناحیه p داخلی دریچه یا گیت است . آند از طریق مدار به طور سری به کاتد وصل می شود . این وسیله اساساً یک کلید است و همواره تا زمانی که به پایانه های آند و دریچه ولتاژ مثبت مناسبی به کاتد اعمال نشده است در حالت قطع (حالت ولتاژ مسدود کننده ) باقی می ماند و امپدانس بینهایتی از خود نشان خواهد داد . در حالت وصل و عبور جریان بدون احتیاج به علامت (یا ولتاژ) بیشتری روی دریچه به عبور جریان ادامه خواهد داد . در این حالت به طور ایده آل هیچ امپدانسی در مسیر جریان از خود نشان نمی دهد . برای قطع کلید و یا برگرداندن تیریستور به حالت خاموشی بایستی روی دریچه علامت و یا ولتاژی نباشد و جریان در مسیر آند به کاتد به صفر تقلیل یابد . تیریستور عبور جریان را فقط در یک جهت امکان پذیر می سازد .
اگر به پایانه های تیریستور ولتاژ بایاس خارجی اعمال نشود ، حاملهای اکثریت در هر لایه تا زمانی که ولتاژ الکتروستاتیکی داخلی به وجود آمده از انتشار بیشتر حاملها جلوگیری کند ، منتشر می شوند . اما بعضی از حاملهای اکثریت انرژی کافی جهت عبور از سد تولید شده توسط میدان الکتریکی ترمزکن هر اتصال را دارد . این حاملها پس از عبور ، تبدیل به حاملهای اقلیت می شوند و می توانند با حاملهای اکثریت ترکیب شوند . حاملهای اقلیت هر لایه نیز می توانند توسط میدان الکتریکی ثابتی در هر یک از اتصالها شتابدار شوند ، ولی چون در این حالت (از خارج ولتاژی اعمال نمی شود) مدار خارجی وجود ندارد مجموع جریانهای حاملهای اقلیت و اکثریت بایستی صفر شود .
حال اگر یک ولتاژ بایاس با یک مدار خارجی برای حمل جریانهای داخلی منظور شود ، این جریان ها شامل قسمتهای زیر خواهند بود.
جریان ناشی از :
1-عبور حاملهای اکثریت (حفره ها ) از اتصال
2-عبور حاملهای اقلیت از اتصال
3-حفره های تزریق شده به اتصال که از طریق ناحیه n اشاعه می یابند اتصال را قطع می کند .
4-حاملهای اقلیت از اتصال که از طریق ناحیه n اشاعه یافته و از اتصال عبور کرده است . عیناً نیز از شش قسمت و از چهار قسمت تشکیل خواهد یافت .
برای تشریح اصول کار تیریستور از دو روش متشابه مدلهای دیودی و یا دو ترانزیستوری می توان استفاده کرد .
(الف) مدلهای دیودی تیریستور
تیریستور که یک نیمه هادی سه اتصالی ، شبیه سه دیودی است که به طور سری اتصال یافته اند . اگر دریچه بایاس نشود ولی به دو سر آند و کاتد ولتاژ بایاسی اعمال شود این ولتاژ هر قطبیتی که داشته باشد همواره حداقل یک اتصال معکوس بایاس شده ، وجود خواهد داشت تا از هدایت تیریستور جلوگیری کند .
اگر کاتد توسط ولتاژ منبع تغذیه (نسبت به آند ) منفی شود و دریچه نسبت به کاتد به طور مثبت بایاس شود لایه p دریچه توسط کاتد از الکترون لبریز می شود و خاصیت خودش را به عنوان لایه p از دست می دهد . در نتیجه تیریستور به دیود هدایتی معادلی تبدیل می شود .
(ب)مدل دو ترانزیستوری تیریستور
پولک p-n-p-n را می توان به صورت دو ترانزیستور با دو ناحیه پایه در نظر گرفت . کلکتور ترانزیستور n-p-n ، جریان محرکی برای پایه ترانزیستور p-n-p که جریان کلکتورش اضافه جریان دریچه به مثابه جریان محرک پایه ترانزیستور n-p-n است ، مهیا کند .
برای روشن کردن تریستور جریان دریچه به جزء خیلی حساس ترانزیستور n-p-n از اتصال p-n-p-n اعمال می شود . اولین ده درصد افزایش جریان آند ، در اصل جریان کلکتور ترانزیستور n-p-n است . پایه n ترانزیستور p-n-p توسط جریان کلکتور ترانزیستور n-p-n باردار می شود . در نتیجه فیدبک مثبتی توسط جریان کلکتور ترانزیستور p-n-p به منظور افزایش بارهای ایجاد شده در پایه p ترانزیستور n-p-n دایر می شود . به این ترتیب جریان تیریستور شروع به افزایش می کند ، به سرعت به مقدار اشباع می رسد و جریان تیریستور فقط توسط امپدانس بار محدود می شود .
بهتر است به منظور تشریح مشخصه و خواص تیریستور حالتهای مختلف آن را (از نظر بایاس ) مورد بررسی قرار دهیم .
1-2-مشخصات تیریستور
برای اینکه بتوان وسیله های الکترونیکی را با کیفیت کافی مورد استفاده قرار داد و از آنها محافظت کرد بایستی مشخصات و خواص آنها کاملا معلوم شوند . مشخصات تیریستور را می توان با ملاحظه سه حالت مختلف اصلی این وسیله تعیین کرد :
شرایط بایاس معکوس
بایاس مستقیم و مسدود
بایاس مستقیم و هدایت
1-2-1-بایاس معکوس تیریستور (کاتد نسبت به آند مثبت)
در این حالت اتصالات اول و سوم به طور معکوس اتصال دوم به طور مستقیم بایاس می شوند و درست مثل یک اتصال p-n مقدار کمی جریان نشتی از کاتد به آند عبور خواهد کرد .
اعمال ولتاژ محرک مثبتی به دریچه تیریستور در حالی که آند هنوز منفی است سبب می شود که تیریستور رفتاری شبیه ترانزیستور داشته باشد و جریان معکوس نشتی آند تا مقدار قابل ملاحظه مقایسه ای با جریان دریچه افزایش یابد ، از این رهگذر اتلاف قدرت قابل ملاحظه ای در تیریستور وقوع خواهد یافت . زیاد گرم شدن اتصال می تواند سبب افسار گسیختگی حرارتی شود .
جریان آند با جریان اشباع معکوس اتصال اول به اضافه کسری از
جریان دریچه برابر است . جریان اشباع بستگی به درجه حرارت دارد . بنابراین بالا رفتن درجه حرارت اتصال باعث افزایش جریان اشباع می شود که آن نیز موجب گرم شدن بیشتر اتصال می شود . ولتاژ بیشینه دریچه در شرایط بایاس معکوس غالباً توسط سازندگان برای محدود کردن اثر حرارت معین می شود .
افزایش ولتاژ بایاس معکوس باعث پهن شدن لایه های تهی اتصالات اول و سوم می شود . اتصال اول معمولاً بخش اعظم ولتاژ آند به کاتد را
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 26
کنترل موتورهای DC با یکسو کنندههای قابل کنترل
محرکههای dc که با یکسو کنندههای قابل کنترل تغذیه میشوند، بطور گسترده در کاربردهایی که به یک محدوده وسیع کنترل سرعت و یا راهاندازیهای مکرر، ترمز، وتعویض جهت چرخش نیاز دارند بکار برده میشوند. از جمله میتوان به کاربردهایی نظیر غلطکهای نورد در صنایع فلزی، غلطکهای صنایع کاغذ، صنایع چاپ، ماشینهای حفاری معادن وماشینهای ابزار اشاره نمود.
نمودار خطی یک محرکه موتور dc تحریک جداگانه تغذیه شده با یک یکسو کننده قابل کنترل در شکل 2-1 نشان داده شده است. حداکثر ولتاژ خروجی یکسو کننده در شرایط جریان پیوسته بایستی برابر با ولتاژ نامی آرمیچر موتور باشد. اگر مقدار ولتاژ منبع بقدری باشد که این شرط برقرار شود، یکسو کننده بطور مستقیم به منبع متصل میشود، در غیر اینصورت استفاده از ترانسفورمر با نسبت تبدیل مناسب بین منبع ac و یکسو کننده الزامی است.
گاهی اوقات بمنظور کاهش اعوجاج در جریان موتور از یک فیلتر اندوکتانسی بین یکسو کننده و آرمیچر موتور استفاده میشود. این امر باعث بهبود عملکرد موتور میشود. معمولاٌ سیمپیچی تحریک توسط یک ترانسفورمر و یک پل دیودی به همان منبع تغذیه کننده موتور متصل میشود. نسبت تبدیل ترانسفورمر به نحوی انتخاب میشود تا ولتاژ
کل 2-1 نمودار خطی یک محرکه موتور dc تغذیه شده با یکسو قابل کنترل
تحریک برابر با مقدار نامی ولتاژ آن باشد. در مواردی که کنترل جریان تحریک ضروری باشد پل دیودی با یک پل یکسو کننده قابل کنترل جایگزین میشود.
2-1 مدارهای یکسوکننده قابل کنترل
مدارهای یکسو کننده متنوعی وجود دارند، که برخی از منبع تکفاز و برخی از منبع سه فاز تغذیه میشوند. برای کنترل موتور، مدارهای یکسو کننده قابل کنترل به دو دسته یکسو کنندههای تمام کنترل شده و نیمه کنترل شده تقسیم میشوند. برخی از یکسو کنندههای تمام کنترل شده در شکل 2-2 و برخی از یکسو کنندههای نیمه کنترل شده در شکل 2-3 نشان داده شدهاند. از یکسو کنندههای قابل کنترل تکفاز تا قدرت 10 کیلووات و در حالات خاص تا 50 کیلووات استفاده میشود. برای قدرتهای بالاتر، از یکسو کنندههای قابل کنترل سه فاز استفاده میشود. در برخی کاربردها که فقط منبع تکفاز در دسترس باشد، همچون خطوط تغذیه قطارهای الکتریکی، از یکسو کنندههای تکفاز قابل کنترل تا قدرتهای چند هزار کیلووات نیز استفاده میشود. برای دیگر مدارها، در صورتیکه مقدار ولتاژ نامی موتور با ولتاژ منبع ac سازگار نباشد استفاده از یک ترانسفورمر ضروری میباشد. این مزایا موجب برتری یکسوکننده شکل2-2 الف بر یکسو کننده شکل 2-2 ب در موتورهای ولتاژ پائین شده است. اما در مقابل این مدار عیب مهمی هم دارد و آن استفاده از ترانسفورمر حجیمتر است زیرا در هر لحظه فقط از نصف سیمپیچی ثانویه جریان عبور میکند. برای ولتاژهای نامی عادی، و بخصوص هنگامیکه ولتاژ نامی موتور و ولتاژ منبع ac سازگار هستند مدار شکل 2-2 ب ترجیح داده میشود.
در بخشهای بعدی این فصل نشان داده خواهد شد که افزایش تعداد پالس مدار یکسوکننده باعث بهبود مشخصههای محرکه میشود. عملکرد شش پالسه با بکارگیری یکسو کننده پل سه فازتمام کنترل شده شکل 2-2 ج تحقق مییابد. در مواردی که جهت تطبیق ولتاژ موتور وولتاژ خروجی یکسو کننده استفاده از ترانسفورمر ضروری باشد، سیمپیچیهای اولیه و ثانویه ترانسورمر بصورت مثلث بسته میشوند بنحویکه هارمونیکهای مضرب 3 جریان مغناطیسی میتوانند وجود داشته باشند. در شکل 2-2د آرایش دیگری از یک یکسو کننده کنترل شده شش پالسه نشان داده شده است. این مدار از اتصال موازی دو یکسو کننده کنترل شده سه پالسه همراه با یک راکتور بین فاز بدست آمده است. عملکرد بصورت دوازه پالسی از اتصال موازی دو یکسو کننده شش پالسه شکل 2-2د از طریق یک راکتور بین فاز بدست میآید. این دو یکسو کننده توسط دومجموعه ترانسفورمر سه فاز که اولیههای آنها بترتیب بصورت ستاره و مثلث بسته شدهاند، تغذیه میشوند. با اتصال سری دو یکسو کننده کنترل شده شش پالسه شکل 2-2ج نیز میتوان به عملکرد دوازده پالسه دست یافت. برای این منظور لازمست که ترانسفورمر تغذیه کننده یکسو کننده دارای دو مجموعه ثانویه- یکی با اتصال ستاره و دیگری با اتصال مثلث باشد. در تمام این یکسو کنندههای کنترل شده سه فاز، هر تریستور برای 120 درجه از هر سیکل هدایت میکند.
نماد مداری برای یکسو کنندههای تمام کنترل شده در شکل 2-3 الف نشان داده شده است. و به ترتیب بیانگر مقادیر متوسط ولتاژ و جریان خروجی مبدل هستند. در شکل 2-3ب تغییرات بر حسب زاویه آتش a ، با فرض حالت هدایت پیوسته نشان داده شده است. حالت هدایت پیوسته کار موتور dc به حالتی اطلاق میشود که جریان آرمیچر بطور دائمی برقرار باشد- یعنی اینکه، حتی برای یک مدت زمان محدود صفر نمیشود.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 30
1-1-تیریستور (یا یکسو کننده قابل کنترل p-n-p-n )
تیریستور یک وسیله نیمه هادی چهار لایه سه اتصالی با سه خروجی است و از لایه های نوع p و n سیلیکونی که به طور متناوب قرار گرفته اند ساخته شده اند .. ناحیه p انتهایی آند ، ناحیه n انتهای کاتد و ناحیه p داخلی دریچه یا گیت است . آند از طریق مدار به طور سری به کاتد وصل می شود . این وسیله اساساً یک کلید است و همواره تا زمانی که به پایانه های آند و دریچه ولتاژ مثبت مناسبی به کاتد اعمال نشده است در حالت قطع (حالت ولتاژ مسدود کننده ) باقی می ماند و امپدانس بینهایتی از خود نشان خواهد داد . در حالت وصل و عبور جریان بدون احتیاج به علامت (یا ولتاژ) بیشتری روی دریچه به عبور جریان ادامه خواهد داد . در این حالت به طور ایده آل هیچ امپدانسی در مسیر جریان از خود نشان نمی دهد . برای قطع کلید و یا برگرداندن تیریستور به حالت خاموشی بایستی روی دریچه علامت و یا ولتاژی نباشد و جریان در مسیر آند به کاتد به صفر تقلیل یابد . تیریستور عبور جریان را فقط در یک جهت امکان پذیر می سازد .
اگر به پایانه های تیریستور ولتاژ بایاس خارجی اعمال نشود ، حاملهای اکثریت در هر لایه تا زمانی که ولتاژ الکتروستاتیکی داخلی به وجود آمده از انتشار بیشتر حاملها جلوگیری کند ، منتشر می شوند . اما بعضی از حاملهای اکثریت انرژی کافی جهت عبور از سد تولید شده توسط میدان الکتریکی ترمزکن هر اتصال را دارد . این حاملها پس از عبور ، تبدیل به حاملهای اقلیت می شوند و می توانند با حاملهای اکثریت ترکیب شوند . حاملهای اقلیت هر لایه نیز می توانند توسط میدان الکتریکی ثابتی در هر یک از اتصالها شتابدار شوند ، ولی چون در این حالت (از خارج ولتاژی اعمال نمی شود) مدار خارجی وجود ندارد مجموع جریانهای حاملهای اقلیت و اکثریت بایستی صفر شود .
حال اگر یک ولتاژ بایاس با یک مدار خارجی برای حمل جریانهای داخلی منظور شود ، این جریان ها شامل قسمتهای زیر خواهند بود.
جریان ناشی از :
1-عبور حاملهای اکثریت (حفره ها ) از اتصال
2-عبور حاملهای اقلیت از اتصال
3-حفره های تزریق شده به اتصال که از طریق ناحیه n اشاعه می یابند اتصال را قطع می کند .
4-حاملهای اقلیت از اتصال که از طریق ناحیه n اشاعه یافته و از اتصال عبور کرده است . عیناً نیز از شش قسمت و از چهار قسمت تشکیل خواهد یافت .
برای تشریح اصول کار تیریستور از دو روش متشابه مدلهای دیودی و یا دو ترانزیستوری می توان استفاده کرد .
(الف) مدلهای دیودی تیریستور
تیریستور که یک نیمه هادی سه اتصالی ، شبیه سه دیودی است که به طور سری اتصال یافته اند . اگر دریچه بایاس نشود ولی به دو سر آند و کاتد ولتاژ بایاسی اعمال شود این ولتاژ هر قطبیتی که داشته باشد همواره حداقل یک اتصال معکوس بایاس شده ، وجود خواهد داشت تا از هدایت تیریستور جلوگیری کند .
اگر کاتد توسط ولتاژ منبع تغذیه (نسبت به آند ) منفی شود و دریچه نسبت به کاتد به طور مثبت بایاس شود لایه p دریچه توسط کاتد از الکترون لبریز می شود و خاصیت خودش را به عنوان لایه p از دست می دهد . در نتیجه تیریستور به دیود هدایتی معادلی تبدیل می شود .
(ب)مدل دو ترانزیستوری تیریستور
پولک p-n-p-n را می توان به صورت دو ترانزیستور با دو ناحیه پایه در نظر گرفت . کلکتور ترانزیستور n-p-n ، جریان محرکی برای پایه ترانزیستور p-n-p که جریان کلکتورش اضافه جریان دریچه به مثابه جریان محرک پایه ترانزیستور n-p-n است ، مهیا کند .
برای روشن کردن تریستور جریان دریچه به جزء خیلی حساس ترانزیستور n-p-n از اتصال p-n-p-n اعمال می شود . اولین ده درصد افزایش جریان آند ، در اصل جریان کلکتور ترانزیستور n-p-n است . پایه n ترانزیستور p-n-p توسط جریان کلکتور ترانزیستور n-p-n باردار می شود . در نتیجه فیدبک مثبتی توسط جریان کلکتور ترانزیستور p-n-p به منظور افزایش بارهای ایجاد شده در پایه p ترانزیستور n-p-n دایر می شود . به این ترتیب جریان تیریستور شروع به افزایش می کند ، به سرعت به مقدار اشباع می رسد و جریان تیریستور فقط توسط امپدانس بار محدود می شود .
بهتر است به منظور تشریح مشخصه و خواص تیریستور حالتهای مختلف آن را (از نظر بایاس ) مورد بررسی قرار دهیم .
1-2-مشخصات تیریستور
برای اینکه بتوان وسیله های الکترونیکی را با کیفیت کافی مورد استفاده قرار داد و از آنها محافظت کرد بایستی مشخصات و خواص آنها کاملا معلوم شوند . مشخصات تیریستور را می توان با ملاحظه سه حالت مختلف اصلی این وسیله تعیین کرد :
شرایط بایاس معکوس
بایاس مستقیم و مسدود
بایاس مستقیم و هدایت
1-2-1-بایاس معکوس تیریستور (کاتد نسبت به آند مثبت)
در این حالت اتصالات اول و سوم به طور معکوس اتصال دوم به طور مستقیم بایاس می شوند و درست مثل یک اتصال p-n مقدار کمی جریان نشتی از کاتد به آند عبور خواهد کرد .
اعمال ولتاژ محرک مثبتی به دریچه تیریستور در حالی که آند هنوز منفی است سبب می شود که تیریستور رفتاری شبیه ترانزیستور داشته باشد و جریان معکوس نشتی آند تا مقدار قابل ملاحظه مقایسه ای با جریان دریچه افزایش یابد ، از این رهگذر اتلاف قدرت قابل ملاحظه ای در تیریستور وقوع خواهد یافت . زیاد گرم شدن اتصال می تواند سبب افسار گسیختگی حرارتی شود .
جریان آند با جریان اشباع معکوس اتصال اول به اضافه کسری از
جریان دریچه برابر است . جریان اشباع بستگی به درجه حرارت دارد . بنابراین بالا رفتن درجه حرارت اتصال باعث افزایش جریان اشباع می شود که آن نیز موجب گرم شدن بیشتر اتصال می شود . ولتاژ بیشینه دریچه در شرایط بایاس معکوس غالباً توسط سازندگان برای محدود کردن اثر حرارت معین می شود .
افزایش ولتاژ بایاس معکوس باعث پهن شدن لایه های تهی اتصالات اول و سوم می شود . اتصال اول معمولاً بخش اعظم ولتاژ آند به کاتد را
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 22
1-1-تیریستور (یا یکسو کننده قابل کنترل p-n-p-n )
تیریستور یک وسیله نیمه هادی چهار لایه سه اتصالی با سه خروجی است و از لایه های نوع p و n سیلیکونی که به طور متناوب قرار گرفته اند ساخته شده اند .. ناحیه p انتهایی آند ، ناحیه n انتهای کاتد و ناحیه p داخلی دریچه یا گیت است . آند از طریق مدار به طور سری به کاتد وصل می شود . این وسیله اساساً یک کلید است و همواره تا زمانی که به پایانه های آند و دریچه ولتاژ مثبت مناسبی به کاتد اعمال نشده است در حالت قطع (حالت ولتاژ مسدود کننده ) باقی می ماند و امپدانس بینهایتی از خود نشان خواهد داد . در حالت وصل و عبور جریان بدون احتیاج به علامت (یا ولتاژ) بیشتری روی دریچه به عبور جریان ادامه خواهد داد . در این حالت به طور ایده آل هیچ امپدانسی در مسیر جریان از خود نشان نمی دهد . برای قطع کلید و یا برگرداندن تیریستور به حالت خاموشی بایستی روی دریچه علامت و یا ولتاژی نباشد و جریان در مسیر آند به کاتد به صفر تقلیل یابد . تیریستور عبور جریان را فقط در یک جهت امکان پذیر می سازد .
اگر به پایانه های تیریستور ولتاژ بایاس خارجی اعمال نشود ، حاملهای اکثریت در هر لایه تا زمانی که ولتاژ الکتروستاتیکی داخلی به وجود آمده از انتشار بیشتر حاملها جلوگیری کند ، منتشر می شوند . اما بعضی از حاملهای اکثریت انرژی کافی جهت عبور از سد تولید شده توسط میدان الکتریکی ترمزکن هر اتصال را دارد . این حاملها پس از عبور ، تبدیل به حاملهای اقلیت می شوند و می توانند با حاملهای اکثریت ترکیب شوند . حاملهای اقلیت هر لایه نیز می توانند توسط میدان الکتریکی ثابتی در هر یک از اتصالها شتابدار شوند ، ولی چون در این حالت (از خارج ولتاژی اعمال نمی شود) مدار خارجی وجود ندارد مجموع جریانهای حاملهای اقلیت و اکثریت بایستی صفر شود .
حال اگر یک ولتاژ بایاس با یک مدار خارجی برای حمل جریانهای داخلی منظور شود ، این جریان ها شامل قسمتهای زیر خواهند بود.
جریان ناشی از :
1-عبور حاملهای اکثریت (حفره ها ) از اتصال
2-عبور حاملهای اقلیت از اتصال
3-حفره های تزریق شده به اتصال که از طریق ناحیه n اشاعه می یابند اتصال را قطع می کند .
4-حاملهای اقلیت از اتصال که از طریق ناحیه n اشاعه یافته و از اتصال عبور کرده است . عیناً نیز از شش قسمت و از چهار قسمت تشکیل خواهد یافت .
برای تشریح اصول کار تیریستور از دو روش متشابه مدلهای دیودی و یا دو ترانزیستوری می توان استفاده کرد .
(الف) مدلهای دیودی تیریستور
تیریستور که یک نیمه هادی سه اتصالی ، شبیه سه دیودی است که به طور سری اتصال یافته اند . اگر دریچه بایاس نشود ولی به دو سر آند و کاتد ولتاژ بایاسی اعمال شود این ولتاژ هر قطبیتی که داشته باشد همواره حداقل یک اتصال معکوس بایاس شده ، وجود خواهد داشت تا از هدایت تیریستور جلوگیری کند .
اگر کاتد توسط ولتاژ منبع تغذیه (نسبت به آند ) منفی شود و دریچه نسبت به کاتد به طور مثبت بایاس شود لایه p دریچه توسط کاتد از الکترون لبریز می شود و خاصیت خودش را به عنوان لایه p از دست می دهد . در نتیجه تیریستور به دیود هدایتی معادلی تبدیل می شود .
(ب)مدل دو ترانزیستوری تیریستور
پولک p-n-p-n را می توان به صورت دو ترانزیستور با دو ناحیه پایه در نظر گرفت . کلکتور ترانزیستور n-p-n ، جریان محرکی برای پایه ترانزیستور p-n-p که جریان کلکتورش اضافه جریان دریچه به مثابه جریان محرک پایه ترانزیستور n-p-n است ، مهیا کند .
برای روشن کردن تریستور جریان دریچه به جزء خیلی حساس ترانزیستور n-p-n از اتصال p-n-p-n اعمال می شود . اولین ده درصد افزایش جریان آند ، در اصل جریان کلکتور ترانزیستور n-p-n است . پایه n ترانزیستور p-n-p توسط جریان کلکتور ترانزیستور n-p-n باردار می شود . در نتیجه فیدبک مثبتی توسط جریان کلکتور ترانزیستور p-n-p به منظور افزایش بارهای ایجاد شده در پایه p ترانزیستور n-p-n دایر می شود . به این ترتیب جریان تیریستور شروع به افزایش می کند ، به سرعت به مقدار اشباع می رسد و جریان تیریستور فقط توسط امپدانس بار محدود می شود .
بهتر است به منظور تشریح مشخصه و خواص تیریستور حالتهای مختلف آن را (از نظر بایاس ) مورد بررسی قرار دهیم .
1-2-مشخصات تیریستور
برای اینکه بتوان وسیله های الکترونیکی را با کیفیت کافی مورد استفاده قرار داد و از آنها محافظت کرد بایستی مشخصات و خواص آنها کاملا معلوم شوند . مشخصات تیریستور را می توان با ملاحظه سه حالت مختلف اصلی این وسیله تعیین کرد :
شرایط بایاس معکوس
بایاس مستقیم و مسدود
بایاس مستقیم و هدایت
1-2-1-بایاس معکوس تیریستور (کاتد نسبت به آند مثبت)
در این حالت اتصالات اول و سوم به طور معکوس اتصال دوم به طور مستقیم بایاس می شوند و درست مثل یک اتصال p-n مقدار کمی جریان نشتی از کاتد به آند عبور خواهد کرد .
اعمال ولتاژ محرک مثبتی به دریچه تیریستور در حالی که آند هنوز منفی است سبب می شود که تیریستور رفتاری شبیه ترانزیستور داشته باشد و جریان معکوس نشتی آند تا مقدار قابل ملاحظه مقایسه ای با جریان دریچه افزایش یابد ، از این رهگذر اتلاف قدرت قابل ملاحظه ای در تیریستور وقوع خواهد یافت . زیاد گرم شدن اتصال می تواند سبب افسار گسیختگی حرارتی شود .
جریان آند با جریان اشباع معکوس اتصال اول به اضافه کسری از
جریان دریچه برابر است . جریان اشباع بستگی به درجه حرارت دارد . بنابراین بالا رفتن درجه حرارت اتصال باعث افزایش جریان اشباع می شود که آن نیز موجب گرم شدن بیشتر اتصال می شود . ولتاژ بیشینه دریچه در شرایط بایاس معکوس غالباً توسط سازندگان برای محدود کردن اثر حرارت معین می شود .
افزایش ولتاژ بایاس معکوس باعث پهن شدن لایه های تهی اتصالات اول و سوم می شود . اتصال اول معمولاً بخش اعظم ولتاژ آند به کاتد را مسدود می کند ، لذا منطقه تهی این اتصال غالباً پهن است . به خاطر اینکه ولتاژ مسیر سوراخ کنی توسط تماس لایه های تهی اتصالات و به وجود نیاید لایه n وسطی را کمی پهن می سازند .
1-3-2-تیریستور بایاس مستقیم و مسدود (آند نسبت به کاتد مثبت)
اتصالات اول و سوم بایاس مستقیم و اتصال دوم بایاس معکوس می شود . جریان آند در خلال مدتی که یک اتصال p-n بایاس معکوس وجود دارد ، خیلی کم است و مقدارش برابر با جریان اشباع اتصال دوم به اضافه قسمتی از جریان دریچه است . جریان دریچه در طول این شیوه عمل با این که خودش بایستی کوچک باشد جریان آند را افزایش می دهد .
1-2-3-تیریستور بایاس مستقیم و هدایت
چهار روش برای روشن کردن تیریستور وجود دارد و به محض اینکه هدایت شروع شد امپدانس صفر در مسیر عبور جریان از خود نشان می دهد . همان طوری که از مشخصه کلی ولتاژ جریان یک تریستور ، در طول زمانی که تریستور هدایت می کند افت ولتاژ بین آند و کاتد در حدود 1 تا 5/1 ولت است و اصولاً مستقل از جریان آند است . چهار روش راه اندازی تیریستور وجود دارد : 1) فعال سازی نوری 2) علائم الکتریکی 3)ولتاژ بایاس مستقیم با دامنه زیاد و 4)ولتاژ بایاس مستقیم با میزان صعود سریع وجود دارد . روش دوم ، یعنی راه اندازی توسط علائم الکتریکی مهمترین و معمول ترین روش است ، در حالی که آخرین روش به علت طبیعت مزاحمی که دارد قابل اجتناب است .
(الف) روشن کردن توسط نور