لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 35
بزرگترین ریاضی دانان
لاگرانژ
ژوزف لویی لاگرانژ در 25 ژانویه سال 1736 در تورینو ایتالیا متولد شد او که از بزرگترین ریاضی دانان تمام ادوار تاریخ می باشد هنگام تولد بیش از حد ضعیف و ناتوان بود و از 11 فرزند خانواده فقط او زنده مانده بود. زندگی لاگرانژ را می توان به سه دوره تقسیم کرد: نخستین دوره شامل سالهایی می شود که در موطنش تورینو سپری شد(1736 – 1766) دوره دوم دوره ای بود که وی بین سالهای 1766 و 1787 در فرهنگستان برلین کار می کرد دوره سوم از 1787 تا 1813 که عمر وی به پایان رسید در پاریس گذشت. دوره اول و دوم از نظر فعالیتهای علمی پر ثمرترین دوره ها بودند که با کشف حساب تغییرات در 1754 آغاز گردید و با کاربرد آن در مکانیک در 1756 ادامه یافت در این نخستین دوره وی در باره مکانیک آسمانی نیز کار کرد دوره اقامت در برلین هم از نظر مکانیک و هم از لحاظ حساب دیفرانسیل وانتگرال سازنده بود با این حال در آن دوره لاگرانژ در درجه اول در زمینه حل عددی و جبری معادلات و حتی فراتر از آن در نظریه اعداد، چهره ای برجسته و ممتاز شده بود. سالهای اقامتش در پاریس را صرف نوشته های آموزشی و تهیه رساله های بزرگی نمود که استنباطهای ریاضی وی را خلاصه می کردند این رساله هادر هنگامی که عصر ریاضیات قرن 18 در شرف پایان بود مقدمات عصر ریاضیات قرن 19 را فراهم کردند و از برخی جهات آن دوره را گشودند. پدر لاگرانژ وی را نامزد آموختن حقوق نمود اما لاگرانژ به محض آنکه تحصیل فیزیک را زیر نظر بکاریا و تحصیل هندسه را زیر نظر فیلیپو آنتونیو رولی آغاز کرد به سرعت متوجه تواناییهای خود شد و بنابراین خویشتن را وقف علوم دقیق تر کرد. در 1757 چند دانشمند جوان تورینویی که لاگرانژ وکنت سالوتسو و جووانی چنییای فیزیکدان در میان آنها بودند انجمنی علمی بنیاد نهادند که منشاء فرهنگستان سلطنتی علوم تورینو گردید یکی از اهداف اصلی آن انجمن انتشار جنگ بود به زبان فرانسوی و لاتینی به نام (جنگ تورینو) که لاگرانژ خدمتی بنیادی به آن کرد سه جلد اول آن تقریباٌ حاوی تمامی آثاری بود که وی هنگام اقامت در تورینو به چاپ رسانده بود. فعالیت لاگرانژ در مکانیک آسمانی غالباٌ بر محور مسابقه هایی دور می زند که از طرف انجمنهای مختلف علمی پیشنهاد شده بودند اما به این گونه مسابقه ها منحصر نبود. در تورینو غالباٌ کارش جهت گیری مستقل داشت و در 1782 به دالامبر و لاپلاس نوشت که در باره تغییرات قرنی نقطه های نهایی اوج و خروج از مرکز تمام سیارات کار می کند. این پژوهش لاگرانژ به اتنشار کتاب انجامید با عنوان نظریه تغییرات قرنی عناصر سیارات و مقاله ای با عنوان در باره تغییرات قرنی حرکات متوسط سیارات که در سال 1785 منتشر شد. لاگرانژ در برلین و در سال 1768 مقاله حل مسئله ای از حساب را برای جنگ تورینو فرستاد تا در جلد چهارم درج شود در آن نوشته لاگرانژ به نوشته قبلی خود اشاره داشت و از طریق کاربرد ظریف و استادانه الگوریتم کسرهای پیوسته ثابت کرد که معادله فرما (ریاضی دان معروف) را در صورتی می توان در تمام حالات حل کرد که اعداد درست مثبت باشند، این است نخستین راه حل شناخته شده این مسئله مشهور. آخرین بخش این نوشته در مقاله ای با عنوان روش جدید برای حل مسائل نامحدود دراعداد درست بسط یافت که در نشریه یاداشتهای برلین برای سال 1768 عرضه شد ولی تا فوریه آن سال کامل نگردید و در سال 1770 منتشر شد.
از بزرگترین شاهکارههای علمی لاگرانژ رساله مکانیک تحلیلی را می توان نام برد که در سال 1788 انتشار یافت او در آن اثر پیشنهاد کرد که بهتر است نظریه مکانیک و فنون حل کردن مسائل آن رشته به فرمولهایی کلی تحویل شوند، فرمولهایی که هر گاه پیدا شوند همه معادله های لازم برای حل هر مسئله را بوجود خواهند آورد. باری، لاگرانژ تصمیم گرفت که چاپ دومی از آن اثر منتشر کند که حاوی برخی پیشرفتها باشد او قبلاٌ در یادداشتهای انستیتو چند مقاله منتشر کرده بود که آخرین و درخشانترین خدمت وی را در راه پیشبرد مکانیک آسمانی نشان می دادند او قسمتی از آن نظریه را در جلد اول رساله تجدید نظر شده گنجانید. لاگرانژ مردی محجوب ومتواضع بود او بسیار ساده و راحت هنگامی که از یک مطلب علمی اطلاع نداشت میگفت نمی دانم.
لاگرانژ در سال 1813 در پاریس درگذشت او در زمان مرگش 77 سال داشت.
لاپلاس
پیتر سیمون لاپلاس در 23 مارس 1749 در حوالی پون لوک فرانسه متولد شد پدرش دهقان فقیری بود و از کودکی خودش اطلاعی در دست نیست لاپلاس از جمله مؤثرترین دانشوران در طول تاریخ می باشد او به محض اینکه ریاضیدان مشهوری شد و افتخاراتی کسب نمود اصل و نسب خود را مخفی نگاه می داشت، مشهور است که لاپلاس برای ملاقات دالامبر ریاضیدان با ارزش در یکی از روزهای سال 1770 به خانه او می رود و با وجود توصیه هایی که ارائه می دهد کمک قابل توجهی از طرف زیاضی دان بزرگ نسبت به او نمی شود لاپلاس مایوس نمی شود و نامه ای برای دالامبر می فرستد و در آن افکار خویش را درباره اصل مکانیک شرح می دهد دالامبر به محض خواندن نامه نویسنده را احضار می کند و به او می گوید چنانچه ملاحظه میکنید من به توصیه و سفارش ترتیب اثر نمی دهم ولی شما برای شناساندن خود وسیله خوبی بدست آوردید دالامبر فوراٌ لاپلاس را به سمت استاد مدرسه نظامی پاریس انتخاب می کند.
در مرحله اول لاپلاس نوشته هایی در باره مسائل حساب انتگرال، اختر شناسی، ریاضی کیهان شناسی نظریه بازیهای بخت آزمایی و علیت تالیف کرد در این دوره سازنده وی سبک و شهرت و موضع فلسفی و برخی شیوه های ریاضی خود را ساخته و پرداخته کرد و برنامه ای برای پژوهش در دو زمینه – احتمالات و مکانیک آسمانی – تنظیم نمود که بقیه عمر را به کار ریاضی در باره آنها پرداخت در مرحله دوم در هر دو زمینه به بسیاری از نتایج عمده ای رسید که به سبب آنها مشهور است و بعدها آنها را در رساله های بزرگ خو«مکانیک سماوی 1799 – 1825) و نظریه تحلیلی(1812) گنجانید اطلاع از بخش اعظم این مسائل به وسیله شیوه های ریاضی صورت گرفت که او در آن زمان یا قبل از آن، به وجود آورد ابداع کرده بود مهمترین آنها عبارتند از توابع مولد، که از آن پس به نام وی خوانده شدند. بسط، که آن نیز در نظریه دترمینانها به نام وی گردید، تغییر مقادیر ثابت به منظور رسیدن به راه حلهای تقریبی در انتگرال گیری عبارتهای اختر شناسی و ابع گرانشی تعمیم یافته که بعدها با دخالت پواسون به صورت تابع پتانسیل برق و مغناطیس قرن 19 در آمد همچنین در طی همین دوره بود که لاپلاس به سومین حوزه علایقش – یعنی فیزیک که با همکاری لاوازیه در زمینه نظریه گرما بود، وارد گردید و تا حدودی در نتیجه آن همکاری بود که وی تبدیل به یکی از اعضای مؤثر حلقه درونی مجمع ملی شد.
اولین مسئله مورد توجه لاپلاس دنبال نمودن کار اسحاق نیوتن بود زیرا اسحاق نیوتن قانون اصلی مکانیک آسمانی را یافته بود و لاپلاس می خواست این قانون را در مورد تمام اجسام منظومه شمسی به کار برد لاپلاس شروع به تعیین قوانین مکانیک سیارات کرد تا نشان دهد که این اجسام مانند سایر اجسام تابع قوانین فیزیکی هستند اولین موضوعی که لاپلاس نزد خود مطرح می کند موضوع ثبات دستگاه شمسی است که آیا به وضعی که داراست می ماند یا بالاخره ماه روی زمین سقوط می کند و سیارات بر جرم خورشید پرتاب شده و معدوم می گردند اسحاق نیوتن هم این سؤال را مطرح کرده بود و به این نتیجه رسیده بود که باید گاهگاهی دست خداوند در کار بیاید و حرکات آنها را به جریان عادی برگرداند ولی لاپلاس گفت اگر چه وضع سیارات نسبت به خورشید تغییر می کند ولی این تغییرات تناوبی است لاپلاس تمام این اکتشافات را تحت عنوان مکانیک آسمانی منتشر ساخت ولی چون فهم مطالبش برای همه کس مقدور نبود لذا تصمیم گرفت کتابی
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 5
اکتشافات مهم ریاضی
اوگستین گوشی ریاضی دان بزرگ فرانسوی از کودکی مانند گائوس استعدادی فراوان داشت اما سخت پابند مذهب بود به کشفیات فراوانی در ریاضیات نایل گشت تئوری توابعی را که یک متغیر موهوم دارند بیان کرد اکتشافاتی بس بزرگ می باشد کوشی از سال به بعد مرتباً با اکتشافات حیرت انگیزی موفق شد که آنها را برای آکادمی علوم می فرستاد تا جایی که چاپ کنند .
گزارش های آکادمی او به وحشت زیرا مقالات گوشی بی نهایت زیاد بود و کوشی می خواست مجله ای منتشر سازد که همه ی مقالات خود را در آن درج نماید دو نوجوان نابغه یکی به نام های منریک آبل نروژی و دیگری او اویست گالوآ فرانسوی بود که با اکتشافات خود در ریاضیات تحولی عمیق به وجود آورد .
آبل در خانواده ای فقیر پرورش یافت از کودکی به نبوغش در ریاضی درخشید در آغاز جوانی به برلن آنگاه به پاریس آمد و هر چه کوشید که به قلل رفیع آن روز علم مثل گائوس پو آسون کوشی پیدا کند برایش کند میسر نشده اما سر انجام توانست یادداشتهایی را که حاوی اکتشافات مهم خود بود که به گوشی آن یادداشتها را گم کرد بیچاره آبل به نروژ بازگشت و در نومیدی و فقر در 26 سالگی چشم از جهان فروبست .
چندب بعد کوشی یادداشت های آبل را پیدا کرد و آن را به آکادمی علوم فرانسوی برد و جایزهای بزرگ نصیب اکتشافات آبل و شارل گوستاوژاکوبی هلندی شهر نیز به چند اکتشاف بزرگ نایل گشته بود . گالوآنیز از کودکی نابعه ای بی همتا بود ولی توانست مطالعات و اکتشافات متفرق دانشمندان را ریاضی را بصورت منظمی درآورد و با اکتشاف متعدد و غنی خود بر قروت دانش ریاضی بیفزائید ، گالوآنیز اکتشافات خود را نزد گوشی در آورد که باز مانند یادداشتهای آبل گم شد و گالوآ نیز سخت ناراخت بود تا اینکه بزودی در بستر مرگ فرو افتاد زیرا در سن 20 سالگی در دوگلی شرکت کرد و گلوله ای در بدنش فرو رفت و شب آخرین دورهی زندگی اش تمام اکتشافات خود را به صورت خلاصه در حالی که از درد به خود می پیچید نوشت و به صورت وصیت نامه برای جهانیان بارث باقی گذاشت این میراث علمی را در شب برشته تحریر درآمد .
به قول یکی از دانشمندان «صدها سال نسل های متعدد ریاضی دانان بزرگ را دچارتنگی نفس خواهد کرد گالوآی واضع تئوری گروههای به واسطهی نیامدن پزشک درگذشت»
ریاضیات در راه پیشرفتهای حیرت انگیز :
کاسپارمونژ 1746-1818 فرانسوی در آغاز جوانی یک نقشة جغرافیائی برای موطن خود تهیه کرد که در محل فرمانداری نصب شد بعد از آن بهر مدرسه ای که او را فرستادند برتریش بر معلمان آنجا برودی آشکار می شد .در مدرسه ای باختراع هندسه ترسیمی موفق کشت و به خاطر منافع مملکتی بوی پیشنهاد شد که آنرا مخفی نگهدارد که خارجیان پی به این اختراع بزرگ نبرند .
چون انقلاب کبیر فرانسه درگرفت به صف انقلابیون پیوست در راه اجرای هدف های انقلاب کوششهای فراوان کرد بعد از چند روز موفق به تأسیس مدرسه پلی تکنیک و تدریس در آنجا شد .
ژان ویکتور پونسله یکی از کسانی بود که در هنگام جنگ فرانسه با روسیه در روسیه اسیر و زندانی شد در زندان بود که در ذهن خود به بررسی در دروس مزبور بویژه هندسه مشفول گشت تا اینکه توانست دوستان خود را برای امتحانات پلی تکنیک در صورت مراجعت به فرانسه آماده سازد عاقبت تئوری تبدیل به وسیلهی قطب و قطبی نظرش را پیش از همه جلب کرد و هندسه تصویری را به وجود آورد و چون آن را به آکادمی علوم فرانسه تقدیم داشت بدان چندان توجهی نکردند لذا آنرا به آکادمی بروکسل عرضه کرد .
میشل شال «1793-1880» فرانسوی در آغاز دلال بروات بود اما ورشکست شد و به بلژیک رفت و در ساعات فراغت به تفکر پرداخت تا اینکه در سال 1834 کتابی بنام و ماشین مدرسه پلی تکنیک برگزیده شد . شال هر سال با اکتشافات مهمی نایل میآمد از جمله تئوری مشخصات را اختراع کرد .
ژاکوب اشتانیز 1786-1863 آلمانی اکتشافات متعددی درباره منحنیها و سطوح مشکل کرد . لاکرانژ بعد از اینکه پاستادی مدرسه پلی تکنیک برگزیده شد تئوری تحلیلی و پس از چندی دینی 1797 حل معادلات عددی خود را منتشر ساخت و راههائی نو برای آنالیز گشود لاگرانژ در تمام دوران انقلاب و بعد از آن از هر نوع گزندی در امان بود .
«کتاب دایره المعرف»
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 13
چطور کامپیوتر اعمال ریاضی و منطقی را انجام میدهد؟
راحتترین روش برای توضیح و درک روش کار کامپیوترها اینست که آنها را مانند مجموعههای عظیمی از کلیدها فرض کرد، چیزی که واقعاً هستند: کلیدهایی به شکل ترانزیستورهای میکروسکوپی که بر روی لایهای از سیلیکون حک شدهاند. برای یک کامپیوتر فرض کنید که تختهای پر از ردیفها و ستونهای پر از چراغ است و پشت آن اتاق کنترل که برای هر چراغ یک کلید در آن قرار دارد. بوسیلة روشن کردن کلیدهای صحیح میتوانید اسمتان را بنویسید یا تصویری بکشید. البته آنجا کلیدهای اصلیای وجود دارند که دستهای از کلیدهای دیگر را کنترل میکنند. به جای روشن / خاموش کردن همه کلیدهایی که در نهایت منجر به نوشتن اسم شما میشود میتوانید یک کلید را که مجموعهای از چراغها را روشن میکند، را بزنید تا مثلاً حرف «ب» را چاپ کنید.
در کامپیوترها هم ظاهر کامپیوتر همان صفحه چراغهاست، RAM (که مجموعهای از کلیدای ترانزیستوری است) همان اتاق کنترل است، KeyBoard همان کلیدهای اصلی است.
یکی دیگر از کارهای مهم کامپیوتر انجام اعمال ریاضی و منطقی است. با همان کلیدهای اصلی کامپوتر میتواند عمل جمع را با استفاده از مبنای 2 انجام دهد. و وقتی که توانست جمع را انجام دهد هر عمل دیگری را هم میتواند انجام دهد: ضرب همان جمعهای پشت سر هم تکرار شده تفریق همان جمع با عدد منفی و تقسیم همان تفریق تکرار شده.
و از نظر کامپیوتر هرچیزی اعداد است و این به ترانزیستورها اجازه میدهد تا هر نوع پردازش داده را انجام دهند.
در حقیقت اولین کامپیوترها در روش استفاده بیشتر شبیه همان صفحهها بودند.
KeyBoard یا نمایش دهنده نداشتند. اولین کاربران کامپیوترها در حقیقت مجموعهای از کلیدها را در ترتیب معین وارد میکردند که در برگیرنده هم اطلاعات ورودی و هم دستورالعملها برای کار با اطلاعات بود.
به جای ترانزیستورها کامپیوترهای اولیه از لامپهای خلاء استفاده میکردند که حجیم بودند و گرمای زیادی تولید میکردند.
برای گرفتن جواب کامپیوتر، کاربرها مجبور بودند چیزی را که شبیه نمایشای اتفاقی از چراغها بود را درک کنند.
1ـ همه اطلاعات، کلمات و graphicها مثل اعداد باید در فرم اعداد دودویی در کامپیوتر حفظ و نگهداری شوند (یعنی اعداد با ارقام 0 و 1)
2ـ کلیدهای ترانزیستوری برای محاسبه اعداد دودویی استفاده میشوند چون برای هر کلیدی دو حالت وجود دارد الف) باز (قطع) ب) بسته (روشن) که خیلی با اعداد دودویی مطابقت دارد. یک ترانزیستور که از آن هیچ جریانی عبور نمیکند یک 0 اعلام میکند. یک ترانزیستور که یک پالس الکتریسیته (که توسط ساعت کامپیوتر منظم میشود) را از خود عبور میدهد یک 1 اعلام میکند. (ساعت کامپیوتر سرعت کامپیوتر را تنظیم میکند، هر چه ساعت سریعتر کار کند با تولید پالسهای الکتریسیته کامپیوتر سریعتر کار میکند. سرعتهای ساعت با مگاهرتز یا میلیون تیک بر ثانیه اندازهگیری میشود). جریان الکتریکی عبوری از یک ترانزیستور میتواند برای کنترل ترانزیستور بعدی استفاده شود. چنین ترتیبی یک دروازه نامیده میشود چون مثل در یک حصار ترانزیستور میتواند باز و بسته شود واجازه دهد تا جریان از آن عبور کند یا متوقف شود.
3ـ سادهترین حالتی که میتواند توسط یک ترانزیستور انجام شود یک دروازه منطقی NOT نامیده میشود که از یک ترانزیستور ساده تشکیل شده است. NOT طوری طراحی شده که یک ورودی از ساعت کامپیوتر و یک ورودی از ترانزیستور قبلی است. اگر جریان از ترانزیستور ورودی 1 اعلام کند، دروازة خود ترانزیستور طوری باز میشود که یک
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 15
کاربرد ریاضی در معماری
پیر لوئیجی نروی
تولد در سوندریو لومباردی به سال 1891،مرگ در رم به سال 1979.در سال 1913 در رشته مهندسی ساختمان از دانشگاه بولونا فارغ التحصیل شد.از 1946 تا 1961 استاد مهندسی سازه در دانشکده معماری رم بود.
مهندس محاسب و معمار بزرگی که ردیف" فوی ساینت" و"مایار" قرار داردکه در نتیجه ی تسلط برمحاسبات دقیق ریاضی در معماری به شیوه ی زیبا و حیرت انگیزی دست یافت و با فرم هایی که از طبیعت الهام می گرفت همراه با کاربرد تکنیکی مصالح،چشم اندازی موسیقایی در معماری به وجود آورد.او بارها و بارها در نوشته هایش،فرآیند خلاقه ی فرم را در یکسانی،چه در زمینه ی کارهای تکنیکی مهندسی و چه در زمینه های مختلف کارهای هنری به عنوان یک اصل می دانست.روشی که با استناد به آن زیبایی الگوی سازه ای تنها حاصل پی آمدهای روش های محاسباتی نیست،بلکه نوعی روش شهودی است که چگونگی کاربرد محاسباتی آن را معلوم می کند،و بدین ترتیب به آن هویت می بخشد.
نروی متخصص بتن آرمه بود.اولین پروژه ای که طراحی کرد ساختمان سینما ناپل بود که به سال 1927 ساخته شد.روش ساختاری این بنا در عمل رابطه ی بین فرم و عملکرد را به اثبات رساند(روندی که در آینده به نوعی با کژفهمی مواجه شد).این سبک و سیاق را نروی از طریق محاسبات سازه ای به دست آورد و آن را در معماری امری ضروری می دانست.اولین کار مهم او پروژه ی استادیم ورزشی فلورانس بود که در بین سالهای 1930 تا 1932 ساخته شد.پوشش ساده ای که شیوه ی نمایان سازه ای آن از اهمیت خاص برخوردار بود و در اغلب جراید به عنوان الگوی معماری قرن معرفی شد و حالت نمایشی شورانگیزآن با طراحی های لوکوربوزیه قابل مقایسه بود که به نحوی بسیار صریح و روشن امکانات کاربری بتن آرمه را به نمایش درآورد.نروی با طراحی پروژه های آشیانه هواپیما اورویتو(8-1935)و اوربتللو و همچنین ساختمان برج دل لاگو(3-1940)،به مطالعه در زمینه ی روش های سقف پوسته ای شبکه تیرچه های باربر پرداخت.این شیوه ی ساختاری همواره به مثابه یک هدف ثابت دنبال شد و در تحقیقاتش گستره وسیع تری یافت ودر ابعاد بسیار عظیم به صور مختلف ادامه پیدا کرد ودر فرآیند خلاقه ی شخصی اش مورد استفاده قرار گرفت.با اجرای این پروژه های آشینه هواپیما (که تاکنون ویران شده اند)،نروی به فرآیند درخشان سازه ای خود مقام و منزلتی بخشید که در کل به زیبایی تکنیک ساختاری اش متکی بود.
در حدود 1940،به مطالعه تجربی در زمینه ی مقاومت فرم پرداخت،و به نتایج موفقیت آمیزی نایل شد؛روند اینترنشنال استیل بسیار نیرومندی که در پوشش سقفهای پوسته ای کاربرد داشت؛در کل جذبه های تکنیکی و شاکله ی بسیار زیبا از دستاوردهای عظیمش بود.این روش را در پوشش سقف تالار بزرگ نمایشگاه تورین به کاربرد(9-1948)،که یکی از آثار ماندگار و از شاهکارهای معماری قرن بیستم است،هرچند که این پروژه از طرف کسانی که وظیفه ی معماری را اهمیت عملکردی جزئیات داخلی آن می دانند،مورد برداشت های نادرستی واقع شد،در نتیجه ساختمان بسیار مهم وارزشمندی که نروی آن را در زمره ی مهمترین آثارش می دانست،تا حدودی مورد بی توجهی قرار گرفت.ساختمان عظیمی که شامل یک پوشش سازه ای بود که با اجزای پیش ساخته ی بتنی به حالت کج و موجی ساخته شد.
او چند ساختمان پوسته ای بتنی در ابعاد کوچکتر به اجرا درآورد،به نحوی که زیر سقف به طور کامل آزاد بود،بعضی از این پروژه ها پلان دایره ای شکل دارند،از جمله ساختمان کازینوی رم لیدو(1950) و ساختمان تالار اجتماعات و ضیافت "چیانچینو ترم" که بین سالهای 1950 تا 1952 ساخته شد.در همین زمان نیزبه تحقیقاتش در زمینه بتن آرمه ادامه داد،کاربرد قطعات پیش ساخته ی بتنی به صورت تولید انبوه را در رابطه با پوشش سقف سالن های نمایش به عنوان اختراع به ثبت رساند.این ابداع در انواع مختلف سازه های طاق تویزه پشت بنددار کاربرد داشت و همچنین به اغلب پروژه های خیالی و آرمان گرایانه قابلیت اجرایی داد.اختراع مهم دیگراو در عرصه تکنیک،سیستم هیدرولیکی پیش کشیده ی بتن آرمه بود.به هیچ روی دست از تلاش و تحقیق بر نمیداشت.حتی با آزادی عمل هرچه بیشتر روش سازه ای اش را تکامل و بهبود بخشید،با ساده گرایی و سرعت در اجرا،به نحوی متفاوت به تحقیقاتش ادامه داد،شیوه ی ساختاری بسیار زیبایی که از المان های سازه ای ریتمیک تشکیل میشد.نمونه های شاخص این روش،ساختمان ورزش رم بود که با همکاری "آنیباله ویته لوزی"از سال 1956 تا 1957 به اجرا درآمد و مهم تر از همه ساختمان تالار کنفرانس یونسکو در پاریس (که با همکاری مارسل بروئه و زرفوس در فاصله سال های 1953 تا 1957 ساخته شد(.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 25
کاربرد ریاضی در علوم دیگر
( چکیده مقاله )
بسیار پیش می آید که دانش آموزان پس از تدریس یک درس ، از ما می پرسند که این درس که امروز خواندیم ،به چه درد ما می خورد؟و کجامی توانیم ازآن استفاده کنیم ؟ ریاضیات به عنوان یک درس اصلی است که داشتن درک درست از آن در آینده ی تحصیلی دانش آموزان و طبعاً پیشرفت علمی کشور نقش مهمی دارد . همچنین شامل کلیه ارتباطات ریاضی با زندگی روزمرّه ، سایر علوم و کاربردهایی در زندگی علمی آینده ی دانش آموزاست .به این ترتیب دربرنامه درسی و آموزشی ، برقرار کردن پیوند ریاضیات با کاربردهایش در زندگی و سایر علوم از قبیل :هنر،علوم طبیعی ،علوم اجتماعی و . . . . باید مدّ نظر قرار گیرد . در صورتی که این موارد در آموزش دیده نشود ، این سؤ ال همیشه در ذهن دانش آموز باقی می ماند که: « به چه دلیل باید ریاضی خواند ؟ » و « ریاضی به چه درد می خورد ؟ » دراین مقاله سعی شده است که ارتباط دروس کتب ریاضی راهنمایی با سایر علوم و همچنین کاربرد آنها در دنیای امروز ی تا حدودی بررسی شود و ارائه گردد . مقدمه بین رشته های علمی ، که بشر در طول هزاران سال به وجود آورده ، ریاضیّات جای مخصوص و ضمناٌ مهمّی را اشغال کرده است . ریاضیّات با علوم فیزیک ، زیست شناسی ، اقتصاد و فنون مختلف فرق دارد . با وجود این به عنوان یکی از روشهای اصلی در بررسیهای مربوط به کامپیوتر ، فیزیک ، زیست شناسی ، صنعت واقتصاد بکار می رود ودرآینده بازهم نقش ریاضّیات گسترش بیشتری می یابد. با وجود این مطلب ، برای آموزش جوانان هنوز از همان روشی استفاده می شود که سقراط و افلاطون ، حقایق عالی اخلاقی را برای شیفتگان منطق و فلسفه و برای علاقمندان سخنوری و علم کلام بیان می کردند . در حقیقت در درسهای حساب ، هندسه و جبر ،هرگز لزوم یادگیری آنها برای زندگی عملی خاطر نشان نمی شود. هرگز از تاریخ علم صحبتی به میان نمی آید. نظریه های سنگین علمی ، ولی هیچ نتیجه ای جز این ندارد که دانش آموزان را از علم بری کند و عدّه ی آنها را تقلیل دهد . یکی ازراههای جدی برای حلّ مسئله توجه به تاریخ علم، گفتگو در باره ی مردان علم و ارتباط ریاضی با عمل است ، ارتباطی که در تمام دوران زندگی بشر هرگز قطع نشده است . کاربرد ارقام در زمانهای قدیم هر قدمی که در راه پیشرفت تمدّن برداشته می-شد، بر لزوم استفاده از اعداد می افزود . اگر شخصی گله ای از گوسفندان داشت ، می خواست آن را بشمرد ،یا اگر می خواست معبد یا هرمی بسازد ، باید می دانست که چقدر سنگ برای آن لازم دارد . اگر دارای زمین بود ، می خواست آن رااندازه گیری کند . اگر قایقش را به دریا می راند ، می خواست فاصله ی خود را از ساحل بداند . و بالاخره در تجارت و مبادله ی اجناس در بازارها ، باید ارزش اجناس حساب می شد.هنگامی که آدمی محاسبه با ارقام را آموخت ، توانست زمان ، فاصله مساحت ، حجم را اندازه گیری کند . با بکار بردن ارقام ، انسان بردانش و تسلّط خود بر دنیای پیرامونش افزود . کاربرد توابع و روابط بین اعداد کاربرد روابط بین اعداد و توابع و نتیجه گیریهای منطقی در نوشتن الگوریتمها و برنامه نویسی کامپیوتری است . مفهوم تابع یکی از مهمترین مفاهیم ریاضی است و در اصل تابع نوعی خاص از رابطه های بین دو مجموعه است . و با توجه به این که دنباله ها هم حالت خاصی از تابع است – تابعی که دامنه آن مجموعه ی اعداد { . . . و 2 و 1 و 0 } است – دنباله های عددی در ریاضی و کامپیوتر کاربرد فراوان دارند . برای ساخت یک برنامه اساساٌ چهار مرحله را طی می کنیم : 1- تعریف مسئله 2- طراحی حل 3- نوشتن برنامه 4- اجرای برنامه لازم به ذکر است که گردآیه هایی که در مرحله دوم حاصل می شود را اصطلاحاٌ الگوریتم می نامیم .که این الگوریتمهابه زبان شبه کد نوشته می شود ،که شبیه زبان برنامه نویسی است وتبدیل آنها به زبان برنامه نویسی را برای ما بسیار ساده می کند . « هیچ دانسته ی بشر را نمی توان علم نامید، مگر اینکه از طریق ریاضیّات توضیح داده شده و ثابت شود . » ( لئو ناردو داوینچی ) کاربرد معادله و دستگاه معادلات خطی دستگاه های معادلات خطی اغلب برای حساب کردن بهره ی ساده ،پیشگویی ، اقتصاد و پیدا کردن نقطه ی سر به سر به کارمیرود. معمولاً هدف از حل کردن یک دستگاه معادلات خطی ، پیدا کردن محل تقاطع دو خط می باشد.در مسائل دخل و خرج که درمشاغل مختلف وجود دارد ، پیداکردن نقطه تقاطع معادلات خط یعنی همان پیدا کردن نقطه ی سر به سر.* در اقتصاد هم نقطه تقاطع معادلات خطی ، عبارتست از : قیمت بازار یا نقطه ای که در آن عرضه و تقاضا با هم برابر باشند. کاربرد تقارنها (محوری و مرکزی ) و دَوَرانها مباحث تقارنها ودورانها که به تبدیلات هندسی معروف هستند،درصنعت و ساختن وسائل و لوازم زندگی استفاده می شوند . مثلاً در بافتن قالی و برای دادن نقش و نگار به آن از تقارن استفاده می شود . در کوزه گری و سفالگری از دوران محوری استفاده می - شود . همچنین در معماریهای اسلامی اغلب از تقارنها کمک گرفته می شود . چرخ گوشت ، آب میوه گیری ، پنکه ، ماشین تراش ُبادورانی که انجام می دهند ، تبدیل انرژی می کنند . علاوه بر آن تبدیلات هندسی برای آموزش مطالبی از ریاضی استفاده می شوند ،مانند : مفهوم جمع و تفریق اعداد صحیح با استفاده از بردار انتقال موازی محور.
-------------------------------------------------------------------
ریاضیات نقش گسترده ای در زندگی آینده افراد داراست ، ریاضیات قادر است با اثر گذاری بر شخصیت انسان آنها را در برابر مشکلات آینده زندگی مقاوم تر کند. مطالعه ریاضیات و تفکر در مسائل ریاضی انسان را خلاق و پویا کرده و قادر است از او شخصیتی بسازد که بهتر در مورد مسائل روزمره زندگی خود استلال و تفکر کند.
آیا ما به عنوان یک مدرس ریاضیـات تـوانسته ایم این بعد ریاضی را به دانشآموزان خود آموزش دهیم ؟
آیا توانسته ایم به او بفهمانیم که میتواند فکر کند و او قادر است استدلال کند؟
گـویا تنهـا تـدریس ریـاضیات شده است ارائـه تعاریف ، مثالـهـا و حـل تمرینات موجود کتاب و ... .
در ریاضیات دبیرستانی دانش آموز مایل است بداند که آنچه می خواند در کجای زندگی او کاربرد دارد ؟
آیا برای او پاسخی داریم؟ یا اینکه سؤال او و ما یکسان است !
چرا باید در کلاسهای خود به جبر ، ریاضی تدریس کنیم؟ چرا به جبر از آنها تمرین و پاسخ بخواهیم ؟
چرا او خود بدنبال یادگیری ریاضیات نیست و تنها این مائیم که با ترفندهای گوناگون او را مجبور به یادگیری و شاید حفظ کردن مفاهیم میکنیم.
چرا نباید متعلم داوطلبانه در فرایند یادگیری شرکت کند ؟
آیا راه کاری وجود دارد و یا راه کارها عملی هستند؟