لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 11
کنترل فعال نامتمرکز سازههای بلند با پسخور شتاب
چکیده:
پاسخ سازههای بزرگ مقیاس و بلند را میتوان با بهرهگیری از الگوریتمهای کنترل فعال مناسب و بکار بردن عملگرها در طبقات کاهش داد و استفاده از روشهای نوین کنترل جهت رسیدن به ترازهای ایمنی بالا در این راستا میباشد. در این مقاله روش کنترل نامتمرکز سازههای بلند با پسخور شتاب ارائه شده است. در روش کنترل نامتمرکز، یک سازه بزرگ به چند زیرسازه کوچکتر تقسیم شد و برای هر زیرسیستم، الگوریتم کنترل مخصوص آن استفاده میشود. زیرسیستمهای مختلف با یکدیگر همپوشانی داشته و در نقاط مشترک با یکدیگر تبادل اطلاعات خواهند داشت. الگوریتم مورد استفاده جهت کنترل سازه، الگوریتم کنترل بهینه لحظهای با بهرهگیری از پسخور شتاب بوده و در انتها یک نمونه عددی جهت الگوریتم پیشنهاد شده در این مقاله و بررسی نتایج آن با حالت کنترل متمرکز ارائه گردیده است.
واژههای کلیدی: کنترل، نامتمرکز، سازههای بلند، پسخور.
1) مقدمه
سازههای بلند از انواع سیستمهای سازهای میباشند که ضرورتاً در کنترل لرزشهای آن باید از کنترل غیرمتمرکز استفاده شود. این لرزشها میتوانند شامل دو دسته لرزشهای کلی و لرزشهای موضعی شوند. از طرفی با توجه به بزرگی این سازهها، مطمئناً بهرهگیری از یک مرکز کنترلی ارتعاشات برای این ساختمان منطقی نبوده و باید از چند مرکز کنترل ارتعاشات استفاده شود.
در سازههای بلند از چندین نوع سیستم باربر گرانشی و زلزله استفاده میشود که غیرمتمرکز کردن کنترل سازه تا اندازه زیادی به سیستم باربر جانبی بستگی دارد. در واقع بحث نامتمرکز کردن کنترل در ترازها، در جهت بالا بردن ایمنی کنترل ارتعاشات سازههای بلند بوده و در این حالت در صورت از کار افتادن یکی از مغزهای کنترل با سریسازی خودکار سیستم میتوان کنترل ارتعاشات سازه را به زیرسیستم سالم سپرد.
به طور کلی کنترل فعال (Active control) سازهها شامل دو بخش الگوریتمهای موردنیاز جهت بدست آوردن مقدار نیروی کنترل و مکانیزمهای اعمال نیرو میباشد. در این نوع کنترل، از الگوریتمهای گوناگونی که دارای دیدگاههای متفاوتی میباشند، استفاده میشود. الگوریتمهایی نظیر کنترل بهینه، کنترل بهینه لحظهای (Instantaneous Optimal Control)، جایابی قطبی (Pole Assignment)، کنترل فضای مودی (IMSC)، پالس کنترل و الگوریتمهای مقاوم (Robust) مانند H2، H∞، کنترل مود لغزشی (Sliding Mode Control) و غیره از جمله الگوریتمهای بکار رفته در کنترل سازه میباشند.
کنترل غیرمتمرکز در آغاز در مورد سیستمهای قدرت بکار رفته و سپس توسط افرادی مانند یانگ و سیلژاک (Yanng & Siljack) گسترش یافته است. در این کنترل، ونگ و دیویدسون (Wan g & Davidson) مساله پایداری سیستم را بررسی کردند. آنها یک شرط لازم و کافی را برای اینکه سیستم تحت قوانین کنترلی با پسخور محلی و جبرانسازی دینامیکی پایدار باشد، بیان کردند. یانگ و همکاران (Yang et al) روش مود لغزشی را برای اینکه کنترل غیرمتمرکز سیستمهای بزرگ مقیاس، زیر اثر ورودی خارجی و با وجود عامل تاخیر زمانی در متغیرهای حالت ارائه کردند. طرح کنترل شامل یک قانون کنترلی غیرمتمرکز و یک فوق صفحه سوئیچینگ از نوع انتگرالی است. آنها ابتدا قانون کنترل غیرمتمرکز را به گونهای تعیین کردند تا شرایط رسیدن کلی (Global Reaching low) برقرار شود.
کنترل غیرمتمرکز در مهندسی عمران اولین بار توسط ویلیامز و ژو (Williams & Xu) در سازههای فضایی انعطافپذیر بررسی شد. سپس ریاسیوتاکی و بوسالیس (Ryaciotaki & Boussalis) از روش کنترل تطبیقی مدل مرجع (Reference Adaptive Control Theory Model) برای تعیین قانون کنترلی غیرمتمرکز استفاده کردند. دیکس و همکاران (Dix et al) چندین روش غیرمتمرکز را برای سازههای فضایی بیان کردند. هینو و همکاران (Hino et al) در مورد مسئله کنترل یک سازه ساختمانی چند درجه آزادی مانند یک ساختمان بلندمرتبه با بهرهگیری از کنترل تطبیقی ساده غیرمتمرکز بحث کردهاند. رفویی و منجمینژاد (Rofooei & Monajeminejad) نسبت به کنترل نامتمرکز سازههای بلند با بهرهگیری از کنترل بهینه لحظهای اقدام نمودند. آنها ابتدا به بررسی دلایل ضرورت استفاده از کنترل غیرمتمرکز پرداخته شده و سپس با طراحی کنترلکنندهها و ماتریس بهره (Gain Matrix) به بررسی دو حالت کنترل یکی با بهرهگیری از پسخور سرعت و دیگری کنترل با بهرهگیری از پسخور سرعت و جابجایی پرداختند.
منجمینژاد و رفویی در ارتباط با کنترل غیرمتمرکز در سازههای بلند، در ادامه به بررسی الگوریتم مود لغزشی (Sliding Mode) به صورت غیرمتمرکز پرداختند. مراحل طراحی کنترلکننده در روش مود لغزشی شامل دو مرحله است. مرحله اول شامل طراحی سطوح لغزش بوده و مرحله دوم طراحی رابطه کنترل یا قانون رسیدن (Reaching Law) را در بر میگیرد. باید توجه داشت که نامتمرکز بودن کنترل، قابلیت اعتماد به پایداری سیستم را افزایش داده و در صورت از کار افتادن کنترل یکی از زیرسیستمها، سیستم کنترل دچار آسیب کلی نخواهد گردید. کنترل نامتمرکز میتواند در دو حالت با درنظر داشتن تاثیرات درجات آزادی مشترک بین زیرسیستمها و یا بدون درنظر داشتن این تاثیرات انجام شود که البته در حالت با درنظر داشتن تاثیرات درجات آزادی به پایداری هر زیرسیستم و کل سیستم کنترل میتوان اطمینان بیشتری داشت.
در مقاله حاضر کنترل متمرکز و نامتمرکز سازههای بلند در حالت سه بعدی با درنظر داشتن درجات آزادی مشترک بین زیرسازهها و اثر دوگانه آنها بر یکدیگر بررسی گردیده است. الگوریتم مورد استفاده کنترل بهینه لحظهای (Instantaneous Optimal Control) میباشد که توسط آقایان یانگ و همکارانش بسط داده شده و از پسخور شتاب جهت محاسبه نیروهای کنترل استفاده گردیده است. روش نامتمرکز کردن کنترل در این مقاله بر اساس تعداد درجات آزادی بوده و نمونههای عددی نیز با بکارگیری الگوریتم کنترل نامتمرکز حل و نتایج آنها با حالت کنترل متمرکز مقایسه گردیده و ارائه شدهاند.
2) روابط حاکم
1-2) کنترل نامتمرکز و روابط وابسته
مدل ساختمان برشی در حالت دو بعدی درنظر میباشد. در این مدل هر طبقه به صورت یک درجه آزادی مدل میشود که به دو تراز بالا و پایین بوسیله یک فنر برشی و یک میراگر متصل شده است. مقالات زیادی در حوزه کنترل سازهها بر اساس این مدل نگاشته شدهاند. منجمینژاد و رفویی مدل سازهای را به صورت ساختمان برشی درنظر گرفته است و روابط مربوطه را بدست آوردهاند. در این حالت معادله دیفرانسیل حاکم بر رفتار دینامیکی یک مدل سازهای دوبعدی به صورت زیر است:
(1)
که در آن M ماتریس جرم، K ماتریس سختی، C ماتریس میرایی، H ماتریس موقعیت کنترلرها، U فرمان کنترلی، شتاب زلزله وارد بر ساختمان، بردار تغییر مکانهای طبقات و {1} بردار ستونی است که تمام مولفههای آن عدد یک میباشد. ماتریسهای رابطه به شرح زیر بوده و نحوه ریز کردن سیستم نیز مطابق شکل 1 میباشد.
شکل (1) مدل سازهای یک ساختمان بلند
(2)
n: تعداد طبقات ساختمان؛
r: تعداد کنترل کنندهها؛
ki: سختی برشی طبقه iام؛
mi: وزن طبقه iام.
در این روابط، xi را میتوان به دو صورت زیر تعریف کرد:
xire: جابجایی طبقه iام نسبت به یک دستگاه اینرسی (تغییر مکان اینرسی)
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 61
گفتار نخست: کلیات
1-1) مقدمه
تامین پایداری سازههای عمرانی در برابر بارهای وارده بر آنها هدف اصلی طراحان و مهندسان عمران میباشد. هنوز هم ساختمانها، پلها و دیگر سازههای ساخت بشر به عنوان سازههایی غیرفعال به لحاظ پایداری تابع جرم و صلبیت خود در برابر بارهای خارجی بوده و توانایی مشخصی برای اینگونه بارها دارند. در چند دهه اخیر به دلایلی چون نرمی زیاد و اجتنابناپذیر سازههای بلند، وجود محدودیتهایی در خصوص میزان لرزش حداکثر به لحاظ آسایش ساکنین، نیاز به ترازهای بالاتر ایمنی در سازههایی با کاربردهای پراهمیت و همینطور ارزش بالای وسایل و تجهیزات داخلی و نصب شده در این سازهها سبب شدهاند که در نظر گرفتن ملاحظاتی ویژه برای سازهها و محدود کردن دامنه لرزش آنها ضرورت یابد. بدین لحاظ روشهای گوناگونی برای محدود کردن پاسخ سازهها به تحریکات خارجی در قالب سیستمهای کنترل غیرفعال (Passive Control) و کنترل نیمه فعال (Semi-Active Control) و کنترل فعال (Active Control) در چند دهه اخیر ابداع و ارائه شده و برخی از آنها عملاً مورد استفاده قرار گرفتهاند.
در حوزه سیستمهای کنترل غیرفعال روشهایی نظیر جدایش لرزهای پی سازه (Base Isolated)، میراگرهای جرمی (TMD)، میراگرهای مایع (TLD) برای نیروی باد و میراگرهایی نظیر میراگرهای اصطکاکی، میراگرهای ویسکوالاستیک (FVD, SVD) و انواع گوناگون دیگر به کار گرفته شدهاند.
در حوزه سیستمهای فعال میتوان به میراگرهای جرمی فعال (AMD)، سیستم کابلهای فعال (AT)، القا کنندههای پالسی (PIC)، سیستمهای با سختی متغیر فعال و .... اشاره نمود که با استفاده از انرژی خارجی قابل بهرهبرداری میباشند.
1-2) بیان موضوع و اهمیت آن
با توجه به محدود بودن میزان عملکرد سیستمهای کنترل غیرفعال در سالهای اخیر، کنترل فعال سازهها به صورت شاخصتری نمود پیدا کرده و مورد توجه پژوهشگران و حتی طراحان قرار گرفته است. ایده کنترل و الگوریتمهای مورد استفاده در آن پیش از آنکه در مهندسی عمران کاربردی شوند در سایر رشتههای مهندسی نظیر برق، مکانیک، هوافضا و الکترونیک کاربرد گستردهای داشته و دارند. هرچند در این رشتهها سیستمهای موردنظر جهت کنترل مشابه موارد موجود در زمینه مهندسی عمران حجیم و با تعداد درجات آزادی بالا نبوده است.
کنترل فعال سازههای عمرانی، به طور کلی شامل دو بخش مکانیزمهای اعمال نیرو و نیز الگوریتمهای مورد نیاز جهت تعیین مقدار نیروی کنترل میباشند. در این راستا، از الگوریتمهای کنترل نسبت به تعیین نیروهای مورد نیاز اقدام و سپس به کنترلکنندهها (Actuators) فرمان اعمال نیرو را میدهد. در کنترل فعال، از الگوریتمهای گوناگونی که دارای دیدگاههای کنترلی متفاوتی میباشند، استفاده میشود. الگوریتمهایی نظیر کنترل بهینه، کنترل بهینه لحظهای (Instantaneous Optimal Control)، جاگذاری قطبی (Pole Assignment)، کنترل فضای مودی (IMSC)، پالس کنترل و الگوریتمهای مقاوم (Robust) مانند ، ، کنترل مود لغزش (Sliding Mode Control) و غیره از جمله الگوریتمهای به کار رفته در کنترل سازه میباشند. هدف نهایی کلیه این روش، کاهش نیروی اعمال شده به سیستم با هدف حفظ عملکرد سیستم کنترل شده است.
با توجه به تعریفهایی که از کنترل فعال توسط آقای یائو (Yao) و سایر پژوهشگران [1] شده است یک سیستم کنترل فعال شامل بخشهای زیر میباشد (شکل 1-1):
شکل (1-1): الگوریتم کلی کنترل فعال سازه
هنگامی که نیروهای کنترل صرفاً بر اساس پاسخ سازهای محاسبه میشوند (حلقه 2) سیستم کنترل، حلقه بسته (Closed–Loop) و هنگامی که نیروهای کنترل صرفاً بر اساس انگیختگی بیرونی محاسبه شود (حلقه 1) سیستم کنترل حلقه باز (Open-Loop) نامیده شده و اگر هر دو حلقه محاسبه نیروهای کنترل به کار گرفته شوند سیستم کنترل حلقه بسته ـ باز (Closed–Open–Loop) نامیده میشود.
از نظر بزرگی، سیستمهای کنترل را میتوان در دو دسته سیستمهای معمولی و سیستمهای بزرگ مقیاس (Large Scale Systems) در نظر گرفت. در سیستمهای معمولی، کنترل سازه به صورت متمرکز مناسب بوده و نیازی به تقسیم سیستم به سیستمهای ریزتر نمیباشد ولی در سیستمهای بزرگ مقیاس نظیر ساختمانهای بلند و حجیم، اندازه سیستم کنترلی و حجم آن در انتقال و جابجایی اطلاعات و فرمانها، به ویژه با توجه به اینکه نیروهای لرزهای در مدت زمان کوتاهی (کمتر از دقیقه) بر سازه وارد میشوند، مشکل ایجاد کرده و تأخیر زمانی قابل توجهی در صدور فرمانها به وجود میآورد. بر این اساس تلاش میشود تا هر بخش از سیستم به صورت مستقل کنترل شود. به هر بخش زیرسیستم گفته شده و یک سیستم متشکل از تعدادمعینی زیرسیستم (Subsystem) خواهد بود.
شیوه ریز کردن یک سیستم به چند زیر سیستم بستگی به طرح سیستم از نظر سازهای، درجات آزادی آن و میزان گستردگی فیزیکی آن دارد. در ادامه در خصوص شیوههای ریز کردن و الگوریتمهای مورد استفاده جهت کنترل هر زیرسیستم بیشتر توضیح داده خواهد شد.
1-3) چارچوب پژوهش
سازههای بلند یکی از انواع سیستمهای سازهای حجیم میباشد که موضوع کنترل نامتمرکز در آن قابل بررسی میباشد. پژوهش حاضر پیرامون امکان نامتمرکز کردن نحوه عمل سیستم کنترل در این نوع سازهها و بررسی پایداری سیستم سازهای و نیز کارایی روش کنترل مورد استفاده تحت اثر تحریکهای مختلف وارده بر سازه بوده و با حالت کنترل متمرکز مقایسه میشود.
1-4) موضوعات بررسی شده در هر گفتار
پیشنهاد رساله دکترای حاضر،شامل پنج گفتار میباشد. در گفتار دوم، الگوریتمهای کنترل متمرکز سازهها و کارهای انجام شده در این زمینه بررسی و مرور میگردند. گفتار سوم نیز بررسی الگوریتمهای کنترل نامتمرکز سازهها و کارهای انجام شده تا کنون را شامل میشود. روشهای ریز کردن سیستمهای سازهای بلند با توجه به نوع سیستم سازهای باربر آنها قابل تعریف بوده و نمیتوان بدون توجه به سیستمهای انتقال بار گرانشی و جانبی طرح کنترل نامتمرکز را پیشنهاد داد. در انتهای این گفتار نیز به بررسی کارهای پژوهشگران در این زمینه پرداخته خواهد شد.
گفتار چهارم به پژوهش پیشنهادی و زمینههای کاری مورد نظر در این رساله میپردازد در این پژوهش الگوریتم پیشنهادی جهت نامتمرکز کردن کنترل سازههای بلند در حالت سه بعدی، به همراه حل یک نمونه مدل سه بعدی دو طبقه ارائه گردیده است. در این گفتار برنامه زمانبندی پژوهش نیز ارائه شده است. گفتار پنجم نیز شامل مراجع و پیوستها میباشد.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 11
کنترل فعال نامتمرکز سازههای بلند با پسخور شتاب
چکیده:
پاسخ سازههای بزرگ مقیاس و بلند را میتوان با بهرهگیری از الگوریتمهای کنترل فعال مناسب و بکار بردن عملگرها در طبقات کاهش داد و استفاده از روشهای نوین کنترل جهت رسیدن به ترازهای ایمنی بالا در این راستا میباشد. در این مقاله روش کنترل نامتمرکز سازههای بلند با پسخور شتاب ارائه شده است. در روش کنترل نامتمرکز، یک سازه بزرگ به چند زیرسازه کوچکتر تقسیم شد و برای هر زیرسیستم، الگوریتم کنترل مخصوص آن استفاده میشود. زیرسیستمهای مختلف با یکدیگر همپوشانی داشته و در نقاط مشترک با یکدیگر تبادل اطلاعات خواهند داشت. الگوریتم مورد استفاده جهت کنترل سازه، الگوریتم کنترل بهینه لحظهای با بهرهگیری از پسخور شتاب بوده و در انتها یک نمونه عددی جهت الگوریتم پیشنهاد شده در این مقاله و بررسی نتایج آن با حالت کنترل متمرکز ارائه گردیده است.
واژههای کلیدی: کنترل، نامتمرکز، سازههای بلند، پسخور.
1) مقدمه
سازههای بلند از انواع سیستمهای سازهای میباشند که ضرورتاً در کنترل لرزشهای آن باید از کنترل غیرمتمرکز استفاده شود. این لرزشها میتوانند شامل دو دسته لرزشهای کلی و لرزشهای موضعی شوند. از طرفی با توجه به بزرگی این سازهها، مطمئناً بهرهگیری از یک مرکز کنترلی ارتعاشات برای این ساختمان منطقی نبوده و باید از چند مرکز کنترل ارتعاشات استفاده شود.
در سازههای بلند از چندین نوع سیستم باربر گرانشی و زلزله استفاده میشود که غیرمتمرکز کردن کنترل سازه تا اندازه زیادی به سیستم باربر جانبی بستگی دارد. در واقع بحث نامتمرکز کردن کنترل در ترازها، در جهت بالا بردن ایمنی کنترل ارتعاشات سازههای بلند بوده و در این حالت در صورت از کار افتادن یکی از مغزهای کنترل با سریسازی خودکار سیستم میتوان کنترل ارتعاشات سازه را به زیرسیستم سالم سپرد.
به طور کلی کنترل فعال (Active control) سازهها شامل دو بخش الگوریتمهای موردنیاز جهت بدست آوردن مقدار نیروی کنترل و مکانیزمهای اعمال نیرو میباشد. در این نوع کنترل، از الگوریتمهای گوناگونی که دارای دیدگاههای متفاوتی میباشند، استفاده میشود. الگوریتمهایی نظیر کنترل بهینه، کنترل بهینه لحظهای (Instantaneous Optimal Control)، جایابی قطبی (Pole Assignment)، کنترل فضای مودی (IMSC)، پالس کنترل و الگوریتمهای مقاوم (Robust) مانند H2، H∞، کنترل مود لغزشی (Sliding Mode Control) و غیره از جمله الگوریتمهای بکار رفته در کنترل سازه میباشند.
کنترل غیرمتمرکز در آغاز در مورد سیستمهای قدرت بکار رفته و سپس توسط افرادی مانند یانگ و سیلژاک (Yanng & Siljack) گسترش یافته است. در این کنترل، ونگ و دیویدسون (Wan g & Davidson) مساله پایداری سیستم را بررسی کردند. آنها یک شرط لازم و کافی را برای اینکه سیستم تحت قوانین کنترلی با پسخور محلی و جبرانسازی دینامیکی پایدار باشد، بیان کردند. یانگ و همکاران (Yang et al) روش مود لغزشی را برای اینکه کنترل غیرمتمرکز سیستمهای بزرگ مقیاس، زیر اثر ورودی خارجی و با وجود عامل تاخیر زمانی در متغیرهای حالت ارائه کردند. طرح کنترل شامل یک قانون کنترلی غیرمتمرکز و یک فوق صفحه سوئیچینگ از نوع انتگرالی است. آنها ابتدا قانون کنترل غیرمتمرکز را به گونهای تعیین کردند تا شرایط رسیدن کلی (Global Reaching low) برقرار شود.
کنترل غیرمتمرکز در مهندسی عمران اولین بار توسط ویلیامز و ژو (Williams & Xu) در سازههای فضایی انعطافپذیر بررسی شد. سپس ریاسیوتاکی و بوسالیس (Ryaciotaki & Boussalis) از روش کنترل تطبیقی مدل مرجع (Reference Adaptive Control Theory Model) برای تعیین قانون کنترلی غیرمتمرکز استفاده کردند. دیکس و همکاران (Dix et al) چندین روش غیرمتمرکز را برای سازههای فضایی بیان کردند. هینو و همکاران (Hino et al) در مورد مسئله کنترل یک سازه ساختمانی چند درجه آزادی مانند یک ساختمان بلندمرتبه با بهرهگیری از کنترل تطبیقی ساده غیرمتمرکز بحث کردهاند. رفویی و منجمینژاد (Rofooei & Monajeminejad) نسبت به کنترل نامتمرکز سازههای بلند با بهرهگیری از کنترل بهینه لحظهای اقدام نمودند. آنها ابتدا به بررسی دلایل ضرورت استفاده از کنترل غیرمتمرکز پرداخته شده و سپس با طراحی کنترلکنندهها و ماتریس بهره (Gain Matrix) به بررسی دو حالت کنترل یکی با بهرهگیری از پسخور سرعت و دیگری کنترل با بهرهگیری از پسخور سرعت و جابجایی پرداختند.
منجمینژاد و رفویی در ارتباط با کنترل غیرمتمرکز در سازههای بلند، در ادامه به بررسی الگوریتم مود لغزشی (Sliding Mode) به صورت غیرمتمرکز پرداختند. مراحل طراحی کنترلکننده در روش مود لغزشی شامل دو مرحله است. مرحله اول شامل طراحی سطوح لغزش بوده و مرحله دوم طراحی رابطه کنترل یا قانون رسیدن (Reaching Law) را در بر میگیرد. باید توجه داشت که نامتمرکز بودن کنترل، قابلیت اعتماد به پایداری سیستم را افزایش داده و در صورت از کار افتادن کنترل یکی از زیرسیستمها، سیستم کنترل دچار آسیب کلی نخواهد گردید. کنترل نامتمرکز میتواند در دو حالت با درنظر داشتن تاثیرات درجات آزادی مشترک بین زیرسیستمها و یا بدون درنظر داشتن این تاثیرات انجام شود که البته در حالت با درنظر داشتن تاثیرات درجات آزادی به پایداری هر زیرسیستم و کل سیستم کنترل میتوان اطمینان بیشتری داشت.
در مقاله حاضر کنترل متمرکز و نامتمرکز سازههای بلند در حالت سه بعدی با درنظر داشتن درجات آزادی مشترک بین زیرسازهها و اثر دوگانه آنها بر یکدیگر بررسی گردیده است. الگوریتم مورد استفاده کنترل بهینه لحظهای (Instantaneous Optimal Control) میباشد که توسط آقایان یانگ و همکارانش بسط داده شده و از پسخور شتاب جهت محاسبه نیروهای کنترل استفاده گردیده است. روش نامتمرکز کردن کنترل در این مقاله بر اساس تعداد درجات آزادی بوده و نمونههای عددی نیز با بکارگیری الگوریتم کنترل نامتمرکز حل و نتایج آنها با حالت کنترل متمرکز مقایسه گردیده و ارائه شدهاند.
2) روابط حاکم
1-2) کنترل نامتمرکز و روابط وابسته
مدل ساختمان برشی در حالت دو بعدی درنظر میباشد. در این مدل هر طبقه به صورت یک درجه آزادی مدل میشود که به دو تراز بالا و پایین بوسیله یک فنر برشی و یک میراگر متصل شده است. مقالات زیادی در حوزه کنترل سازهها بر اساس این مدل نگاشته شدهاند. منجمینژاد و رفویی مدل سازهای را به صورت ساختمان برشی درنظر گرفته است و روابط مربوطه را بدست آوردهاند. در این حالت معادله دیفرانسیل حاکم بر رفتار دینامیکی یک مدل سازهای دوبعدی به صورت زیر است:
(1)
که در آن M ماتریس جرم، K ماتریس سختی، C ماتریس میرایی، H ماتریس موقعیت کنترلرها، U فرمان کنترلی، شتاب زلزله وارد بر ساختمان، بردار تغییر مکانهای طبقات و {1} بردار ستونی است که تمام مولفههای آن عدد یک میباشد. ماتریسهای رابطه به شرح زیر بوده و نحوه ریز کردن سیستم نیز مطابق شکل 1 میباشد.
شکل (1) مدل سازهای یک ساختمان بلند
(2)
n: تعداد طبقات ساختمان؛
r: تعداد کنترل کنندهها؛
ki: سختی برشی طبقه iام؛
mi: وزن طبقه iام.
در این روابط، xi را میتوان به دو صورت زیر تعریف کرد:
xire: جابجایی طبقه iام نسبت به یک دستگاه اینرسی (تغییر مکان اینرسی)
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 61
گفتار نخست: کلیات
1-1) مقدمه
تامین پایداری سازههای عمرانی در برابر بارهای وارده بر آنها هدف اصلی طراحان و مهندسان عمران میباشد. هنوز هم ساختمانها، پلها و دیگر سازههای ساخت بشر به عنوان سازههایی غیرفعال به لحاظ پایداری تابع جرم و صلبیت خود در برابر بارهای خارجی بوده و توانایی مشخصی برای اینگونه بارها دارند. در چند دهه اخیر به دلایلی چون نرمی زیاد و اجتنابناپذیر سازههای بلند، وجود محدودیتهایی در خصوص میزان لرزش حداکثر به لحاظ آسایش ساکنین، نیاز به ترازهای بالاتر ایمنی در سازههایی با کاربردهای پراهمیت و همینطور ارزش بالای وسایل و تجهیزات داخلی و نصب شده در این سازهها سبب شدهاند که در نظر گرفتن ملاحظاتی ویژه برای سازهها و محدود کردن دامنه لرزش آنها ضرورت یابد. بدین لحاظ روشهای گوناگونی برای محدود کردن پاسخ سازهها به تحریکات خارجی در قالب سیستمهای کنترل غیرفعال (Passive Control) و کنترل نیمه فعال (Semi-Active Control) و کنترل فعال (Active Control) در چند دهه اخیر ابداع و ارائه شده و برخی از آنها عملاً مورد استفاده قرار گرفتهاند.
در حوزه سیستمهای کنترل غیرفعال روشهایی نظیر جدایش لرزهای پی سازه (Base Isolated)، میراگرهای جرمی (TMD)، میراگرهای مایع (TLD) برای نیروی باد و میراگرهایی نظیر میراگرهای اصطکاکی، میراگرهای ویسکوالاستیک (FVD, SVD) و انواع گوناگون دیگر به کار گرفته شدهاند.
در حوزه سیستمهای فعال میتوان به میراگرهای جرمی فعال (AMD)، سیستم کابلهای فعال (AT)، القا کنندههای پالسی (PIC)، سیستمهای با سختی متغیر فعال و .... اشاره نمود که با استفاده از انرژی خارجی قابل بهرهبرداری میباشند.
1-2) بیان موضوع و اهمیت آن
با توجه به محدود بودن میزان عملکرد سیستمهای کنترل غیرفعال در سالهای اخیر، کنترل فعال سازهها به صورت شاخصتری نمود پیدا کرده و مورد توجه پژوهشگران و حتی طراحان قرار گرفته است. ایده کنترل و الگوریتمهای مورد استفاده در آن پیش از آنکه در مهندسی عمران کاربردی شوند در سایر رشتههای مهندسی نظیر برق، مکانیک، هوافضا و الکترونیک کاربرد گستردهای داشته و دارند. هرچند در این رشتهها سیستمهای موردنظر جهت کنترل مشابه موارد موجود در زمینه مهندسی عمران حجیم و با تعداد درجات آزادی بالا نبوده است.
کنترل فعال سازههای عمرانی، به طور کلی شامل دو بخش مکانیزمهای اعمال نیرو و نیز الگوریتمهای مورد نیاز جهت تعیین مقدار نیروی کنترل میباشند. در این راستا، از الگوریتمهای کنترل نسبت به تعیین نیروهای مورد نیاز اقدام و سپس به کنترلکنندهها (Actuators) فرمان اعمال نیرو را میدهد. در کنترل فعال، از الگوریتمهای گوناگونی که دارای دیدگاههای کنترلی متفاوتی میباشند، استفاده میشود. الگوریتمهایی نظیر کنترل بهینه، کنترل بهینه لحظهای (Instantaneous Optimal Control)، جاگذاری قطبی (Pole Assignment)، کنترل فضای مودی (IMSC)، پالس کنترل و الگوریتمهای مقاوم (Robust) مانند ، ، کنترل مود لغزش (Sliding Mode Control) و غیره از جمله الگوریتمهای به کار رفته در کنترل سازه میباشند. هدف نهایی کلیه این روش، کاهش نیروی اعمال شده به سیستم با هدف حفظ عملکرد سیستم کنترل شده است.
با توجه به تعریفهایی که از کنترل فعال توسط آقای یائو (Yao) و سایر پژوهشگران [1] شده است یک سیستم کنترل فعال شامل بخشهای زیر میباشد (شکل 1-1):
شکل (1-1): الگوریتم کلی کنترل فعال سازه
هنگامی که نیروهای کنترل صرفاً بر اساس پاسخ سازهای محاسبه میشوند (حلقه 2) سیستم کنترل، حلقه بسته (Closed–Loop) و هنگامی که نیروهای کنترل صرفاً بر اساس انگیختگی بیرونی محاسبه شود (حلقه 1) سیستم کنترل حلقه باز (Open-Loop) نامیده شده و اگر هر دو حلقه محاسبه نیروهای کنترل به کار گرفته شوند سیستم کنترل حلقه بسته ـ باز (Closed–Open–Loop) نامیده میشود.
از نظر بزرگی، سیستمهای کنترل را میتوان در دو دسته سیستمهای معمولی و سیستمهای بزرگ مقیاس (Large Scale Systems) در نظر گرفت. در سیستمهای معمولی، کنترل سازه به صورت متمرکز مناسب بوده و نیازی به تقسیم سیستم به سیستمهای ریزتر نمیباشد ولی در سیستمهای بزرگ مقیاس نظیر ساختمانهای بلند و حجیم، اندازه سیستم کنترلی و حجم آن در انتقال و جابجایی اطلاعات و فرمانها، به ویژه با توجه به اینکه نیروهای لرزهای در مدت زمان کوتاهی (کمتر از دقیقه) بر سازه وارد میشوند، مشکل ایجاد کرده و تأخیر زمانی قابل توجهی در صدور فرمانها به وجود میآورد. بر این اساس تلاش میشود تا هر بخش از سیستم به صورت مستقل کنترل شود. به هر بخش زیرسیستم گفته شده و یک سیستم متشکل از تعدادمعینی زیرسیستم (Subsystem) خواهد بود.
شیوه ریز کردن یک سیستم به چند زیر سیستم بستگی به طرح سیستم از نظر سازهای، درجات آزادی آن و میزان گستردگی فیزیکی آن دارد. در ادامه در خصوص شیوههای ریز کردن و الگوریتمهای مورد استفاده جهت کنترل هر زیرسیستم بیشتر توضیح داده خواهد شد.
1-3) چارچوب پژوهش
سازههای بلند یکی از انواع سیستمهای سازهای حجیم میباشد که موضوع کنترل نامتمرکز در آن قابل بررسی میباشد. پژوهش حاضر پیرامون امکان نامتمرکز کردن نحوه عمل سیستم کنترل در این نوع سازهها و بررسی پایداری سیستم سازهای و نیز کارایی روش کنترل مورد استفاده تحت اثر تحریکهای مختلف وارده بر سازه بوده و با حالت کنترل متمرکز مقایسه میشود.
1-4) موضوعات بررسی شده در هر گفتار
پیشنهاد رساله دکترای حاضر،شامل پنج گفتار میباشد. در گفتار دوم، الگوریتمهای کنترل متمرکز سازهها و کارهای انجام شده در این زمینه بررسی و مرور میگردند. گفتار سوم نیز بررسی الگوریتمهای کنترل نامتمرکز سازهها و کارهای انجام شده تا کنون را شامل میشود. روشهای ریز کردن سیستمهای سازهای بلند با توجه به نوع سیستم سازهای باربر آنها قابل تعریف بوده و نمیتوان بدون توجه به سیستمهای انتقال بار گرانشی و جانبی طرح کنترل نامتمرکز را پیشنهاد داد. در انتهای این گفتار نیز به بررسی کارهای پژوهشگران در این زمینه پرداخته خواهد شد.
گفتار چهارم به پژوهش پیشنهادی و زمینههای کاری مورد نظر در این رساله میپردازد در این پژوهش الگوریتم پیشنهادی جهت نامتمرکز کردن کنترل سازههای بلند در حالت سه بعدی، به همراه حل یک نمونه مدل سه بعدی دو طبقه ارائه گردیده است. در این گفتار برنامه زمانبندی پژوهش نیز ارائه شده است. گفتار پنجم نیز شامل مراجع و پیوستها میباشد.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 14
پول الکترونیکی با شتاب از راه می رسد ما کجا ایستاده ایم ؟
مقدمه
یکی از سازمانهای که مردم جامعه ما حتما با آن آشنایی دلرند بانکها هستند و شما کمتر فردی را می یابید که با نام بانک آشنایی نداشته باشد . اغلب ما طی ما جهت دریافت حقوق پرداخت قبوض مختلف آب برق گاز تلفن دریافت چک واریز وجوهی به انواع حسابهای شخصی و یا دولتی پرداخت اقساط و.. به بامکها مراجعه داریم و اکثر مواقع به ویزه در روزهای پایانی ماه در شعبی خاص با صفهای طویل مشتریان درپشت باجه ها عجله افراد جهت پیشی گرفتن از یکدیگر و تلاش کارکنان بانکها جهت پاسخگویی به خواست مشتریان بی طاقت و بعضا عصبی مواجه هستیم .
شیوه و نظام سنتی در داد وستد و پرداخت وجوه حجم زیاد پول در گردش نبود اطلاع مشتریان از خدمات بانکی نبود ارتباط مستقیم بانکها با یکدیگر مشکلات متعاقب دریافت و وصول چکها و .... باعث آن شده است که گسترش شعب بانکها و افزایش کارکنان آنها پاسخگوی نیازهای روزافزون مشتریان نباشد وما کماکان شاهد وجود صفهای مشتریان در بانکها هستیم . امروزه بانکداری الکترونیکی که بر پایه خدمات حاصل از فناوری اطلاعات و ارتباطات طراحی می گردد قادر است که در نظام بانکی کشور ما نیز همانند بسیاری از کشورها عامل تحول اساسی گردد و تغییری بنیادی در شیوه سنتی بانکداری ملی بیشتر از هشت دهه فعالیت ایجاد نماید . در این ارتباط به ویزه طی سالهای اخیر گامههای مهمی برداشته شده که هنوز وافی به مقصود نمی باشد .
امروزه اطلاعات در کلیه جوامع و سازمانها ارزش بسیار زیادی یافته است و اگر منابع انسانی را نیز به عنوان ثروت اصلی سازمانها می نامند به دلیل دانش و اطلاعاتی است که افراد میتوانند داشته باشند . در بازارهای مالی امروزدنیا اطلاعات در غالب شبکه های رایانه ای دائما در حال حرکت و جابجایی از گوشه ای از دنیا به گوشه ای دیگر است نظام بانکداری کشور ما نیز به طور طبع به عنوان بخش حساسی از اقتصاد ملی وجزئی از اقتصاد جهانی و مجموعه بازازهای بین المللی نمی تواند از همراهی با تحول غیر قابل اجتناب که رهاورد دانش اطلاعات و ارتباطات است غافل گردد .
پول الکترونیکی چیست؟
طی دو دهه قبل ما شاهد رشد روزاقزون استفاده از رایانه در نظام بانکداری به شکل گسترده بوده ابم و طی سالهای اخیر تاثیر وجود ماشین های خود دریافت خود پرداخت و یا تجهیزات ATM و pos امکان استفاده از بانکداری الکترونیکی و کارت اعتباری , کارت بدهی , کارت هوشمند, و ....را مهیا ساخته ایم اینگونه کارتها را کارت پول یا پول کارت و یا اصطلاحاٌ پول الکترونیکی گویند.
یکی از برنامه هایی که اخیرا در نظام بانکی کشور با جدیت بیشتر و در راستای استفاده مطلوب و عملی از ویژگی ها و مزایای فناوری اطالاعات و ارتباطات , دنبال شده است استقرار طرح شبکه تبادل اطلاعات بین بانکی است که آن را مختصرا شتاب گویند.
این طرح قصد آن دارد تا بعنوان زیر ساخت استفاده از پول الکرونیکی در سطح جامعه ایفای نقش نماید.
این شبکه انتقال اطلاعات یکی از طرحهای مهم و اساسی در استقرار نظام بانکداری الکترونیکی است. که قادر است اطلاعات پولی و مالی را بین بانکها از طریق بستر رایانه ای و مخابراتی انتقال دهد و در نهایت کلیه بانکهای کشور تحت پوشش آن قرار خواهند گرفت.
یکی از اساسی ترین مزایای این طرح یک پارچگی کلیه شعب تحت پوشش طرح در بانکهای عضو می باشد. و لذا محدودیت جغرافیایی و مشکلات جابجایی فیزیکی مشتریان بانکها را حل خواهد نمود. بنابراین در این نظامهای پرداخت الکترونیکی کارتهای پرداخت مستقل از بانک صادره آن توسط کلیه پایانه ها و بنگاه های اقتصادی مورد پذیرش قرار می گیرد. استفاده از این کارتها به جای پول می تواند همراه با صرفه جویی هایی در هزینه های مشتریان وبانکها گردد.
به طور کلی این گونه صرفه جویی ها وبعبارتی مزایای ناشی از استقرار طرح شامل صرفه جویی های مستقیم و غیر مستقیم است. صرفه جویی های مستقیم طرح قابل اندازه گیری است و حالت کمی دارد این مزایا عبارتند از : صرفه جویی در دریافت و پرداخت , چاپ و نشر اسکناس , ضرب مسکوک , حمل و نقل پول و امور بایگانی اسناد بانکی , صرفه جویی های غیر مستقیم طرح نیز در زمینه های اقتصادی , اجتماعی , فرهنگی و سیاسی مطرح است که هرچند محسوس است ولی دارای حالت کیفی هستند و قابل اندازه گیری نیست.
در ارتباط با مزایای کیفی طرح می توان موارد زیر را عنوان نمود:
گسترش پول التکرونیکی مردم را از مراجعه به بانکها بخصوص شعبه مشتری بی نیاز می کند , بنا براین مراجعه نکردن مشتریان به شعب مختلف کاهش ترافیک حفظ محیط زیست مصرف سوخت و لذا توزیع متناسب مشتریان در شعب بانکها را به همراه خواهد داشت یکی از ویژگی های دیگر این طرح تبادل اطالاعات پولی و بانکی به صورت یکنواخت در سطح شبکه بانک است و نیز می دانیم که اطلاعات در بازارهای مالی دارای چه نقش حساسی است که به عنوان دارایی ارزنده ای در این بازارها محسوب می گردد.
به هر حال با استقرار کامل طرح حضور فیزیکی مشتریان و ازدحام آنان در سطح شعب بانکها کاهش خواهد یافت کاهش حجم پول و گردش آن از دیگرمزایای این طرح است
جایگاه پول الکترونیک در اقتصا د مدرن
با توجه به پیشرفت روز افزون فناوری اطلاعات وگسترش استفاده از پول الکترونی
درفضا ی شبکه های رایانه ای ازاواسطدهه 1990شا یدبتوان دوره اقثصاداینترنتی نامید
اهمیت پیدایشپول الکترونیکی به حدی است که برخی ازاقتصاددان ازان به عنوان انقلابی
که می تواندموجب انتقال قدرت ازدولت ها وبا نک های مرکزی به سرما یه گذاران مصرف کنندگان وکارافرینان شود یاد می کنند. پول الکترونیکی یا پول دیجیتالی ارزش پولی واحدهای پول منتشر شده از سوی دولت یا بخش خصوصی است که به شکل الکترونیکی بر روی یک وسیله الکترونیکی ذخیره شده است . پول الکترونیکی نوعی ابزار مالی الکترونیکی است که حداقل از عهده انجام همه وظایف پول بر می آید . مهمترین ویزگی پول الکترونیکی "فراملیتی" ویا "بی مرز " بودن آن است که خود نقش مهمی در اثر گذاری بر سایر متغیر های اقتصادی ایفا می کند این پول به طور بلغوه می تواند بی ثباتی بازارهای ارز خارجی را نیز افزایش دهد از آنجا که پول الکترونیکی نماینده پول واقعی است لذا بایستی یک نرخ ارز و یک بازار ارز خارجی در فضای رایانه ای وجود داشته باشد .
در حال حاضر اعلب ناشران پولهای الکترونیکی در اثر فشارهای رقابتی اقدام به پرداخت بهره به مانده موجودی پولهای الکترونیکی افراد می نمایند بنابراین یکی از مزیت های پول الکترونیکی نسبت به پول معمولی آن است که این نوع پول علاوه بر برخوردار از قابلیتهای اسکناس و مسکوک از درآمد سود یا بهره در کشورهای مختلف نیز برخوردار است .
پول الکترونیکی از طریق سرعت بخشیدن به مبادلات پولی سرعت گردش پول را افزایش داده و در نتیجه تقاضای اسکناس و مسکوک را کاهش می دهد .
پول الکترونیکی به لحاظ ویزگیهایش می تواند جایگزین پول بانک مرکزی گردیده ودر صورتی که نگهداری ذخیره قانونی اجباری نباشد و موجودی پول الکترونیکی در اندازه گیری حجم پول لحاظ شده باشد موجب افزایش عرضه پول شود زیرا کاهش در حجم اسکناس و مسکوک بانک مرکزی با افزایش