لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 19 صفحه
قسمتی از متن .doc :
مقدمه:
شیب خط مماس در روش لایپ نیتز (خط )
مشتق یکی از دو مفهوم اصلی حسابان است که مقدار تغییرات لحظهای تابع را نشان میدهد.
تعریف:
مشتق تابعی مانند f، تابع 'f است که مقدارش در x با معادلهی زیر تعریف میشود:
به شرطی که این حد موجود باشد.
بر طبق این تعریف مشتق مقدار تغییرات مقدار تابع است زمانی که تغییرات به صفر میل میکند.
نحوهی نمایش:
مشتق اول یک تابع تک متغیره را میتوان به صورتهای زیر نشان داد:
f'(x)
f(1)
که این نحوهی نمایش را نمایش دیفرانسیلی مشتق مینامند.
تاریخچه:
مشتق از مسائل مهم ریاضی است که موضّع آن نیوتن و لایبنیتز بودند و حد مقدمه آن است. نیوتن سرعت لحظهای را به کمک قوانین حدگیری و لایبنیتز شیب خط مماس بر منحنیها را با استفاده از قوانین حدگیری محاسبه کرد و هر یک در حالت کلی به مشتق رسید.
مشتقات مراتب بالاتر:
مشتقات مراتب بالاتر یک تابع از تعریف اصلی مشتق بدست میآیند. با مشتق گیری دوباره از مشتق یک تابع به مشتق دوم آن میرسیم و به همین ترتیب دیگر مشتقهای مراتب بالاتر نیز تعریف میشوند.
نحوهی نمایش
مشتقات مراتب بالاتر (مشتق مرتبه دوم، سوم و چهارم) تابع f را میتوان به دو صورت زیر نمایش داد:
f'' و f''' و f''''
f(2) و f(3) و f(4)
تابع مشتقپذیر در یک نقطه:
اگر مشتق تابع f در نقطهای مانند x موجود و معین باشد، گفته میشود که تابع f در نقطهی x مشتقپذیر است.
تابع مشتقپذیر:
اگر تابعی در هر نقطه از دامنهاش مشتقپذیر باشد، تابع مشتقپذیر نامیده میشود.
شرایط مشتقپذیری:
برای اینکه تابعی در یک نقطه مانند x مشتقپذیر باشد، باید در یک همسایگی آن تعریف شده باشد و نیز در آن نقطه پیوسته باشد. یا به عبارتی تابع در آن نقطه هموار باشد.
مشتق یکی از مهمترین مفاهیم ریاضی است. بوسیله مشتق میتوان برخی از مفاهیم فیزیکی (مانند سرعت و شتاب)با تعاریف ریاضی بیان نمود. ااگر منحنی یک تابع را در فضای دو بعدی در نظر بگیریم بوسیله مشتق میتوانیم شیب خط مماس بر منحنی را در هر نقطه دلخواه بدست آوریم.همچنین با استفاده از مشتق میتوان خواص هندسی منحنی یک تابع مانند تقعر و تحدب را مشخص کرد. البته باید به این نکته توجه کرد که هر تابعی در هر نقطه نمیتواند مشتق داشته باشد و به طور کلی مشتق پذیری یک تابع در یک نقطه شرایط خاصی میطلبد.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 19 صفحه
قسمتی از متن .doc :
فیزیک چیست ؟
زندگی بشر را چیزی جز مکانیزم حرکتی ( دینامیک) و الگوهای ثابت و بی حرکت(ایستاتیک) تشکیل نمی دهد.در ابتدای زندگی بشر امکان اکتشاف قوانین از لابلای حوادث زندگی روزمره او وجود نداشته است. شاید خود او نیز از حضور چنین قوانینی در زندگی اش که معیشت او را امکان پذیر ساخته بی خبر بوده است و هر رویداد و حادثه ای را امری طبیعی می پنداشت و هیچ وقت کشش و جاذبه ای برای کشف علت و معلول نداشته است.
فیزیک حقیقت علت و معلول جهان هستی را تشکیل می دهد. شاید در ابتدا با شنیدن لفظ ان مفاهیمی مانند مسائل پیچیده و یا قانون ساده گرانش زمین و سیب نیوتن در ذهن همگی تداعی شود. اما چنین نیست! دنیایست پیچیده از کلیه حوادثی که دانستن هر یک از انها زمینه ای برای شکر گذاری هر چه بیشتر خالق منان را فراهم می سازد.
شصت سال فیزیک ایران
استاد دکتر محمود حسابی تنها شاگرد ایرانی پروفسور انیشتین بوده و در طول زندگی با دانشمندان طراز اول جهان نظیر شرودینگر- بورن- فرمی- دیراک- بور و... و با فلاسفه و ادبایی همچون اندره ژید- برتراند راسل و.. تبادل نظر داشته اند. ایشان از سوی جامعه علمی و جهانی به عنوان (مرد اول علمی جهان) بر گزیده شدند و در کنگره شصت سال فیزیک در ایران ملقب به پدر فیزیک ایران گردیدند.
ذرات بینهایت
در زمینه تحقیق علمی 25 مقاله رساله و کتاب از استاد به چاپ رسیده است.تئوری بینهایت بودن ذرات ایشان در میان دانشمندان و فیزیکدانان جهان شناخته شده است.نشان (اومیسیه دو لالژیون دونور) و همچنین نشان (کو ماندور دو لایژیون دو نور) بزرگترین نشان های کشور فرانسه به ایشان اهدا گردید.
تاریخچه علم فیزیک
فیزیکدانان تا اغاز سده نونزدهم میلادی( حدود سال 1280 هجری شمسی) توانسته بودند برای بسیاری از پدیده های طبیعی توجیه های قانع کنندهای ارائه کنند. مجموعه قانون ها و نظریه های تدوین شده تا ان زمان را فیزیک کلاسیک می نامند. این مجموعه از قانونها امروزه هم در بسیاری از مورد ها برای توجیه پدیده های طبیعی مورد استفاده قرارمی گیرد. در سالهای پایانی سده نوزدهم میلادی پدیده هایی مشاهده شدند که با فیزیک کلاسیک قابل تو جیه نبو دند. فیزیکدانان در دهه های نخست سده بیستم میلادی این پدیده ها را به کمک نظریه های جدیدی که در فیزیک کلاسیک مطرح نبو دند تو جیه کردند. مجموعه این نظریه ها و قانون های مربوط به انها امروزه به نام فیزیک جدید یا نوین شناخته می شود.
نسبیت و کوانتوم
مبنا و شالوده فیزیک جدید را نسبیت و کوانتوم تشکیل می دهد. نسبیت مربوط به مطالعه پدیده ها در سرعت های بسیار بالا و نزدیک به سرعت نور است. و رفتار مواد را از دید ماکروسکوپیک مد نظر قرار می دهد.
کوانتوم نیز به بررسی پدیده ها در مقیاسهای کوچک و ذرات بنیادین و یا به عبارتی رفتار میکروسکوپیکی مواد می پردازد.
نظریه های نسبیت و کوانتوم هر دو طی بیست و پنج سال اول سده بیستم مطرح شدند. پایه گذار نظریه نسبیت البرت انیشتین بودو نظریه کوانتومی بودن ذرات نتیجه پژوهش های بسیاری از جمله انیشتین- بور –شروندینگر- هایز بنرگ- دیراک- پائولی و... بوده است.
نظریه کوانتومی
در سال 1279 هجری شمسی پنج سال قبل از ان که انیشتین نظریه نسبیت را پیشنهاد کند ماکس پلانک نظریه ای ارائه داد که در ان زمان تاثیر شگرف ان بر تحول های بعدی چندان اشکار نبود. نظریه کوانتومی که توسط پلانک ارائه شد نخستین نظریه از زنجیره نظریه هایست که مبانی مکانیک کوانتومی را تشتیل می دهد.پلانک این نظریه را برای تو جیه نتیجه های تجربی مر بوط به تابش مو ج های الکترو مغناطیسی از اجسام ارائه داد. شایان ذکر است که این تجربه ها قابل توجیه با قانونهای فیزیک کلاسیک نبود.
الکترومغناطیس- سابقه تاریخی
مبدا علم الکتریسیته به مشاهده معروف
THALES OF MILETUS
در 600 سال قبل از میلاد بر می گردد. در ازمایشگاه تالس متوجه شد که یک تکه کهربای مالش داده شده خرده های کاه را می رباید. از طرف دیگرمبدا علم مظناطیس به مشاهده این واقعیت برمی گردد که بعضی سنگها ( یعنی سنگهای ماگنیتیت) به طور طبیعی اهن را جذب می کنند. در سال 1820 هانس کریسنیان اورستد مشاهده کرد که جریان الکتریکی در یک سیستم می تواند عقربه قطب نمای مغناطیس را تحت تاثیر قرار دهد. بدین ترتیب الکترومغناطیس به عنوان یک علم مطرح شد. این علم جدید توسط بسیاری از پژوهندگان که مهمترین انان مایکل فاراده بود تکامل یافت. جیمز کلرک مالسول قوانین الکترومغناطیس را به شکلی که امروزه می شناسیم دراورد. معادلات ماکسول همان نقشی را در الکترومغناطیس دارند که قوانین حرکت و گرانش نیوتن در مکانیک دارا هستند.
اپتیک
ماکسول چنین نتیجه گرفت که ماهیت نور الکترومغناطیس است و سرعت ان را می توان با اندازگیریهای صرفا الکتریکی و مغناطیسی کرد. از این رو اپتیک با الکتریسیته و مغناطیس رابطه نزدیکی پیدا کرد.
داستان ادامه دارد؟!!
تکامل الکترو مغناطیس کلاسیک به ماکسول ختم نشد. فیزیکدانان انگلیسی لایور هوی ساید و به ویژه فی زیکدانان هلندی در پالایش نظریه ماکسول مشارکت اساسی داشتند.
حسادت!
هاینریش هرتز بیست سال و اندی پس از انکه نظریه خود را مطرح کرد گام موثری به جلو برداشت. وی امواج ماکسولی الکترو مغناطیسیی را از نوعی که اکنون امواج کوتاه رادیویی می نامیم در ازمایشگاه تولید کرد. مارکونی و دیگران کاربرد علمی امواج الکترو مغناطیسی ماکسول و هرتز را مورد استفاده قرار دادند.
دسترنج!!
امروزه علم الکترو مغناطیس از دو جهت مورد توجه است. یکی در سطح کاربردهای مهندسی که در ان معادلات ماکسول در حل تعداد زیادی از مسائل علمی مورد استفاده قرار می گیردو در سطح مبانی نظری. در این سطح چنان تلاش مداومی برای گسترش دامنه ان وجود دارد که الکترومغناطیس حالت ویژگی ازیک نظر عمومی تر جلوه می کند. این نظریه عمومی تر نظریه های گرانش و فیزیک کوانتومی را نیز در بر می گیرد.
فیزیک
فیزیک (در یونانی φύσις به معنای طبیعت، ماهیت، سرشت و چهر است که در فارسی چهران هم گفته میشود) دانش تجربی انسان و علمی طبیعی از ذرات ریز اتمی تا کیهان است. این پدیدهها از انرژی، ماده و برهمکنش آنها با هم به وجود میآیند. از آنجا که دانشهای تجربی دیگر هر یک به شکلی، جنبهای از پدیدههای طبیعی را بررسی میکنند، فیزیک را «دانش بنیادین» نیز نامیدهاند.
امروزه فیزیکدانها سامانههای بسیاری را بررسی میکنند: از ساختارهای بسیار بزرگ مانند کهکشانها و خوشههای کهکشانی گرفته تا ذرات بینهایت ریز و حتی سیستمهای اقتصادی، زیستی و مانند آنها.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 17 صفحه
قسمتی از متن .doc :
تاریخچه و تکامل بدنسازی
در اواخر قرن نوزدهم ، علاقه خاصی برای بدنسازی در مردم بوجود آمد و این بدنسازی به معنی اضافه کردن عضلات برای دفاع شخصی و بتا نبود ؛ بلکه منظور از آن بازگشت به این ایده یونانیان بود که با افزایش عضلات از بدن تجلیل می کردند. این زمانی بود که بلند کردن سنگ به روشی سنتی جای خود را ورزش مدرن وزنه برداری داد. در خلال پیشرفت این ورزش ، فرهنگ های مختلف این ورزش را برای مقاصد خاصی انجام می دادند . در اروپا وزنه برداری برای سرگرمی توسط مردان قوی و حرفه أی بوجود آمد . شکل ظاهری و فیزیکی این وزنه برداران برای تماشاچیان یا خود وزنه برداران زیاد مهم نبود.
در سال های دهه 1920 ، 1930 ثابت شد که سلامتی و رشد بدن به یکدیگر نزدیک و مربوط بوده و کارکردن با وزنه ، بهترین وسیله برای ازدیاد حجم عضلات در کوتاه ترین زمان است . سطح دانش بدنسازی در آن زمان محدود بود ، اما بدنسازان آن موقع بیشتر بدن خود را با ستارگان نسل قبلی مقایسه می کردند. در این دهه زیادکردن نیرو توسط وزنه برداری مورد قبول واقع نشده بود و به وزنه برداری در آن موقع ورزشکار یا قهرمان نمی گفتند و ازدیاد حجم عضلات در باشگاه را به جای تمرین کردن در ورزش های دیگر تقلب می دانستند.
در سال 1939 چیزهایی شروع به تغییر کردند . اتحادیه بدنسازان آماتور (AAU) مسابقات آقای آمریکا را برگزار کرد . شرکت کنندگان در این مسابقات فقط بدنسازان نبودند بلکه از تمامی رشته های ورزشی مانند بوکسورها در آن شرکت می کردند و در هر لباسی اقدام به نمایش عضلات خود می کردند. بعد ها بر اثر تأکیدی که بر روی شکل ظاهری بدن شد ، بدنسازان از این امتیاز بهره بردند و فاصله خود را با ورزشکاران رشته های دیگر زیاد کردند. کار کردن با وزنه شکل بدن را بیشتر از ورزش های دیگر تغییر می داد.
بدنسازی در دهه های 1940 و 1950 میلادی
برنده مسابقه آقای آمریکا در سال 1945 کلارنس رراس بود که می توان گفت اولین قهرمان واقعی ورزش بدنسازی است. نوع بدن او امروزه روی صحنه مسابقات کمتر به چشم می خورد . او دارای شانه های پهن عضلات پهن زیر بغل ، کمر باریک و ساق پاها عضلات خوب شکم بود.
در این هنگام تفاوت بین وزنه برداری بطور خاص برای بدست آوردن قدرت و تمرین با وزنه برداری متناسب کردن شکل بدن کاملاً مشخص شد . حالا شکل فیزیکی بدنسازان بر خلاف دیگر ورزش ها به نوع خاص خودش شناخته شد.
مجموعه این موفقیت ها موقعی نمایان شد که در سال 1997 ورزش بدنسازی توسط کمیته بین المللی المپیک به رسمیت شناخته شد و این ورزش عضوی از کمیته ورزش های آماتور گردید. پیشرفت بدنسازی در دهه 1980 اتفاق افتاد . در این دهه بدنسازی نه فقط به عنوان رقابت ورزشی ، بلکه بخاطر تأثیری که بطورکلی روی فرهنگ و مردم گذاشت ، رشد شدیدی کرد.
الفبای بدنسازی
بدنسازی به عنوان یک سیستم تمرین از مؤثرترین و مناسبترین راهها برای پرقدرت کردن و زیاد کردن حجم عضلات می باشد. بعضی ها فکر می کنند که بدنسازی فقط یک رقابت شدید است و ورزش نیست. یکی از دلایلی که مردم بدنسازی را ورزش نمی دانند این است که آنها این ورزش را با ورزشهایی که با اندازه چقدر دور ، چقدر سریع ، چه ارتفاع و غیره و ورزشهایی که با فرم (شیرجه رفتن ، ژیمناستیک ) آنها قضاوت می شوند ، مقایسه می کنند. بدنسازی ورزش فرم است و به جای حرکت دمای اندازه ، شکل تناسب ، جزئیات و کیفیت خود بدن ، با تمرینات مداوم در باشگاهها و بوسیله رژیم گرفتن و نمایش دادن بدن و گرفتن فیگوری سروکار دارد.
اگرچه بدنسازی هنوز بعنوان یک ورزش المپیکی شناخته نشده ، اما توسط جامعه ورزشکاران آماتور بین المللی پذیرفته شده و در بازیهای آسیایی و پان آمریکن گنجانیده شده است.
تمرینات افزایش تدریجی استقامت :
هیکل یک بدنساز ایده آل باید چیزی شبیه به این شکل باشد : شانه ها پهن و به تدریج که به پایین بدن می آید و به کمر می رسد باریک می شود ، پاها متناسب با بالا تنه تند.
ساختن تمام این عضلات باید روی اصول صحیح و با تمرینات افزایش تدریجی استقامت انجام گیرد. اما هر نوع تمرین با وزنه به ایجاد قدرت ختم نمی شود. شما باید تمرین مناسب را با استفاده از تکنیک صحیح انجام دهید تا یک پیغام مخصوص به سیستم های عصبی بدن شما فرستاده شود و بگوید چه چیزی را می خواهید به آن عادت کنید. به این اصل آموزش گفته می شود و به همین دلیل آموزش صحیح مهم می باشد. ساختن عضلات در بدنسازی هم از همین اصل پیروی می کند. عضلات به تحمل مقدار معینی فشار عادت دارند ، بخصوص بالابردن مقدار معینی وزنه با تحمل شدت فشار مشخص در هنگام تمرین کردن . وقتی که شما مقدار وزنه را افزایش می دهید به شدتِ فشار روی عضلات اضافه می کنید ، عضلات باید بزرگتر شوند تا بتوانند چنین فشاری را تحمل کنند. هم این که عضلات به تحمل چنین فشاری عادت کردند دوباره مقدار وزنه را در تمرینات خود بیشتر کنید و به این کار ادامه دهید تا عضلات بزرگتر و قوی شوند . بعبارت دیگر شما بتدریج تقاضای عضلات خود را افزایش می دهید.
استقامت در بدنسازی
اساساً دو نوع مختلفن استقامت وجود دارد : عضلانی و قلب و عروقی .
1ـ استقامت عضلانی : به قادر بون عضله به منقبض شدن به دفعات و استفاده از حداکثر تعداد رشته های عضله برای انجام تمرین گفته می شود .
2ـ استقامت قلب و عروق : توانایی قلب ، ششها و سیستم گردش خون برای رساندن اکسیژن به عضلات است ، تا آنها بتوانند به تمرین ادامه دهند و ضایعات حاصل شده (اسید لاکتیک) در اثر تمرین را از عضلات دور کنند. تمرینات سخت ، اسید لاکتیک زیادی را در عضلاتی که از آنها استفاده شده ایجاد می کند . ضایعاتی که در اثر منقبض شدن و ایجاد انرژی تولید می شود. اگر قلب ، ششها و سیستم گردش خود اکسیژن لازم را برای آن ناحیه ایجاد کنند ، اسید لاکتیک ایجاد شده دوباره در بدن تبدیل به انرژی جدید می شود ؛ در غیر اینصورت ، ضایعات از منقبض شدن عضله جلوگیری کرده و باعث ایجاد خستگی کامل می شود.
شناخت نوع بدن
یکی از روشهایی که بدن انسان را روی شکلی که دارند طبقه بندی می کند روش سوماتو تایپ است که در این روش بدن انسان به سه گروه تقسیم می شود.
اکتومورف : به بدنهایی گفته می شود که قسمت بالا تنه کوتاه
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 19 صفحه
قسمتی از متن .doc :
نیروگاه گازی
نیروگاه های گازی ، کاربردهای ویژه ای دارند.
نیروگاه گازی به نیروگاهی می گویند که برمبنای سیکل گاز( سیکل برایتون) کارمی کند ؛وازسیکل های حرارتی می باشد، یعنی سیال عامل کاریک گاز است.( عامل انتقال وتبدیل انرژی گازی است ، مثلا هوا )
درنیروگاه های بخارعامل انتقال : بخارمایع می باشد.
نیروگاه گازی دارای توربین گازی است ،یعنی باسیکل رایتون کارمی کند.ساختمان آن درمجموع ساده است :
1-کمپرسور: وظیفه فشردن کردن هوا .
2-اتاق احتراق : وظیفه سوزاندن سوخت درمحفظه .
3-توربین : وظیفه گرداندن ژنراتور .
کمپرسور به کاررفته درنیروگاه های گازی شبیه توربین است ، دارای رتوری است که برروی این رتور پره متحرک است ، هوا به حرکت درآمده وبه پره های ساکنی برخوردکرده ، درنتیجه جهت حرکت هوا عوض شده واین هوا بازبه پره های متحرک برخورد کرده واین سیکل ادامه دارد ودرهرعمل هوا فشرده ترمی شود.
کمپرسور مصرف کننده عظیم انرژی است هوای فشرده گرم است .
هوای فشرده کمپرسور وارد اتاق احتراق که دارای سوخت گازوئیل است می شود .چون هوای فشرده شده گرم است ودراتاق احتراق سوخت آتش گرفته وهوافشرده وداغ می شود .
هوای داغ فشرده کارهمان بخارداغ فشرده توربین های بخار راانجام می دهد .هوای داغ فشرده رابه توربین می دهیم ؛ توربین دارای پره های متحرک وساکن است .
پره های ثابت چسبیده به استاتور می باشد ؛ پره های متحرک چسبیده به رتور می باشد.
حال ژنراتور رامی توان به محور وصل کرده واز ترمینال های ژنراتور می توان برق گرفت ؛ طول نیروگاه ممکن است به m 20 است . ژنراتور را می توان به محل B ویا A متصل نمود ؛ اما محل A بهتراست .
قدرت نیروگاه های گازی از 1 M w وتا بالای 100Mw نیز ساخته می شود .
نحوه راه اندازی واستارت نیروگاه چگونه است ؟
درابتدا نیاز به یک عامل خارجی است تا توربین رابه سرعت 3000 دوربرساند.
حسن نیروگاه :
1- سادگی آن است - تمام آن روی یک شافت سواراست .
2- ارزان است – چون تجهیزات آن کم است . یکی از عواملی که برروی راندمان تأثیرمی گذارداین است که هوای ورودی چه دمایی دارد.
3- سریع النصب است .
4- کوچک است . درسکوهای نفتی که نیاز به برق زیادی می باشد بایدازنیروگاه گازی استفاده کرد، تاجای کمتری بگیرد.
5- احتیاج به آب ندارد. ( درسیکل اصلی نیروگاه نیاز به آب نیست ) اما درتجهیزات جنبی نیازبه آب است برای خنک کردن هیدروژن به کاررفته جهت سردکردن ژنراتور درسرعت های بالا .
6- راه اندازی این نیروگاه سریع است .
7- پرسنل کم .
زمانی نیروگاه گازی خاموش است که دراتاق احتراق سوخت نباشد .
یک نیروگاه بخار رابعد از راه اندازی نباید خاموش کرد .
اما نیروگاه گازی بدین صورت است که صبح می توان روشن کردوآخرشب خاموش نمود .
نیروگاه گازی بسیارمناسب برای بارپیک است ونیروگاه بخاربرای بارپیک نامناسب است .
معایب :
1- آلودگی محیط زیست زیاد است .
2- عمرآن کم است .( فرسودن توربین وکمرسور) سوخت مازوت به علت آلودگی بیشتری که نسبت به سوخت گازوئیل دارد، کمتربه کارمی رود .
3- استهلاک زیاداست . ( پره توربین ، پره کمپرسور )
4- راندمان کم است . ( مصرف سوخت آن زیاد است ) ؛ این نقیصه ای است که کشورهای اروپایی باآن مواجهند .
دلایل راندمان پایین :
الف ) خروج دود بادمای زیاد
ب ) حدود 3/1 توان توربین صرف کمپرسور می شود .
بنابراین درنیروگاه گازی برای استفاده درازمدت اصلا جایزنیست چراکه هزینه مصرف سوخت گران است .
5- امکان استفاده ازسوخت جامد فراهم نیست . ( مانند زغال سنگ ) چراکه بلافاصله پره های رتورپرازدود می شود .
نیروگاه های گازی را اگربخواهیم برای مدت طولانی استفاده کنیم ، هزینه نیروگاه گازی بالا ست .
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 18
در قرن 19 ابتدا یوهان دوبراینر خواص مجموعه ای از عناصر را به صورت 3 تایی مورد بررسی قرار داد.سپس جان نیولندز قانون 8 تایی خود را تنظیم و ارائه کرد.طبقه بندی نوین تناوبی عناصر از کایولیوس لوتامیر به ویژه مندلیف نشات میگیرد.هنری موزلی توانست بر پایه طیف خطی پرتو ایکس هر عنصر عدد اتمی صحیح آن را تعیین کند.بنا بر این توانست مشکل عناصری را که بر اساس وزن اتمی در جای درست خود قرار نمیگرفتند حل کند
تاریخ ها نیز برای سالی هستند که جدول خودشون رو ارائه کردند .
لاووازیه ۱۷۸۹
برزیلیوس ۱۸۰۸
دوبرامیز ۱۸۱۷
لوشان کورتوا ۱۸۶۲
نیولندر ۱۸۶۳
ادلینگ ۱۸۶۴
مندلیف ۱۸۶۹ : (جدول)
لوتارمیر ۱۸۷۰
بوهر ؟ : (جدول)
و اینم یه جدولی هست که نمی دونم که کی اون رو درست کرده :
در سال ۱۸۷۱ دیمتری ایثوانوویچ مندلیف (۱۹۰۷- ۱۸۳۴) دانشمند نابغه روسی طرح جدول تناوبی خود را مطرح نمود.جدول تناوبی مندلیف بر پایه ویژگی های شیمیایی و فیزیکی ۶۳ عنصر کشف شده تا آن زمان استوار بود. قبل از مندلیف دانشمندانی چون دوبرنیر، نیولندز و می یر نیز سعی کرده بودند تا عنصرهای کشف شده را به صورتی طبقه بندی نمایند که از روی موقعیت آنها در جدول تناوبی بتوان خواص شان را پیشگویی نمود. اما دسته بندی مندلیف به دلیل ابتکاراتی که مندلیف در تهیه آن بکار برده بود بسیار موفق تر از سایر دسته بندی ها بود.
مندلیف با بررسی عناصر مختلف متوجه شد که یک نظام و الگوی مشخص در تکرار تناوبی خواص عناصر وجود دارد. این نظام که بر پایه آن گفته می شد، هرگاه عنصرها را بر اساس افزایش جرم اتمی مرتب نماییم، خواص شیمیایی و فیزیکی آن ها به طور تناوبی تکرار می شود، اساس طبقه بندی مندلیف گردید.
مندلیف در تنظیم جدول خود از دو اصل زیر استفاده نمود:
۱- عنصرها برحسب افزایش تدریجی جرم اتمی آن ها در ردیف هایی کنار یکدیگر قرار می گیرند.
۲- عنصرهایی که در یک گروه قرار می گیرند، باید خواص مشابهی داشته باشند.
وی در مواردی مجبور شد برخی از خانه های جدول تناوبی خود را خالی بگذارد، تا سایر عناصر با خواص مشابه در یک گروه قرار بگیرند. در توجیه این مسئله مندلیف معتقد بود که هنوز تعدادی از عناصر کشف نشده اند. او خواص این عناصر را پیش از کشف آنها پیش بینی نمود و همین مسئله سایر دانشمندان را در کشف این عناصر مشتاق کرد. از جمله عناصری که مندلیف جای آنها را خالی گذاشت می توان به عناصری با عدد جرمی ۴۴، ۶۸و ۷۲ اشاره کرد، که بعدها این عناصر کشف شده و باعث شهرت و اعتبار هرچه بیشتر مندلیف شدند.
علاوه بر سه عنصر فوق مندلیف خواص ۷ عنصر دیگر را نیز به همین ترتیب پیشگویی کرده بود که بعدها یکی پس از دیگری کشف شده و باعث شهرت یافتن جدول تناوبی مندلیف شدند.
از دیگر خلاقیت هایی که مندلیف در تنظیم جدول خود بکار برد می توان به ترجیح دادن شباهت خواص عناصر یک گروه بر افزایش تدریجی جرم اتمی اشاره نمود. وی در مورد عناصری مانند تلور با عدد جرمی ۱۲۷.۶۰ و ید با عدد جرمی ۱۲۶.۹ با اینکه می بایست ید را را در گروه ششم و قبل از تلور قرار می داد با توجه به خواص آنها برعکس عمل نموده و ید را علیرغم کم بودن جرم اتمی آن بعد از تلور در گروه هفتم