انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

تحقیق در مورد اعداد p

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 3 صفحه

 قسمتی از متن .doc : 

 

ارتباط بین کلاس های پیچیدگی "P و NP" یکی از مسائل حل نشده در علوم رایانه نظری است و به عنوان مهمترین مسئله این زمینه مطرح گردیده است.

سؤال P=NP؟ در واقع این پرسش را مطرح می نماید که: اگر همیشه به سادگی بتوان صحت یک راه‌حل را بررسی کرد، آیا پیدا کردن راه‌حل نیز می‌تواند به آن سادگی باشد؟ ( در زمان چندجمله‌ای به جواب رسید. )

به عنوان مثال مسئله جمع اعضای زیرمجموعه را در نظر بگیرید. این یک مثال از مسئله‌ای است که تحقیق درستی راه حل آن ساده است، اما باور بر این است ( اما اثبات نشده است ) که محاسبه جواب آن مشکل است. فرض کنید یک مجموعه از عداد صحیح داده شده است، آیا یک زیر مجموعه ناتهی از آن وجود دارد که مجموع اعضای آن ۰ شود؟ به عنوان مثال،آیا زیر مجموعه‌ای از مجموعه { ۲-، ۳-، ۱۵، ۱۴، ۷، ۱۰- } وجود دارد که مجموع اعضای آن صفر شود؟ پاسخ مثبت است زیرا زیرمجموعه { ۲-، ۳-، ۱۵، ۱۰- } وجود دارد که در شرط صدق می کند و تحقیق این که جواب درست است یا خیر تنها با انجام سه عمل جمع امکان پذیر است. اما پیدا کردن این مجموعه در آغاز کار، کمی وقت گیر است. به اطلاعاتی که برای تحقیق پاسخ مثبت به این دست سؤال ها مورد نیاز است، یک Certificate گفته می شود. با در اختیار داشتن این اطلاعات درست، تحقیق درست بودن پاسخ در مسئله ما، در زمان چندجمله‌ای امکان پذیر است. بنابر این، این مثال در کلاس NP قرار می گیرد.

پاسخ به پرسش P=NP مشخص خواهد کرد که آیا راه حل مسائلی مانند جمع اعضای زیرمجموعه به سادگی تحقیق درستی پاسخ آن هاست یا خیر. در صورتی که ثابت شود P≠NP، آنگاه می توان نتیجه گرفت که بعضی مسائل وجود دارند که به صورت ذاتی، یافتن پاسخ آنها، "سخت تر" از تحقیق درستی پاسخ است.

مؤسسه ریاضیات Clay، جایزه یک میلیون دلاری برای اولین اثبات درست این مسئله تعیین کرده است.[۱]

مفهوم مسئله

ارتباط بین کلاس های پیچیدگی P و NP در نظریه پیچیدگی محاسباتی -بخشی از نظریه محاسبات که به بررسی منابع مورد نیاز در زمان محاسبه جواب یک مسئله می پردازد- مطالعه می شود. مهمترین منابع یکی زمان (مراحل یا گام های مورد نیاز برای دستیابی به جواب) و دیگری فضا (حافظه مورد نیاز برای حل مسئله) است.

در آنالیزهایی شبیه به این، یک مدل از رایانه‌ای که باید بر طبق آن، زمان محاسبه شود مورد نیاز است. به طور معمول، این مدل ها فرض می کنند که رایانه، "فطعی" (به این مفهوم که به ازای یک حالت معین و برای تمامی ورودی ها، رایانه تنها می تواند یک عمل ممکن انجام دهد) و "ترتیبی" (به این معنی که عملی را بعد از عمل دیگر انجام می دهد) است.

در این نظریه، کلاس P شامل تمام مسئله‌های تصمیم گیری است -در زیر تعریف شده- که پاسخ به آن ها بر روی یک ماشین قطعی ترتیبی، در زمان چندجمله‌ای به ازای ورودی، ممکن باشد؛ کلاس NP شامل تمام مسئله‌های تصمیم گیری است که پاسخ های مثبت آن ها می تواند در زمان چند جمله‌ای با اطلاعات درست، تحقیق شود و یا بطور معادل، پاسخ های آن ها در زمان چندجمله‌ای بر روی یک ماشین غیر قطعی، یافت شود.[۲]

با این تعاریف، مهمترین سؤال این است که رابطه این دو کلاس چگونه است؟ آیا P=NP؟

در یک نظرسنجی در سال ۲۰۰۲ از ۱۰۰ محقق، ۶۱ نفر به این پرسش پاسخ منفی دادند، ۹ نفر پاسخ مثبت و ۲۲ نفر هنوز مطمئن نبودند. ۸ نفر هم معتقد بودند که شاید سؤال خارج از اصول موضوعه پذیرفته شده کنونی باشد بنابر این رد و یا اثبات آن غیر ممکن است.[۳]

تعریف های رسمی برای کلاس های P و NP

تعریف مسئله تصمیم گیری: مسئله‌ای که یک رشته به عنوان ورودی دریافت کرده و پاسخ "بله" یا "خیر" می دهد.اگر یک الگوریتم وجود داشته باشد (یک ماشین تورینگ و یا یک برنامه رایانه‌ای با حافظه نامتناهی) که قادر باشد به ازای هر ورودی به طول n در حداکثر مرحله که k و c اعداد ثابتی مستقل از طول ورودی هستند، جواب درست بدهد آنگاه می گوییم مسئله می تواند در زمان چندجمله‌ای حل شود و آن را در کلاس P قرار می دهیم.



خرید و دانلود تحقیق در مورد اعداد p


تحقیق در مورد اعداد p

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 3 صفحه

 قسمتی از متن .doc : 

 

ارتباط بین کلاس های پیچیدگی "P و NP" یکی از مسائل حل نشده در علوم رایانه نظری است و به عنوان مهمترین مسئله این زمینه مطرح گردیده است.

سؤال P=NP؟ در واقع این پرسش را مطرح می نماید که: اگر همیشه به سادگی بتوان صحت یک راه‌حل را بررسی کرد، آیا پیدا کردن راه‌حل نیز می‌تواند به آن سادگی باشد؟ ( در زمان چندجمله‌ای به جواب رسید. )

به عنوان مثال مسئله جمع اعضای زیرمجموعه را در نظر بگیرید. این یک مثال از مسئله‌ای است که تحقیق درستی راه حل آن ساده است، اما باور بر این است ( اما اثبات نشده است ) که محاسبه جواب آن مشکل است. فرض کنید یک مجموعه از عداد صحیح داده شده است، آیا یک زیر مجموعه ناتهی از آن وجود دارد که مجموع اعضای آن ۰ شود؟ به عنوان مثال،آیا زیر مجموعه‌ای از مجموعه { ۲-، ۳-، ۱۵، ۱۴، ۷، ۱۰- } وجود دارد که مجموع اعضای آن صفر شود؟ پاسخ مثبت است زیرا زیرمجموعه { ۲-، ۳-، ۱۵، ۱۰- } وجود دارد که در شرط صدق می کند و تحقیق این که جواب درست است یا خیر تنها با انجام سه عمل جمع امکان پذیر است. اما پیدا کردن این مجموعه در آغاز کار، کمی وقت گیر است. به اطلاعاتی که برای تحقیق پاسخ مثبت به این دست سؤال ها مورد نیاز است، یک Certificate گفته می شود. با در اختیار داشتن این اطلاعات درست، تحقیق درست بودن پاسخ در مسئله ما، در زمان چندجمله‌ای امکان پذیر است. بنابر این، این مثال در کلاس NP قرار می گیرد.

پاسخ به پرسش P=NP مشخص خواهد کرد که آیا راه حل مسائلی مانند جمع اعضای زیرمجموعه به سادگی تحقیق درستی پاسخ آن هاست یا خیر. در صورتی که ثابت شود P≠NP، آنگاه می توان نتیجه گرفت که بعضی مسائل وجود دارند که به صورت ذاتی، یافتن پاسخ آنها، "سخت تر" از تحقیق درستی پاسخ است.

مؤسسه ریاضیات Clay، جایزه یک میلیون دلاری برای اولین اثبات درست این مسئله تعیین کرده است.[۱]

مفهوم مسئله

ارتباط بین کلاس های پیچیدگی P و NP در نظریه پیچیدگی محاسباتی -بخشی از نظریه محاسبات که به بررسی منابع مورد نیاز در زمان محاسبه جواب یک مسئله می پردازد- مطالعه می شود. مهمترین منابع یکی زمان (مراحل یا گام های مورد نیاز برای دستیابی به جواب) و دیگری فضا (حافظه مورد نیاز برای حل مسئله) است.

در آنالیزهایی شبیه به این، یک مدل از رایانه‌ای که باید بر طبق آن، زمان محاسبه شود مورد نیاز است. به طور معمول، این مدل ها فرض می کنند که رایانه، "فطعی" (به این مفهوم که به ازای یک حالت معین و برای تمامی ورودی ها، رایانه تنها می تواند یک عمل ممکن انجام دهد) و "ترتیبی" (به این معنی که عملی را بعد از عمل دیگر انجام می دهد) است.

در این نظریه، کلاس P شامل تمام مسئله‌های تصمیم گیری است -در زیر تعریف شده- که پاسخ به آن ها بر روی یک ماشین قطعی ترتیبی، در زمان چندجمله‌ای به ازای ورودی، ممکن باشد؛ کلاس NP شامل تمام مسئله‌های تصمیم گیری است که پاسخ های مثبت آن ها می تواند در زمان چند جمله‌ای با اطلاعات درست، تحقیق شود و یا بطور معادل، پاسخ های آن ها در زمان چندجمله‌ای بر روی یک ماشین غیر قطعی، یافت شود.[۲]

با این تعاریف، مهمترین سؤال این است که رابطه این دو کلاس چگونه است؟ آیا P=NP؟

در یک نظرسنجی در سال ۲۰۰۲ از ۱۰۰ محقق، ۶۱ نفر به این پرسش پاسخ منفی دادند، ۹ نفر پاسخ مثبت و ۲۲ نفر هنوز مطمئن نبودند. ۸ نفر هم معتقد بودند که شاید سؤال خارج از اصول موضوعه پذیرفته شده کنونی باشد بنابر این رد و یا اثبات آن غیر ممکن است.[۳]

تعریف های رسمی برای کلاس های P و NP

تعریف مسئله تصمیم گیری: مسئله‌ای که یک رشته به عنوان ورودی دریافت کرده و پاسخ "بله" یا "خیر" می دهد.اگر یک الگوریتم وجود داشته باشد (یک ماشین تورینگ و یا یک برنامه رایانه‌ای با حافظه نامتناهی) که قادر باشد به ازای هر ورودی به طول n در حداکثر مرحله که k و c اعداد ثابتی مستقل از طول ورودی هستند، جواب درست بدهد آنگاه می گوییم مسئله می تواند در زمان چندجمله‌ای حل شود و آن را در کلاس P قرار می دهیم.



خرید و دانلود تحقیق در مورد اعداد p


حل مساله بار 1 0 چند بعدی توسط سیستم‌های P به همراه ورودی و غشاء فعال 24 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 24

 

حل مساله بار 1-0 چند بعدی توسط سیستم‌های P به همراه ورودی و غشاء فعال:

خلاصه:

سیستم‌های غشایی از نظر زیستی مدل‌های تئوری محاسبه همسو و توزیع شده را فعال می‌کند. در این مقاله الگوریتم غشایی را نشان می‌دهیم تا به کمک آن مساله بار 1-0 چند بعدی را در زمانی خطی توسط سیستم‌های شناسنده P به همراه ورودی غشاهای فعال که از دو قسمت استفاده می‌کند، حل کند. این الگوریتم را می‌توان اصلاح کرد و از آن برای حل مساله برنامه‌نویسی عدد صحیح 1-0 عمومی استفاده کرد.

مقدمه:

سیستم‌های P، طبقه‌ای از ابزار محاسله همسوی توزیع شده یک نوع بیوشیمی هستند که در [4] معرفی شد و می‌توان آن را به عنوان معماری محاسبه کلی دانست که انواع مختلف اشیاء در آن قسمت توسط عملکردهای مختلف پردازش می‌شوند. از این دیدگاه مطرح می‌شود که پردازش‌های خاصی که در ساختار پیچیده موجودات زنده صورت می‌گیرد، به صورت محاسباتی درنظر گرفته می‌شوند.

از زمانی که Gh, Paun آن را مطرح کرد، دانشمندان کامپیوتر و بیولوژیست‌ها این زمینه را با نقطه نظرهای مختلف خود غنی‌سازی کرده‌اند. برای انگیزه و جزئیات توضیحات مربوط به مدل‌های متفاوت سیستم P لطفاً به [6/4] توجه کنید. تقسیم‌بندی غشایی (الهام شده از تقسیمات سلولی گفته شده در بیولوژی)، تنها راهی است که برای بدست آوردن فضای کاری ---- در زمان خطی بیشتر و بر اساس حل مسائل مشکل (عموماً مسائل تکمیل شده VP) در زمان چند جمله‌ای (اغلب به صورت خطی) بررسی شده است. جزئیات را می‌توان در [4.6.8] ببینید.

اخیراً مسائل کامل PSPACE به این روش مطرح شدند. در گفتگویی غیررسمی، در سیستم‌های P به همراه غشاء فعال می‌توانیم از 6 نوع قانون استفاده کنیم:

قوانین بازگشت چندگانه؛

قوانین مربوط به حل معرفی اشیاء در غشاءها؛

قوانین مربوط به ارسال اشیاء به بیرون از غشاء؛

قوانین مربطو به حل غشاء؛

قوانین مربوط به تقسیم غشاء اولیه؛

قوانین مربوط به تقسیم غشاء ثانویه.

در [10] Perez-Jimenez، مساله قابل راضی کننده‌ای را در زمان خطی با توجه به تعداد متغیرها و شروط فرمول‌گزاره‌ای توسط سیستم تشخیص دهنده P به همراه ورودی و به همراه غشاء فعال 2 قسمتی حل می‌کند. مساله قابل راضی شدن hard NP نیست، چون الگوریتم‌های تقریبی چند جمله‌ای وجود دارد که آن را حل می‌کند و این نمونه‌ای برای مساله بار 1-0 چند جمله‌ای به حساب نمی‌آید. در این مقاله به حل مساله بار 1-0 چند بعدی توسط سیستم P توجه کردیم.

مساله اصلی تکمیل NP می‌باشد و همچنین مساله بار 1-0 چندبعدی به درجه مساله تکمیل NP بستگی دارد. بنابراین این مساله در زمان چندجمله‌ای توسط سیستم‌های P با ورودی و با غشاء فعال که از تقسیم 2 استفاده می‌کند، حل خواهد شد. می‌توانیم این نوع محلول را با کمک کاهش مساله بار 1-0 چندبعدی برای مساله راضی شدن بدست آوریم تا آن سیستم P را که به حل مساله راضی شدن در زمان خطی می‌پردازیم، بکار بریم. همچنان این مساله قابل بحث است که چگونه می‌توان مساله NP را به مساله تکمیل شده NP دیگر بوسیله سیستم P ساده کرد.

در این مقاله مستقیماً الگوریتم غشایی را برای حل مساله بار 1-0 چندبعدی در زمان خطی توسط سیستم تشخیص دهنده P به همراه ورودی به همراه غشاء فعال که از تقسیم 2 استفاده می‌کند، ارائه می‌دهیم.در اینجا به طرحی از یک محدوده سیستم P توجه می‌کنیم که مساله بار 1-0 چندبعدی را حل می‌کند (نه به شکل بررسی رسمی الگورینتم غشایی)‌. همانطور که در بخش 4 گفته شد، استفاده از این الگوریتم اصلاح شده برای حل مساله برنامه‌نویسی عدد صحیح 1-0 کلی، کار آسانی است.

سیستم‌های P در الگوریتم در [5] تقریباً به طور یکسان به شکلی ساخته می‌شوند که برای هر نمونه از مساله قابل راضی شدن، یک سیستم P شکل می‌گیرد. در الگوریتم ما مربوط به مساله 0-1 چندبعدی، سیستم‌های P به طور یکسان شکل می‌گیرند. برای همه نمونه‌هایی که یک اندازه هستند، یک سیستم P طراحی می‌شود.

الگوریتم مربوط به مساله قابل راضی شدن در [5] از سیستم P با قوانین نوع (a)، (f)-(c) استفاده می‌کند و الگوریتم برای مساله راضی شدن در ‍]6] از سیستم‌های P با قوانین نوع (c)-(a) و (e) استفاده می‌کند. در اینجا برای حل مساله بار 1-0 چندبعدی از سیستم‌های P محدوتر استفاده می‌کنیم، یعنی سیستم P به همراه قوانین نوع (a)، (c) و (e).

مساله کلاسیک بار مورد خاصی از مساله بار 1-0 چندبعدی با یک بعد می‌باشد. تقریباٌ می‌توان الگوریتم غشایی را برای حل مساله بار کلاسیک [7]درنظر بگیریم. الگوریتم جدید ما نسبت به الگوریتم در [7] مراحل محاسبه کمتری دارد، بویژه در الگوریتم در [7]. 2n+1 مرحله برای مطرح کردن همه assignment متغیرها استفاده می‌شود، حال آنکه در الگوریتم جدید ما، n+1 مرحله برای تولید کردن همه assignment متغیرها استفاده می‌شود. در اینجا n تعداد متغیرهاست. در این مفهوم، الگوریتم ما، اصلاح الگوریتم [7] می‌باشد.

این مقاله به صورت زیر طبقه‌بندی شده است:

در بخش 2، مفهوم سیستم P سازمان دهنده معرفی می‌شود که مدل محاسبه‌ای برای حل مساله بار 1-0 چندبعدی بوده و آن را در محاسبه با غشاءها درجه پیچیدگی چندجمله‌ای می‌نامند.

در بخش 3، برای حل مساله بار 1-0 چندبعدی به کمک سیستم‌های P سازمان دهنده با غشاءهای فعال 2 قسمتی، الگوریتم غشایی ارائه می‌دهد.

در بخش 4، بحث ارائه شده است.

2. سیستم P:



خرید و دانلود  حل مساله بار 1 0 چند بعدی توسط سیستم‌های P به همراه ورودی و غشاء فعال 24 ص


تیریستور (یا یکسو کننده قابل کنترل p n p n ) 50 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 50

 

1-1-تیریستور (یا یکسو کننده قابل کنترل p-n-p-n )

تیریستور یک وسیله نیمه هادی چهار لایه سه اتصالی با سه خروجی است و از لایه های نوع p و n سیلیکونی که به طور متناوب قرار گرفته اند ساخته شده اند .. ناحیه p انتهایی آند ، ناحیه n انتهای کاتد و ناحیه p داخلی دریچه یا گیت است . آند از طریق مدار به طور سری به کاتد وصل می شود . این وسیله اساساً یک کلید است و همواره تا زمانی که به پایانه های آند و دریچه ولتاژ مثبت مناسبی به کاتد اعمال نشده است در حالت قطع (حالت ولتاژ مسدود کننده ) باقی می ماند و امپدانس بینهایتی از خود نشان خواهد داد . در حالت وصل و عبور جریان بدون احتیاج به علامت (یا ولتاژ) بیشتری روی دریچه به عبور جریان ادامه خواهد داد . در این حالت به طور ایده آل هیچ امپدانسی در مسیر جریان از خود نشان نمی دهد . برای قطع کلید و یا برگرداندن تیریستور به حالت خاموشی بایستی روی دریچه علامت و یا ولتاژی نباشد و جریان در مسیر آند به کاتد به صفر تقلیل یابد . تیریستور عبور جریان را فقط در یک جهت امکان پذیر می سازد .

اگر به پایانه های تیریستور ولتاژ بایاس خارجی اعمال نشود ، حاملهای اکثریت در هر لایه تا زمانی که ولتاژ الکتروستاتیکی داخلی به وجود آمده از انتشار بیشتر حاملها جلوگیری کند ، منتشر می شوند . اما بعضی از حاملهای اکثریت انرژی کافی جهت عبور از سد تولید شده توسط میدان الکتریکی ترمزکن هر اتصال را دارد . این حاملها پس از عبور ، تبدیل به حاملهای اقلیت می شوند و می توانند با حاملهای اکثریت ترکیب شوند . حاملهای اقلیت هر لایه نیز می توانند توسط میدان الکتریکی ثابتی در هر یک از اتصالها شتابدار شوند ، ولی چون در این حالت (از خارج ولتاژی اعمال نمی شود) مدار خارجی وجود ندارد مجموع جریانهای حاملهای اقلیت و اکثریت بایستی صفر شود .

حال اگر یک ولتاژ بایاس با یک مدار خارجی برای حمل جریانهای داخلی منظور شود ، این جریان ها شامل قسمتهای زیر خواهند بود.

جریان ناشی از :

1-عبور حاملهای اکثریت (حفره ها ) از اتصال

2-عبور حاملهای اقلیت از اتصال

3-حفره های تزریق شده به اتصال که از طریق ناحیه n اشاعه می یابند اتصال را قطع می کند .

4-حاملهای اقلیت از اتصال که از طریق ناحیه n اشاعه یافته و از اتصال عبور کرده است . عیناً نیز از شش قسمت و از چهار قسمت تشکیل خواهد یافت .

برای تشریح اصول کار تیریستور از دو روش متشابه مدلهای دیودی و یا دو ترانزیستوری می توان استفاده کرد .

(الف) مدلهای دیودی تیریستور

تیریستور که یک نیمه هادی سه اتصالی ، شبیه سه دیودی است که به طور سری اتصال یافته



خرید و دانلود  تیریستور (یا یکسو کننده قابل کنترل p n p n ) 50 ص


حل مساله بار 1 0 چند بعدی توسط سیستم‌های P به همراه ورودی و غشاء فعال 24 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 24

 

حل مساله بار 1-0 چند بعدی توسط سیستم‌های P به همراه ورودی و غشاء فعال:

خلاصه:

سیستم‌های غشایی از نظر زیستی مدل‌های تئوری محاسبه همسو و توزیع شده را فعال می‌کند. در این مقاله الگوریتم غشایی را نشان می‌دهیم تا به کمک آن مساله بار 1-0 چند بعدی را در زمانی خطی توسط سیستم‌های شناسنده P به همراه ورودی غشاهای فعال که از دو قسمت استفاده می‌کند، حل کند. این الگوریتم را می‌توان اصلاح کرد و از آن برای حل مساله برنامه‌نویسی عدد صحیح 1-0 عمومی استفاده کرد.

مقدمه:

سیستم‌های P، طبقه‌ای از ابزار محاسله همسوی توزیع شده یک نوع بیوشیمی هستند که در [4] معرفی شد و می‌توان آن را به عنوان معماری محاسبه کلی دانست که انواع مختلف اشیاء در آن قسمت توسط عملکردهای مختلف پردازش می‌شوند. از این دیدگاه مطرح می‌شود که پردازش‌های خاصی که در ساختار پیچیده موجودات زنده صورت می‌گیرد، به صورت محاسباتی درنظر گرفته می‌شوند.

از زمانی که Gh, Paun آن را مطرح کرد، دانشمندان کامپیوتر و بیولوژیست‌ها این زمینه را با نقطه نظرهای مختلف خود غنی‌سازی کرده‌اند. برای انگیزه و جزئیات توضیحات مربوط به مدل‌های متفاوت سیستم P لطفاً به [6/4] توجه کنید. تقسیم‌بندی غشایی (الهام شده از تقسیمات سلولی گفته شده در بیولوژی)، تنها راهی است که برای بدست آوردن فضای کاری ---- در زمان خطی بیشتر و بر اساس حل مسائل مشکل (عموماً مسائل تکمیل شده VP) در زمان چند جمله‌ای (اغلب به صورت خطی) بررسی شده است. جزئیات را می‌توان در [4.6.8] ببینید.

اخیراً مسائل کامل PSPACE به این روش مطرح شدند. در گفتگویی غیررسمی، در سیستم‌های P به همراه غشاء فعال می‌توانیم از 6 نوع قانون استفاده کنیم:

قوانین بازگشت چندگانه؛

قوانین مربوط به حل معرفی اشیاء در غشاءها؛

قوانین مربوط به ارسال اشیاء به بیرون از غشاء؛

قوانین مربطو به حل غشاء؛

قوانین مربوط به تقسیم غشاء اولیه؛

قوانین مربوط به تقسیم غشاء ثانویه.

در [10] Perez-Jimenez، مساله قابل راضی کننده‌ای را در زمان خطی با توجه به تعداد متغیرها و شروط فرمول‌گزاره‌ای توسط سیستم تشخیص دهنده P به همراه ورودی و به همراه غشاء فعال 2 قسمتی حل می‌کند. مساله قابل راضی شدن hard NP نیست، چون الگوریتم‌های تقریبی چند جمله‌ای وجود دارد که آن را حل می‌کند و این نمونه‌ای برای مساله بار 1-0 چند جمله‌ای به حساب نمی‌آید. در این مقاله به حل مساله بار 1-0 چند بعدی توسط سیستم P توجه کردیم.

مساله اصلی تکمیل NP می‌باشد و همچنین مساله بار 1-0 چندبعدی به درجه مساله تکمیل NP بستگی دارد. بنابراین این مساله در زمان چندجمله‌ای توسط سیستم‌های P با ورودی و با غشاء فعال که از تقسیم 2 استفاده می‌کند، حل خواهد شد. می‌توانیم این نوع محلول را با کمک کاهش مساله بار 1-0 چندبعدی برای مساله راضی شدن بدست آوریم تا آن سیستم P را که به حل مساله راضی شدن در زمان خطی می‌پردازیم، بکار بریم. همچنان این مساله قابل بحث است که چگونه می‌توان مساله NP را به مساله تکمیل شده NP دیگر بوسیله سیستم P ساده کرد.

در این مقاله مستقیماً الگوریتم غشایی را برای حل مساله بار 1-0 چندبعدی در زمان خطی توسط سیستم تشخیص دهنده P به همراه ورودی به همراه غشاء فعال که از تقسیم 2 استفاده می‌کند، ارائه می‌دهیم.در اینجا به طرحی از یک محدوده سیستم P توجه می‌کنیم که مساله بار 1-0 چندبعدی را حل می‌کند (نه به شکل بررسی رسمی الگورینتم غشایی)‌. همانطور که در بخش 4 گفته شد، استفاده از این الگوریتم اصلاح شده برای حل مساله برنامه‌نویسی عدد صحیح 1-0 کلی، کار آسانی است.

سیستم‌های P در الگوریتم در [5] تقریباً به طور یکسان به شکلی ساخته می‌شوند که برای هر نمونه از مساله قابل راضی شدن، یک سیستم P شکل می‌گیرد. در الگوریتم ما مربوط به مساله 0-1 چندبعدی، سیستم‌های P به طور یکسان شکل می‌گیرند. برای همه نمونه‌هایی که یک اندازه هستند، یک سیستم P طراحی می‌شود.

الگوریتم مربوط به مساله قابل راضی شدن در [5] از سیستم P با قوانین نوع (a)، (f)-(c) استفاده می‌کند و الگوریتم برای مساله راضی شدن در ‍]6] از سیستم‌های P با قوانین نوع (c)-(a) و (e) استفاده می‌کند. در اینجا برای حل مساله بار 1-0 چندبعدی از سیستم‌های P محدوتر استفاده می‌کنیم، یعنی سیستم P به همراه قوانین نوع (a)، (c) و (e).

مساله کلاسیک بار مورد خاصی از مساله بار 1-0 چندبعدی با یک بعد می‌باشد. تقریباٌ می‌توان الگوریتم غشایی را برای حل مساله بار کلاسیک [7]درنظر بگیریم. الگوریتم جدید ما نسبت به الگوریتم در [7] مراحل محاسبه کمتری دارد، بویژه در الگوریتم در [7]. 2n+1 مرحله برای مطرح کردن همه assignment متغیرها استفاده می‌شود، حال آنکه در الگوریتم جدید ما، n+1 مرحله برای تولید کردن همه assignment متغیرها استفاده می‌شود. در اینجا n تعداد متغیرهاست. در این مفهوم، الگوریتم ما، اصلاح الگوریتم [7] می‌باشد.

این مقاله به صورت زیر طبقه‌بندی شده است:

در بخش 2، مفهوم سیستم P سازمان دهنده معرفی می‌شود که مدل محاسبه‌ای برای حل مساله بار 1-0 چندبعدی بوده و آن را در محاسبه با غشاءها درجه پیچیدگی چندجمله‌ای می‌نامند.

در بخش 3، برای حل مساله بار 1-0 چندبعدی به کمک سیستم‌های P سازمان دهنده با غشاءهای فعال 2 قسمتی، الگوریتم غشایی ارائه می‌دهد.

در بخش 4، بحث ارائه شده است.

2. سیستم P:



خرید و دانلود  حل مساله بار 1 0 چند بعدی توسط سیستم‌های P به همراه ورودی و غشاء فعال 24 ص