انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

طراحی ساختمان 60 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 60

 

طراحی ساختمان

بارگذاری ( تحلیل ( طراحی

بارگذاری:

انواع بار عبارتند از:

بار مرده D

بار زنده L

زلزله E

باد W

خاک S

تحلیل:

که نیروهای تکیه‌گاهی را مورد بررسی قرار می‌دهد.

در تحلیل در ادامه مبحث استاتیکی برای محاسبه مقادیر N, V, M داخلی قطعاتی بارگذاری شده است و همچنین محاسبه عکس‌العمل‌های بوجود آمده ناشی از این بارگذاری‌هاست. انواع عکس‌العمل‌های موجود که در ساختمان‌ها وجود دارد، به اشکال زیر مدل می‌شود.

شرایط تعادل

1. صفحه:

2. فضا:

 

نکته: سازه‌ای که حرکت کرده و در آن معادلات تحت تاثیر قرار گیرد، دیگر یک سازه متعادل نیست و به آن یک سازه دینامیکی می‌گویند. اتفاقی مانند:

ناپایداری محسوب نمی‌شود، چون سازه میل به برگشت به حالت اولیه دارد.

نکته: هر نوع حرکتی که سازه نتواند آن را جذب نماید و مجدداً خود را به حال اولیه برگرداند، پایداری سازه‌ای نام دارد. به عنوان مثال، تا زمانی که بر اساس قانون هوک به حالت اولیه برمی‌گردد، هر نوع حرکتی در آن پایدار محسوب می‌شود.

نکته: فنر تنها در راستای K مربوط به مقاومت یک مولفه‌ای دارد، استفاده از فنر در مدل‌های اتصالی ساختمانی کاربرد آنچننی ندارد، در محدوده دینامیک غیرخطی در محل تسلیم شدن گره‌ها کاربرد دارد.

برای مهندسی پی جهت مدولاسیون واکنش‌های خاک بر پس نوع خاک از لحاظ k طبقه‌بندی می‌شود و سپس المان آن به برنامه تعریف می‌شود.

خاک نرم K1 خاک شنی K2

از میان پنج حالت فوق، کلی‌ترین حالت تکیه‌گاهی غلطکی، مفصلی و گیردار هستند. تئوری مربوط به سازه‌های ایزواستاتیک (معین) تا زمانی که تعداد مجهولات با تعداد روابط شرطی برابر نماید، به شرح زیر است:

 

نکته: علاوه بر شرط فوق، کنترل شکل هندسی و نحوه قرارگیری تکیه‌گاه‌ها نیز مهم است.

ناپایدار هندسی 3>5 3=r روابط شرطی 5=R مجهولات

ناپایدار هندسی 3>8 3=r 8=R

تئوری مربوط به سازه‌های هیپراستاتیک (نامعین):

در صورتی که تعداد مجهولات در یک سازه بیش از تعداد روابط شرطی باشد، در آن صورت آن سازه نامعین است، یعنی نمی‌توان بر اساس تئوری‌های درس استاتیک آن را آنالیز نمود.

یک درجه نامعین



خرید و دانلود  طراحی ساختمان 60 ص


طراحی تحلیل سازه 28 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 28

 

جوش

اتصالات، قطعات فلزی به کمک حرارت به طوری که حرارت وارده آنها را به شکل خمیری و یا مذاب درآورده، فرآیند جوشکاری نامیده می‌شود.

انواع اتصالات جوشی

اتصال لب به لب (Butt joints): برای اتصال ورق‌های مسطح با ضخامت‌های یکسان و یا تقریباً یکسان و همچنین جلوگیری از خروج از مرکزیت از این نوع درز جوش استفاده می‌شود. در این اتصالات معمولاً از جوش شیاری با نفوذ کامل استفاده می‌شود.

اتصال رویهم (Lap Joints): به دلیل سادگی اتصال دادن و سهولت در تنظیم اتصال بکار می‌رود. در این اتصالات اکثراً از جوش گوشه استفاده می‌شود.

اتصال گونیا (Corner Joints): در این اتصالات اکثراً از جوش گوشه استفاده می‌شود.

اتصال سپری (Tee Joints): برای ساخت نیم‌رخ‌های مرکب I, T و قطعاتی که با زاویه با هم جفت می‌گردند. این اتصالات نیر اکثراً از جوش گوشه استفاده می‌شود.

اتصال پیشانی (Edge Joints): این اتصالات معمولاً برای نگهداری دو یا چند صفحه در یک سطح بکار می‌رود.

انواع جوش:

جوش شیاری (Groove Weld)؛

جوش گوشه (Fillet Weld)؛

جوش گام (Slot Weld)؛

جوش انگشتانه (Plug Weld)؛

در اتصالات ساختمانی نسبت تقریبی استفاده از این جوش‌ها به قرار زیر است:

جوش گوشه 80درصد، جوش شیاری 15درصد، جوش کام و جوش انگشتانه 5 درصد.

علایم جوشکاری

جهت ایجاد ارتباط میان طراح و جوشکار و همچنین مهندس ناظر نیاز با علائم ویژه‌ای می‌باشد که بتون نوع، طول، محل و ... جوش مورد نیاز را نمایش داد. در جدول زیر، کلیه علائم برای مشخصه‌های یک جوش آمده است که می‌توان از این علائم بر روی نقشه‌های محاسباتی استفاده نمود.

سطح موثر جوش (A)

تنش‌های مجازی که برای انواع مختلف جوش معرفی می‌گردد، تنش‌های اسمی هستند که بر روی سطح موثر جوش عمل می‌کنند. داریم:

Ae = te * le

که در آن:

te: گلوی موثر جوش

le: طول جوش می‌باشد.

جدول 1-1: پیکان جوش

*******************

گلوی موثر جوش

1. جوش شیاری

الف) جوش شیاری با نفوذ کامل:

{T1. T2}; T1=T2=T(te=T ضخامت ورق‌ها

شکل************

{T1. T2}; T1<T2(te=T1 ضخامت ورق‌ها

شکل ***********

ب) جوش شیاری با نفوذ نسبی

45o ≤ α ≤ 60 ( te = D-3mm

شکل ****************

α ≥ 60o ( te = D

شکل *********

2. جوش گوشه

الف) جوش گوشه با ساق‌های مساوی a

شکل *************

 

ب) جوش گوشه با ساق‌های نامساوی a, b

شکل ******

 

تذکر:

اندازه گلوله موثر جوش‌های گوشه که بوسیله روش قوس الکتریکی اتوماتیک زیر پودری بدست آمده، به شرح زیر توسط آیین‌نامه اصلاح گردیده است تا اثر کیفیت برتر جوش درنظر گرفته شود:

الف) برای جوش‌های گوشه با اندازه ساق 10 میلی‌متر و کمتر، اندازه گلوی موثر مساوی اندازه ساق (a) درنظر گرفته می‌شود.

ب) برای جوش‌های گوشه با اندازه ساق بزرگتر از 10 میلی‌متر، اندازه گلوی موثر مساوی te=0.707a+3mm درنظر گرفته می‌شود.

3. جوش کام و انگشتانه

سطح اسمی برش در جوش‌های کام و انگشتانه مساوی مساحت اسمی آنها در صفحه برش می‌باشد.

حداقل اندازه جوش

برای اطمینان از ذوب کامل، آیین‌نامه حداقلی برای جوش که بر اساس ضخامت ورق ضخیم‌تر تعیین می‌گردد را مطابق جدول زیر لازم می‌داند:

جدول 1-2: حداقل اندازه جوش گوشه و حداقل گلوی موثر برای جوش شیاری با نفوذ نسبی

ضخامت فلز مینا (t) بر اساس ضخامت قطعه ضخیم‌تر (میلی‌متر)

حداقل اندازه جوش گوشه (میلی‌متر)

حداقل اندازه گلوی موثر (te) برای جوش شیاری با نفوذ نسبی (میلی‌متر)

تا 6

3

3

12-6

5

5

20-12

6

6

38-20

8

8

57-38

8

10

152-57

8

12

152 و بزرگتر

8

16

تذکرات:

اندازه جوش گوشه مساوی طول ساق آن می‌باشد.

اندازه جوش نباید از ضخامت قطعه نازکتر بیشتر باشد.

در اتصال بال به جان تیر ورق‌ها، رعایت اندازه حداقل الزامی است.

حداکثر اندازه جوش گوشه

در طول لبه‌های قطعات به ضخامت 4 تا 6 میلی‌متر، حداکثر اندازه مجاز جوش مساوی ضخامت قطعه می‌باشد.



خرید و دانلود  طراحی تحلیل سازه 28 ص


طراحی فنداسیون گسترده بر چشمه های و نیکلر 11 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 11

 

طراحی فنداسیون گسترده بر چشمه های و نیکلر:

مقدمه

در این فصل مبحثی در مورد انتخاب پارامترهایی برای ابزار طارحی فونداسیون گسترده ساده که با توضیح مختصری از این ابزار ها ادامه خواهد یافت. مثالهایی نیز از کاربرد این ابزارها ارائه شده است. که با نتیجه گیری کلی همراه خواهد شد. این مبحث بر پاسخهای ساختاری گستره نسبت به عوامل تکنیکی زمین متمرکز است.

5.2 گزینش پارامترهای خاک:

5-2-1 مدلهایی برای تحلیل بر هم کنش فونداسیون خاک:

در طراحی فونداسیون گستره: خاک در دو مسیر ارائه می شود (شکل 5.1):

الف) به عنوان مجموعه ای از چشمه ها، فرضیه وینکلر یا ،

ب9 پیوستار ، اغلب به نیمه فضای الاستیکی رجعت داده می شود. طبق فرضیه وینکلر (5.1) فشار تماس P در نقطه پایه فونداسیون به W قرار گیری، نسبتی مانند زیر است.

فرمول (5.1)

همانطور که در شکل (5.1) دیده می شود، ثبات نسبت K معمولاً مقیاس واکنش شیب یا سختی چشمه وینکلر نامیده می شود. این فرم پشتیبانی همچنین به مدل مایع چگال بر می گردد. زیرا پاسخ آن به مایع چگال مشابه است؛ شکل 5.1 (a)، با u که نشان دهنده فشار هیدرواستاتیک است. بنابر این واحدهای قیاس واکنش همانند این واحدها برای وزن واحد است.

خاک همچنین می تواند پیوستار معرفی شود؛ هم الاستیک و هم غیر ااستیک ، (شکل 5.1، b) در حالت اول شناخت بهتر به عنوان فضای الاستیک را می توان بوسیله تعدادی راه حل های بسته بر پایه فرضیه الاستیکی مورد بررسی قرار داد. حالت دوم (پارامترهای اضافه C برای انسجام و Q برای زاویه اصطکاک) در تمارین هر روزه به سختی تنظیم می شود و فقط می تواند به وسیله استفاده از روشهای عددی مانند روش عناصر محدود حل شود.

پاسخ روشهای مختلف در شکل 5.2 برای دو حالت صفر و فونداسیون محدود نسبت به خاک قابل مشاهده است. تفاوت برای فشار تماس تحت فونداسیون سخت و برای قرار گیری فونداسیونهای انعطاف پذیر دوباره قابل ذکر است. این نکته آخر ضعف مدل وینکلر را نشان می دهد. از تنها نقاط تحت استقرار فونداسیون به عنوان نتیجه بارهای فونداسیون به منظور محاسبه افزایش سختی خاک در مناطق فونداسیون ، سختی دورترین چشمه ها باید افزایش یابد (5.2).

5.2.2 تعیین مقیاسهای واکنش شیبی:

مقیاسهای واکنش شیب از طریق زیر بدست می آید. الف) آزمایش بار مسطح، ب) جدول ارزشهای نمونه ، ج) محاسبه استقرار فونداسیون .

روش نسبی بدست آوردن مقیاسهای واکنش شیب بوسیله ابزارهای آزمایش بار که در یک سطح چهار گوش 1ft (cm 30) قرار می گیرد، انجام می شود. ضعف این روش آن است که ضخامت محدودی از خاک در زمان مقایسه با بار لایه، قابل بارگیری است. این نیازها نیازمند اصلاح برای شکل و بعد گستره است.

این بروشور حاوی جداولی با مقیاسهای نمونه برای سطح cm 30 است، مانند آنچه توسط ترزاقی ارئه شده است (5.3) . وابستگی به آزمونهای موقعیتی ، مانند آزمون استاندارد نفوذ (spt) نیز ارائه شده است، به عنوان مثال دی ملو (5.4) . این جداول و همبستگی آنها دامنه وسیعی از مقادیری را که می توانند با مقیاسها منتسب باشند را نشان می دهند.

از این رو مقیاس واکنش شیب خاصیت و ویژگی خاک تلقی نمی شود اما با پاسخی به بار ارایه شده در سطح مورد بررسی است، ارزش آن در سطح آزمایش نیازمند تصحیح برای بعد و شکل فونداسیون واقعی است. این تصحیح نقشی از چگونگی تغییر سختی خاک با عمق خواهد بود. به عنوان مثال ، اگر مختصات خاک بتواند با الاستیک یکدست برابر در نظر گرفته شود، استقرار سطح آزمایش و فونداسیون تحت میانگین فشار q را می توان اینگونه محاسبه کرد.

فرمول (5.2)

I , I عوامل شکل برای صفحه چهار گوش (k 14/3) و برای فونداسیون، به ترتیب هستند. نسبت بین مقیاسهای فونداسیون و سطح خواهد بود (فرمول 5.3)

در مورد گستره بزرگ اگر بعد B مورد استفاده باشد، مقدار بسیار کمی از K بدست خواهد آمد. اگر بارها دور باشند، پهنای تاثیر 2R در محل B استفاده می شود. شعاع تاثیر R بار اینگونه است؛ فرمول (5.4) برای گستره با ضخامت t، نسبت موقعیت V و مقیاسهای E.

مقیاس همچنین می تواند از پیش بینی استقرار فونداسیون واقعی بدست آید. (5.5) در این حالت گستره سخت و تحت فشار برابر با کل بار روی گستره در نظر گرفته می شود. پیش بینی اتقرار مراحل مکانیک خاک را دنبال می کند. با استقرار محاسبه شده در این روش مقیاس اینگونه است.

(فرمول 5.5)

Q میانگین فشار به کار رفته و W استقرار گستره سخت است. این روش اجازه محاسبه لایه ها را در سطوح مختلف فشار می دهد که در روشهای قبلی ممکن نبود. بعلاوه پیش بینی استقرار کوتاه و بلند مدت مقیاسی برای تحلیل کوتاه و بلند مدت رفتار گستره ایجاد خواهد کرد.

استقرار رابطه بین K و مقیاس جدید فضای الاستیک آسان نیست زیرا پاسخی به سختی فونداسیون بستگی دارد. چنین رابطه ای بر پایه برابری استقرار صفحه سخت بر فضای الاستیک یکنواخت استوار است. با سطحی مشابه در مورد وینکلر (5.1) که چنین می شود، (فرمول 5.6) . روابط دیگری بر پایه برابر کردن لحظات تمایل که از هر دو مدل ایجاد می شود وجود دارد.

(5.3) مرور طراحی گستره

فونداسیون در گستره در موارد زیر انتخاب می شود:

الف) مناطق با موقعیت متغییر که به همدیگر نزدیک یا همپوشانی می کنند.

ب) نیاز به کاهش استقرارت ناهمسان

در عمل ، وقتی مناطق مذکور از نصف طرح بیشتر باشد، فونداسیون گسترده مد نظر قرار می گیرد.

5.3.1 روشهای ایستا

گستره ها را می توان همچنین از روش های ایستا طراحی کرد ، که فشار تماس مطابق با یکی از فرضیه های زیر را ایجاد خواهد کرد (شکل 5.4).

الف) فشار تماس زیر گستره به صورت خطی تغییر می کند.

ب) فشار تماس در مناطق تاثیر ستونها یکسان است.

فرضیه اول در گستره سخت کاربرد بیشتری دارد. در حالیکه فرضیه دوم در گستره انعطاف پذیر کاربرد بیشتری دارد. این روشها ایستا نامیده می شوند زیرا هیچ توجهی به سازگاری بین استقرارها و فشارهای تماس



خرید و دانلود  طراحی فنداسیون گسترده بر چشمه های و نیکلر 11 ص


مقاله درمورد نقشه کشی و طراحی فرش

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 15

 

نقشه کشی و طراحی فرش

 

 

 

. عنصر اولیه در نقوش خُتایی، برگ ساده است. اصولاً در طبیعت، برگ در سایزهای مختلف وجود دارد، هنرمندانی که خالق آثار مختلف بودند، از همین برگهای ساده طبیعت الهام گرفتند و آنها را خلق کردند.

 برای ترسیم برگ ساده، ابتدا یک قوسِ در حقیقت باز را ترسیم می کنیم. برای درک بهتر، ابتدا یک دایره بزرگ ترسیم می کنیم و یک دایره کوچک را در بالا ترسیم می کنیم و یک دایره بزرگتر در پایین دایره کوچکتر رسم می کنیم و شکل برگ را از داخل آن ایجاد می کنیم. در کشیدن کار ابتدا می بایست ترس به خود راه ندهید و با اعتماد به نفس، کار را انجام بدهید.

 

در ترسیم برگ دیگر، ابتدا یک قوس می کشیم و قوس جلوی آن طرحی مثل s انگلیسی دارد که قسمت پایین آن پهن تر و بازتر می شود. طرح دیگر غنچه می باشد؛ در طبیعت غنچه های متفاوتی را می بینیم، غنچه دارای دو قسمت است:

1- ته غنچه

2- گلبرگ غنچه.

 

ابتدا به آموزش ته برگ می پردازیم: ابتدا یک خط تقارن می کشیم و یک خط دیگر بر آن عمود می کنیم و از خط عمود شده دو خط را به خط تقارن وصل می کنیم که حالت مثلث متساوی الاضلاع پیدا کند. سپس ضلع پایین مثلث که خط بر آن عمود شده است را به دو قسمت مساوی تقسیم می کنیم و از هر دو طرف یک شکل s که حالت برعکس دارد رسم می کنیم و حالت غنچه را ایجاد می کنیم.

 گلبرگها معمولاً حالت تخم مرغ شکل دارند و روی ته برگ قرار می گیرند؛ برای رسم گلبرگ روی گلبرگ یک برگ را می کشیم که جهت این سه عنصر باید طوری باشد که خط محوری ما از وسط آنها بگذرد.

 

 

غنچه گل شاه عباسی

برای ترسیم آن، خط محوری را رسم می کنیم و بعد ته غنچه را رسم می کنیم. در قسمت گلبرگ، تغییراتی است که شامل خط محوری با فاصله کم بر روی خط محوری عمود است. در قسمت چپ این خط محوری، برگی را به روی ته غنچه رسم می کنیم و این کار را در طرف دیگر تکرار می کنیم. سپس در وسط این کار، برگی دیگر رسم می کنیم و برای تزئین، برگهای کوچکی را داخل این سه برگ می کشیم و یا به جای برگ وسط حالت گل پنج پر را ایجاد می کنیم، که حالت قلب است.

 غنچه دیگری به نام غنچه قطاری وجود دارد که به این صورت ترسیم می شود: ابتدا خط محوری را ترسیم می کنیم، ته برگی را می کشیم، از گلبرگهایی با سایز متفاوت استفاده می کنیم و از بزرگ به کوچک بر روی هم سوار می کنیم و در نهایت، یک برگ بر روی غنچه رسم می کنیم. در میان گلبرگها می توان از برگهای کوچک برای تزئین استفاده نمود.

 برای کشیدن گل 5 پر، ابتدا یک دایره رسم می کنیم، یک قطر که به صورت افقی باشد را رسم می کنیم و خطی را بر این قطر، عمود می کنیم. از رأس دایره، خطی با زاویه 17 درجه بر دایره رسم می کنیم و در پنج طرف، به طور مساوی رسم می کنیم، سپس روی این 5 خط را به 3 قسمت مساوی تقسیم می کنیم. در وسط، یک دایره می کشیم، سپس نقاط دوم رسم شده روی هر خط را به صورت یک دایره بر روی دایره اصلی مماس می کشیم تا یک گل پنج پر ایجاد شود. داخل آن را می توان تزئین کرد و به وسیله مثلث یا دایره می توان برای گلها، پشت برگ ایجاد کرد.

 گلبرگهای پنج پر می توانند با شکلها و طرحهای مختلف و با تعداد گلبرگهای بیشتری ترسیم شوند، ولی در مجموع به گلهایی که به این شیوه رسم می شوند، گل پنج پر گفته می شود. در ترکیب کلی، گلهای پنج پر به عنوان گلهای کوچک و نیمه کوچک ترکیب اصلی نقشه خواهد بود.

 برای ایجاد فرم برگ ساده، اگر بخواهیم سایز این برگ را بزرگتر کنیم، خطوط محیطی به صورت خطهای طویل و بدون تزئین در خواهد آمد که در زیبایی اثری نخواهد داشت، به همین دلیل در دو طرف این برگ بزرگ شده، از عناصر کنگره و یا پله پله استفاده می کنیم. برای این کار ابتدا یک دایره می کشیم و آن را به چهار قسمت تقسیم می کنیم. یک چهارم این دایره را در نظر می گیریم، یک خط محیطی در آن یک چهارم رسم می کنیم تا با خط دایره ابتدای برگ را ایجاد کند که مثل هلال می شود. از مرکز دایره دو خط مساوی را به این هلال وصل می کنیم، سپس قسمتی از این خطها را که به هلال وصل شده به دو قسمت مساوی تقسیم می کنیم و از سر هلال، یکی



خرید و دانلود مقاله درمورد نقشه کشی و طراحی فرش


روش های طراحی و تولید صنعتی 75 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 75

 

پیش گفتار

ورود تکنولوژی جدید و اصولا نوآوری چون همواره با سنت توام است ، همیشه یکی از مسائل بحث انگیز در کشورهای در حال توسعه بوده است. سنت ها ریشه در اعماق وجود مردمان داردو همیشه نوآوری با مقاومت ذاتی روبه رو می شود، چرا که آن را سببب تخریب پیشینه فرهنگی خود تصور می کنند و مغایر با زیر ساخت های فرهنگی خود می دانند.

هدف ساختمان سازی باید تامین زیبایی ، پایداری و آسایش باشد. چون پیروی کامل از ترکیب فضاهای معماری سنتی به سبب تحولات جدید در صنعت ساختمان ،مانند تراکم زیاد و رشد عمودی آن در شهرها ،دیگر امکان پذیر نیست ، لذا پافشاری بر کاربرد مصالح سنتی و مقاومت در برابر نواوری در این زمینه تنها یک تعصب خشک به شمار می اید . عقل و منطق حکم می کند که نواوری و تکنولوژی را در خدمت احیای فرهنگ اصیل به کار گیریم و به جای هدر دادن فضا ها و پافشاری بر روش های سنتی یا تقلید بدون دلیل از روش های بیگانه و تخریب فرهنگ ملی ،سعی کنیم از هر مصالحی با توجه به کار بری ،هزینه سرعت اجراو رعایت سایر مشخصات فنی به موقع و به نحو احسن استفاده بریم .بدین ترتیب می توان بسیاری از مشکلات ساخت و ساز ، نظیر سستی و عمر کم ساختمان ها و اتلاف انرژی و هزینه های بالا ی مسکن ، را برطرف کرد و ضمن بهره گیری از فن اوری و حفظ فرهنگ سنتی ، به دوام ، آسایش و زیبایی در ساختمان دست یافت.

بسم الله الرحمن الرحیم

روش های طراحی و تولید صنعتی

استاد : مهندس شادیفر

دانشجویان :

رضوان اصغری

محمد خیر ابادی

زمستان 1386

تاریخچه پیدایش تیغه های غیر باربر

تا قبل از قرن نوزدهم ، ساختمان های بلند محدود به معابر،مساجد ، اهرام ، قلعه ها و برج ها بود که ارتفاعشان از سی متر تجاوز نمی کرد. مصالح به کار رفته در این گونه بنا ها اغلب آجر و خشت و ساگ و ساروج بود. سقف ها را بیشتر قوس و طاق تشکیل می داد به قسمی که مصالح تحت تنش فشاری قرار گیرند تا کششی.در مواردی هم که ناگزیر سقف صافی ایجاد می شد ، از الوارهای چوبی در دهانه های کوچک استفاده می کردند.

در سال 1855 پس از ان که هنری بیمر انگلیسی نخستین روش تولید فولاد در حجم زیاد را ارائه کردع کم کم فولاد به عنوان یکی از مستحکم ترین مصالح ساختمانی پدیدار شد و به موازات ظهور فولاد در سال های 1890 به بعد ، بتن یکی از مصالح سازه ای رواج یافت.

ان گاه با پیدایش انقلاب صنعتی که با رشد سریع جمعیت و شهر نشینی همراه شد ، مرحله گذر از رادیو باربر ( خارجی و داخلی ) به اسکلت بنا پیش امد و همراه با رشد عمودی ساختمان ها ، سازه ها ی بلند و آسمان خراش ها ظاهر شدندد که در انها مقومت در برابر نیروهای ثقلی ناشی از وزن و نیرو های جانبی ناشی از زلزله کلا به عهده اسکلت بنا ( قالب های فلزی یا بتنی ) بود و دیوار ها نقش جدا کننده داخلی یا خارجی و عمو ما غیر باربر را داشتند.

تعریف و تقسیم بندی تیغه ها(Partitons)

تیغه ها بنا به تعریف پانل های جداکننده ای هستند که باربر نیستند و تنها وزن خود را تحمل می کنندو معمولا ضخامتشان بین 4 تا 15 سانتی متر است.

تیغه ها چنانچه بین قسمت داخل و خارج بنا قرار گرند ودر واقع در قسمت پیرامونی بنا واقع شوند ، « تیغه خارجی » نامیده می شوند . این نوع تیغه ها از طرف خارج در معرض آفتاب ، باد، باران، و برف قرار دارند و چون نگهدارنده نمای ساختمان نیز پوشش مناسب با مصالح نما مو رد توجه ویژه قرار گرند.

تیغه های واقع در قسمت داخلی ساختمان « تیغه داخلی » نامیده می شوند . این نوع به تیغه ها به دو دسته « فرعی » و « اصلی » تقسیم می شوند . تیغه های فرعی بین فضاها ی یک آپارتمان ( یا واحد مسکونی ) قرار دارند، تیغه های اصلی از نظر انتقال حرارت و صوت بیش از تیغه های فرعی اهمیت دارند.

تیغه های جداکننده فضاهای داخلی یک آپارتمان یا واحد مسکونی ( تیغه های فرعی داخلی)را نیز از نظر کاربرد می توان به دودسته حایل بین فضای خشک یا حایل بین دو فضای خشک و تر ( مثلا بین حمام و اتاق خواب ) تقسیم بندی کرد.

در دیوارهای غیر باربر داخلی و خارجی ویژگی های حرارتی و صوتی مصالح اهمیت می یابد و به همین دلیل اغلب کاربرد مصالح تو خالی در این مورد ترجیح داده می شود.

تیغه ها رامی توان ار دید دیگری به دو دسته قابل جابه جایی و غیر قابل جابه جایی ( ثابت ) تقسیم بندی کرد ، که در حالت اول ، کاربری آن در قسمت پارتیشن بندی اداری یا سالن های چند منظوره نمایشگاهی است که مصالح تیغه با بازیافت ( با حداقل پرت ) از قسمتی به قسمت دیگر منتقل می شود .

تیغه ها را می توان با توجه به مشخصات فنی انها به چندین نوع دسته بندی کرد، ولی از نظر سازه ای تقسیم بندی تیغه ها به دخالت در تشکیل قاب میانی در جه دوم ( قاب میان پر) و نحوه اتصال تیغه به قاب اصلی و باربر به ویژه در مناطق زلزله خیز یا عدم دخالت ان از اهمیت خاصی برخوردار است.

بررسی تیغه ها از نظر مقاومت در برابر نیروی زلزله

اگر تیغه های جدا کننده غیر سازه ای به صورت صلب به یک قاب سازه ای ساختمان متصل شده باشند ، هنگام وقوع زلزله به تبعیت از تغییر شکل قاب ، تغییر شکل می دهد . در بخی مورد بهبود رفتار سازه به جای دیوارهای مجوف از دیوارهای توپر با تکیه گاه کامل در هر طبقه استفاده می شود . این دیوارها که قاب بند یا میان قاب نامیده می شوند ، به خوبی با قاب های خمشی ساختمان کار می کنند و تا حد زیادی سبب جذب انرژی زمین لرزه می شوند . حال اگر تحمل تغییر



خرید و دانلود  روش های طراحی و تولید صنعتی 75 ص