انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

دانلود پروژه شرط علم به قدرت و قدرت بر اجرای تعهد

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 117

 

فهرست تفضیلی

عنوان صفحه

مقدمه

تاریخچه و ضرورت بحث و طرح و تقسیم مطالب

فصل اول: تعاریف و مفاهیم و مشخصات شرط قدرت و علم به قدرت بر اجرای تعهد

گفتاراول: تعریف شرط قدرت و علم بر اجرای تعهد و مفاهیم سازنده آن

مبحث اول: تعریف عقد و قرار داد و اعمال حقوقی

مبحث دوم: تعریف تعهد

مبحث سوم: مفهوم شرط

مبحث چهارم: مفهوم قدرت

مبحث پنجم: مفهوم اجرای تعهد

مبحث ششم: تعریف شرط قدرت و علم بر اجرای تعهد

گفتار دوم: مشخصات شرط قدرت علم بر اجرای تعهد

مبحث اول: قدرت بر اجرای تعهد به عنوان وصف انسان

مبحث دوم: اثبات بر اجرای تعهد به عنوان وصف مورد تعهد

بند اول: جایگاه شرط مزبور در نظام های حقوقی و قوانین مدون و تالیفات حقوقی

بند دوم: جایگزینی قدرت متعهدله یاغیر متعهد به جای قدرت متعهد

بند سوم: عدم تأثیر ناتوانی مشخص درصحت عقد

مبحث سوم: قدرت بر اجرای تعهد و علم به آن شرط صحت است نه رکن عقد

مبحث چهارم: قدرت بر اجرای تعهد در مرحله پیدایش تعهد و درمرحله اجرای تعهد

فصل دوم: موضوع واقعی بودن شرط قدرت و علم به قدرت بر اجرای تعهد و نقش و قلمرو مصادیق این شرط

گفتار اول: موضوع واقعی شرط قدرت بر اجرای تعهد

مبحث اول: مفهوم علم به قدرت

مبحث دوم: موضوع واقعی شرط قدرت بر اجرای تعهد به عنوان یک قدرت مرکب

بند اول: نقش علم در موضوع واقعی شرط مذکور (قدرت علمی)

بند دوم: نقش علم بر عدم قدرت و عدم علم به قدرت

بند سوم: نقش قدرت واقعی در موضوع شرط قدرت بر اجرای تعهد

بند چهارم: نقش قدرت معلوم (قدرت واقعی و قدرت علمی)

مبحث سوم: قدرت واقعی یا قدرت علمی

بند اول: وثوق واطمینان براجرای تعهد

بند دوم: ظن بر اجرای تعهد

بند سوم: شک و تردید بر اجرای تعهد و وجود قدرت

بند چهارم: احتمال بر اجرای تعهد

بند پنجم: امیر و تصور بر اجرای تعهد

بند ششم: نتیجه بحث موضوع واقعی شرط قدرت و علم بر اجرای تعهد

مبحث چهارم: مقتضای حدیث نفی غرر

گفتار دوم: قدرت بر اجرای تعهد به عنوان یک شرط عام و مستقل وقلمرو مصادیق آن در برخی ازانواع تعهد

مبحث اول: قدرت بر اجرای تعهد به عنوان شرط عام ومستقل

بند اول: رابطه «رابطه قدرت بر تسلیم مبیع» یا «مالیت داشتن مبیع»

بند دوم: رابطه شرط قدرت بر اجرای تعهد با موجود بودن مورد تعهد

بند سوم: رابطه مشروعیت مورد معامله با مقدوریت آن

بند چهارم: عدم قدرت بر اجرای تعهد شامل فرض محال بودن مورد تعهد است

بند پنجم: ارتباط قدرت بر اجرای تعهد با تمام شرایط مربوط به مورد تعهد

مبحث دوم: قلمرو قدرت و علم به قدرت بر اجرای تعهد در برخی ازانواع تعهد

بند اول: قدرت براجرای تعهد درتعهدات مستمر و تعهدات آنی

بند دوم:قدرت بر اجرای تعهد در تعهدات موجل و حال

مبحث سوم: ‌

مقدمه (تاریخچه و ضرورت بحث و طرح و تقسیم مطالب)

تاریخچه:

سرچشمه قدرت را باید دروجود حضرت حق جستجو کرد که قطره ای از آن را در وجود انسان قرار داد و این چنین،

«قدرت» از مهمترین اوصاف انسان شد. موجودی که خداوند عزّوجلّ او را اشرف مخلوقات آفرید و بر خلقتش مباحات کرد.

پس تاریخ پیدایش این مفهوم راباید همزمان باآفرینش انسان دانست . و انسان، با تمام اوصافش و با فطرت الهی اشموضوع اصلی علوم انسانی من جمله علم حقوق قرار گرفت. چرا که او موجودی اجتماعی بود و رفع حوائج و دفع مضارّ او را به عرصۀ اجتماع کشاند ولی عدۀ کثیری مغلوب خواسته های درونی خویش گشتند و از مسیر حق و عدالت منحرف شدند و اجتماع برای تنظیم روابط انسانی و تعدیل شهوت انسانی، به مجموعۀ قواعد و مقرراتی محتاج گشت که زمینه ساز پیدایش علم حقوق شد.

بسیاری از قواعد و مقررات حقوقی که امروز نیز از طبیعی ترین و فطری ترین مباحث این علم است در جوامع اولیه جنبه مدوّن نداشته است به طوریکه امروزه نیز حقوق یک کشور محدود به حقوق نوشته آن نیست.

بنابراین تاریخچه بسیاری از مفاهیم و مسائل حقوقی را باید در جوامع اولیه و در لا به لای قواعد فطری و طبیعی یافت ولی گروهی بر این باورند که تاریخ واقعی یک مسئله از زمانی آغاز می‌شود که به آن توجه خاص و مشخص شده است ومسئله مورد نظر به عنوان یک موجود علمی درهندسۀ دانش مکان وموقعیتی را اشغال کرده است.

قوۀ تعقّل بشری در همان جوامع ابتدایی اقتضاء آنرا داشت که اگر طرف مقابل قادر بر اجرای تعهد نیست نباید حاضر بر توافق جهت مبادله و معاوضه شود.پس او اگرمی دانست در مقابل کالایی که تسلیم می کند هرگز به عوضی دست نمی‌یابد.



خرید و دانلود دانلود پروژه شرط علم به قدرت و قدرت بر اجرای تعهد


مقاله علم ریاضیات

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 19 صفحه

 قسمتی از متن .doc : 

 

علم ریاضیات

 

ریاضیریاضیات عموما مطالعه الگوی ساختار، تحول، و فضا تعریف شده است؛ بصورت غیر رسمی تر، ممکن است بگویند مطالعهاعداد و اشکال است.تعریف ریاضیات بر حسب وسعت دامنة آن و نیز بسط دامنة فکر ریاضی تغییر کرده است. ریاضیات زبانی خاص خود دارد،که در آن به جای کلمات و علائم نقطه گذاری از اعداد و نمادها استفاده میشود. در منظر صاحبان فکر، تحقیق بدیهیات ساختارهای مجرد تعریف شده، با استفاده از منطق و نماد سازی ریاضی میباشد. نخستین اعداد ثبت شده خطوطی بودند که روی یک چوب کشیده میشدند،که اصطلاحا آنها را چوبخط مینامیدند.این خطوط به شکل دسته های کوچک دو یا پنج تایی کشیده میشدند.سرانجام به این دسته ها نمادهای خاصی اختصاص داده شد(5،2 و غیره)و یک دستگاه حساب ایجاد شد. ریاضیدانان نمادهای خاصی را به جای کلماتی از قبیل به اضافه و مساوی است با وضع کردند،همچنین کلمات خاصی را برای بیان مفاهیم جدید ابداع کردند. چنانکه زمانی آن ار علم عدد ، زمانی علم فضا ، گاه علم کمیات ، و زمانی علم مقادیر متصل و منفصل خوانده اند.ریاضیات درباره حساب ، هندسه ، جبر و مقابله بحث می کند که ما در اینجا به سراغ تاریخ هر یک از آنها می رویم. ساختارهای بخصوصی که در ریاضیات مورد تحقیق و بررسی قرار میگیرند اغلب در علوم طبیعی منشاء دارند، و بسیار عمومی در فیزیک، ولی ریاضیات ساختارهای دلایلی را نیز بررسی می نماید که بصورت خالص در مورد باطن ریاضی است، زیرا ریاضیات می توانند برای مثال، یک عمومیت متحد شده را برای زیر-میدانهای متعدد، یا ابزارهای مفید را برای محاسبات عمومی، فراهم نماید. در نهایت، ریاضیدانان بسیاری در مورد مطالبی که مطالعه می نمایند که منحصرا دلایل علمی محض داشته، ریاضیات را بصورت هنری برای پروراندن علم، صرف نظر از تجربی یا کاربردی، می نگرند. حساب ، علم اعداد است. واژه انگلیسی حساب ، از کلمه ای یونانی به معنای اعداد گرفته شده است. در آغاز شهرنشینی ، انسان گوسفندان ، گاوها و سایر حیوانات خود را با انگشتانش می شمرد. در واقع کلمة دیژیت که برای شمارش اعداد از 0 تا 9 به کار می رود، از یک کلمة لاتین به معنای انگشت گرفته شده است. بعدها انسان با علامت زدن روی چوب یا درخت ، اشیاء را می شمرد. اما این روش به زودی جای خود را به استفاده از علامتهایی باری هر یک از اعداد داد. هندسه مطالعه انواع مختلف اشکال و خصوصیات آنهاست. همچنین مطالعه ارتباط میان اشکال ، زوایا و فواصـل است.

تاریخچه

انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجه‌هایش را می‌داند انجام می‌داد. اما بزودی مجبور شد وسیلة شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده می‌باشد قدیمی‌ترین دستگاه شماری است که آثاری از آن در کهن‌ترین مدارک موجود یعنی نوشته‌های سومری مشاهده می‌شود.سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین‌النهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند. در این موقع مصریها نیز در سواحل سفلای رود نیل تمدنی درخشان پدید آورده بودند. طغیان رود نیل هر سال حدود و ثغور زمینهای زراعتی این قوم را محو می‌کرد. احتیاج به تقسیم مجدد این اراضی موجب رهبری آنها به اولین احکام سادة هندسی گردید. همچنین مبادلات تجارتی و تعیین مقدار باج و خراج سالیانه آنها را وادار به توسعه علم حساب نمود این اطلاعات همگی از روی پاپیروسها و الواحی است که در نتیجه حفاریها بدست آمده و به خط هیروگلیفی می‌باشد. قدیمی‌ترین آنها که مربوط به 1800 سال قبل از میلاد است شامل چند رساله دربارة علم حساب و مسائل حساب مقدماتی می‌باشد، از آن جمله رسالة پاپیروس آهس است که درسال 1868 توسط ایسنلر مصرشناس مشهور ترجمه شد. سایر تمدنهای شرقی نظیر چینی و هندی در ترویج دانش نقش مؤثری نداشته‌اند و جز برخی نتایج پراکنده که در زیر فشار مفاهیم ماوراءالطبیعه خرد شده است چیزی از آنان در دست نیست. قریب هزار سال پس از نابودی فرهنگ قدیم مصر و محو تمدن آَشور، یونانیان از روی مقدمات پراکنده و بی‌شکل آنها علمی پدید آوردند که در واقع به عالیترین وجه مرتب و منظم گردیده و عقل و منطق را کاملاً اقناع می‌نمود. نخستین دانشمند معروف یونانی طالس ملطلی (639_548ق.م) است که در پیدایش علوم نقش مهمی بعهده داشته و می‌توان ویرا موجد علوم فیزیک ، نجوم و هندسه «تشابه» به او کاملاً بی‌اساس است.در اوایل قرن ششم ق.م. فیثاغورث (572_500 قبل از میلاد) از اهالی ساموس یونان کم‌کم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت. فیثاغورثیان عدد را بخاطر هم‌آهنگی و نظمی که دارد اساس ومبدأ همه چیز می‌پنداشتند و بر این عقیده بودند که تمام مفاهیم را به کمک آن می‌توان بیان نمود. پس از فیثاغورث باید از زنون فیلسوف و ریاضیدان یونانی که در 490ق.م در ایلیا متولد شده است نام ببریم. در اوایل نیمه دوم قرن پنجم بقراط از اهالی کیوس فضاهایی متفرق آن زمان را گردآوری کرد و در حقیقت همین قضایا است که مبانی هندسة جدید ما را تشکیل می‌دهند. در قرن چهارم قبل از میلاد افلاطون در باغ آکادموس در آتن مکتبی ایجاد کرد که نه قرن بعداز او نیز همچنان برپا ماند. وی ریاضیات مخصوصاً هندسه را بسیار عزیز می‌داشت، تا جائی که بر سردر مکتب خود این جمله را حک کرده بود: «هرکس هندسه نمی‌داند به اینجا قدم نگذارد». این فیلسوف بزرگ به تکمیل منطق که رکن اساسی ریاضیات است همت گماشت و چندی بعد منجم و ریاضیدان معاصر وی ادوکس با ایجاد تئوری نسبت‌ها نشان داد که کمیات اندازه نگرفتنی که تا آن زمان در مسیر علوم ریاضی گودالی حفر کرده بود هیچ چیز غیر عادی ندارد و می‌توان مانند سایر اعداد قواعد حساب را در مورد آنها بکار برد. در این احوال اسکندر کشورها را یکی پس از دیگری فتح می‌کرد و هرجا را که بر روی آن انگشت می‌نهاد مرکزی از برای پیشرفت تمدن یونانی می‌شد. پس از مرگ این فاتح مقتدر در 323ق.م و تقسیم امپراطوری عظیم او، مصر بدست بطلیموس افتاد و امپراطوری بطالسه را تشکیل داد. بطالسه که اسکندریه را به پایتختی برگزیده بودند تمام دانشمندان را بدانجا پذیرفتند و همین دانشمندان در صدد ایجادکتابخانة بزرگی در این شهر ساحلی برآمدند و به توسعه و تکمیل آن همت گماشتند. اکنون به زمانی رسیده‌ایم که بایستی آنرا عصر طلائی ریاضیات یونان نامید. اهمیت فوق‌العاده این دوره به سبب ظهور سه عالم بزرگ ریاضی یعنی اقلیدس ، ارشمیدس و آپولونیوس است که هم در دوران خود و هم برای قرون بعد از خویش شهرتی عالمگیر کسب نمودند. در قرن دوم ق.م نام تنها ریاضیدانی که بیش از همه تجلی داشت ابرخس یا هیپارک بود. این ریاضیدان و منجم بزرگ که بین سالهای 161تا 126ق.م در رودس متولد شد گامهای بلند و استادانه‌ای در علم نجوم برداشت و مثلثات را نیز اختراع کرد.هیپارک نخستین کسی بود که تقسیم‌بندی معمولی بابلی‌ها را برای پیرامون دایره پذیرفت. به این معنی که دایره را به 360 درجه و درجه را به 60 دقیقه و دقیقه را نیز به 60 قسمت برابر تقسیم نمود و جدولی تابع شعاع دایره بدست آورد که وترهای بعضی از قوسها را می‌داد و این قدیمی‌ترین جدول مثلثاتی است که تاکنون شناخته شده است.

در سال 47ق.م که ژول سزار نیروی دریایی مصررا آتش زد، در کتابخانه بزرگ اسکندریه نیز حریقی ایجاد شد که قسمت اعظم آنرا نابود ساخت. بالاخره در سال 30ق.م به هنگام امپراطوری ملکه کلئوپاترا کشور مصریکی از ایالات امپراطوری روم شد. در این دوره کوتاه از کشفیات جدید خبری نبود و دانشمندان متوسطی نظیر بطلیموس، منلائوس و باپوس نیز که ظهور کردند تنها به تعلیم و انتشار آثار قدما اکتفا نمودند. بطلیموس که به احتمال قوی با امپراطوران بطالسه هیچگونه ارتباطی ندارددر تعقیب افکار هیپارک کوشش بسیار کرد.کتاب مشهور او به نام اصلی«ترکیب ریاضی» شامل یک دستگاه هیأت بیان حرکت دورانی اجسام سماوی و یکدورة کامل مثلثاتکروی و مستقیم‌الخط و توضیح و محاسبة نمودهای حرکت بومی است. این کتاب را درسال 827 از یونانی به عربی ترجمه کردند ونام آنرا مجسطی یعنی «بسیار بزرگ» نهادند و از آن پس به همین نام باقی ماند. منلائوس که در اواخر قرن اول میلادی در اسکندریه می‌زیست به امر امپراطور دومی سین کتابی تألیف کرد که قضیه معروف منلائوس دربارة چهارضلعی محاطی در آن ذکر شده است. پاپوس که دورة زندگانیش در حدود 350 میلادی بوده است دارای کتابی است به نام «مجموعة ریاضیات». هدف وی از تدوین این کتاب آن بوده است که به اختصار نتایجی را که از بدو پیدایش علم هندسه تا آن زمان حاصل شده بود برای خود بیان نماید. با این حال در موارد بسیار احکام جدید و جالبی که از اکتشافات خودش می‌بود و بر آن افزود. مسألة معروف پاپوس که در همه کتابهای هندسة ما وجود دارد و قضیه بسیار مهم تعیین مرکز نقل سطوح و احجام که برخلاف واقع آنرا به گولدن نسبت داده‌اند. در این احوال هندوستان به منزلة یک مرکز جدید روشنفکری توسعه می‌یافت و چنین به نظر می‌رسید که علم بدانجا فرار کرده و یا به عبارت بهتر فقط آنجا را مقام خود ساخته است. زیرا سابق براین در زمان یونانی‌ها نیز در آنجا وجود داشته است. علوم هندی بیش از علوم تمام ممالک دیگر که تاکنون از ایشان سخن گفتیم در خدمت مذهب بود وشامل بعضی مقدمات علم طب یعنی همانقدر که برای ساختن مشروبات مقدس کفایت می‌کردو مختصری از علوم نجومیعنی درست همان اندازه که برای تشکیل تقاویم مذهبی مورد نیاز است و اندکی هندسه، مرکب از بعضی طرق عملی که برای ساختن مسجد و محراب لازم است بیش نبود. در نخستین قرون تاریخ چهار ریاضی‌دان مشهور در این کشور وجود داشت که عبارت بودند از:آپاستامبا(قرن پنجم)، آریاب هاتا (قرن ششم)، براهماگوپتا (قرن هفتم) و بهاسکارا (قرن نهم) که در کتب



خرید و دانلود مقاله علم ریاضیات


زندگینامه تالس

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 4

 

رباضیدان به کسانی گفته می‌شود که علم دانش و شناخت کافی در مورد ریاضی‌ دارند و به تحقیق و تفکر و پژوهش در این دانش می‌پردازند

زندگی

پیشینه

تالس در شهر میلتوس در ایونیا (غرب ترکیه امروزی) می‌‌زیست. سالیان حیات تالس به روشنی معلوم نیست. بنا بر یک روایت، وی نود سال زیست، و بنا بر روایتی دیگر هشتاد سال. در طول حیات بلند خود، تالس درگیر فعالیت های گوناگون بسیاری شد و نوآوری های زیادی انجام داد. عده‌ای معتقدند وی نوشته‌ای از خود به جای نگذاشت و عده‌ای بر این باورند که او نگارندهٔ "دربارهٔ انقلاب نجومی" و "دربارهٔ اعتدال شب و روز" است، هر چند هیچ کدام باقی نمانده است.

تالس در کهولت ملقب به خردمند شد و بعدها که یونانیان برای خود هفت خردمند شناختند، او را نخستین آنان دانستند. تالس سرانجام هنگامی که نظاره‌گر یک مسابقه ورزشی بود، از گرما و تشنگی و ناتوانی جان سپرد.

تجارت

بعضی بر این باورند که تالس تنها یک متفکر صرف نبود، بلکه در تجارت و سیاست هم نقش داشت. هر چند با توجه به فلسفه وی، با انجام کارهای تجاری، هدف وی ثروتمند شدن صرف نبود.

سیاست

زندگی سیاسی تالس بیشتر به درگیری ایونی ها در دفاع از آناتولی در برابر قدرت فزایندهٔ ایرانیان که تازه به آن منطقه وارد شده بودند بر می گردد.

اخلاق

دیدگاه تالس دربارهٔ اخلاق را می توان از گفتارهای منسوب به وی در دیوجانس لائرتیوس فهمید. نخست او به یک خدای متعالی که نه آغاز است نه پایان قایل است. او معتقد است خداوند عادل است و از بشر هم انتظار اعمال عادلانه دارد. نه ناعادل بودن (آدیکوس)، و نه اندیشهٔ بی عدالتی از دیدگان خدا پنهان نمی‌ماند.

تاریخ پیدایش ریاضیاتسه قرن اول ریاضیات یونانی که با تلاشهای اولیه در هندسه برهانی بوسیله تالس در حدود ۶۰۰ سال قبل از میلاد شروع شده و با کتاب برجسته اصول اقلیدس در حدود ۳۰۰ سال قبل از میلاد به اوج رسید، دوره‌ای از دستاوردهای خارق العاده را تشکیل می‌دهد.

در حدود ۱۲۰۰ سال قبل از میلاد بود که قبایل بدوی “دوریایی” با ترک دژهای کوهستانی شمال برای دستیابی به قلمروهای مساعدتر در امتداد جنوب راهی شبه جزیره یونان شدند و متعاقب آن قبیله بزرگ آنها یعنی اسپارت را بنا کردند. بخش مهمی از سکنه قبلی برای حفظ جان خود ، به آسیای صغیر و زایر یونانی و جزایر یونانی دریای اژه گریختند و بعدها در آنجا مهاجرنشنهای تجاری یونانی را برپا کردند. در این مهاجرنشینها بود که در قرن ششم (ق.م) اساس مکتب یونانی نهاده شد و فلسفه یونانی شکوفا شد و هندسه برهانی تولد یافت. در این ضمن ایران بدل به امپراطوری بزگ نظامی شده بود و به پیروزی از یک برنامه توسعه طلبانه در سال ۵۴۶ (ق.م) شهر یونیا و مهاجرنشینهای یونانی آسیای صغیر را تسخیر نمود. در نتیجه عده‌ای از فیلسوفان یونانی مانند فیثاغورث موطن خود را ترک و به مهاجرنشینهای در حال رونق جنوب ایتالیا کوچ کردند. مدارس فلسفه و ریاضیات در “کروتونا” زیر نظر فیثاغورث در “الیا” زیر نظر کسنوفانس ، زنون و پارمیندس پدید آمدند.

در حدود۴۸۰ سال قبل از میلاد آرامش پنجاه ساله برای آتنیها پیش آمد که دوره درخشانی برای آنان بود و ریاضیدانان زیادی به آتن جذب شدند. در سال ۴۳۱ (ق.م) با آغاز جنگ “پلوپونزی” بین آتنیهای و آسپارتها ، صلح به پایان رسید و با شکست آتنیها دوباره رکورد حاصل شد.ظهور افلاطون و نقش وی در تولید دانش ریاضیاگرچه با پایان جنگ پلوپرنزی مبادله قدرت سیاسی کم اهمیت تر شد، اما رهبری فرهنگی خود را دوباره بدست آورد. افلاطون در آتن یا حوالی آن و در سال ۴۲۷ (ق.م) که در همان سال نیز طاعون بزرگی شیوع یافت و یک چهارم جمعیت آتن را هلاک رد و موجب شکست آنها شد، به دنیا آمد، وی فلسفه را در آنجا زیر نظر سقراط خواند و سپس در پی کسب حکم عازم سیر و سفرهای طولانی شد. وی بدین ترتیب ریاضیات را زیر نظر تیودوروس در ساحل آفریقا تحصیل کرد. در بازگشت به آتن در حدود سال ۳۸۷ (ق.م) آکادمی معروف خود را تاسیس کرد.

تقریبا تمام کارهای مهم ریاضی قرن چهارم (ق.م) بوسیله دوستان یا شاگردان افلاطون انجام شده بود. آکادمی افلاطون به عنوان حلقه ارتباط ریاضیات فیثاغورثیان اولیه و ریاضیات اسکندریه در آمد. تاثیر افلاطون بر ریاضیات ، معلول هیچ یک از کشفیات ریاضی وی نبود، بلکه به خاطر این اعتقاد شورانگیز وی بود که مطالعه ریاضیات عالیترین زمینه را برای تعلیم ذهن فراهم می‌آورد و از اینرو در پرورش فیلسوفان و کسانی که می‌بایست دولت آرمانی را اداره کنند، نقش اساسی داشت. این اعتقاد ، شعار معروف او را بر سر در آکادمی وی توجیه می‌کند: “کسی که هندسه نمی‌داند، داخل نشود.” بنابراین به دلیل رکن منطقی و نحوه برخورد ذهنی نابی که تصور می‌کرد مطالعه ریاضیات در شخص ایجاد می‌کند، ریاضیات به نظر افلاطون از بیشترین اهمیت برخوردار بود، و به همین جهت بود که جای پر ارزش را در برنامه درس آکادمی اشغال می‌کرد. در بیان افلاطون اولین توضیحات درباره فلسفه ریاضی موجود هست.

آشتی با ریاضیات

گالیله می گفت:«ریاضیات،زبان طبیعت است و برای شناخت طبیعت و آشنایی با قانون های حاکم بر آن،باید این زبان،یعنی ریاضیات را فرا گرفت.»به جز این،باید گفت:ریاضیات،در ضمن،زبان زندگی است؛بدون ریاضیات،نمی توان زندگی را شناخت و نمی توان بر دشواری های آن غلبه کرد. ولی طبیعت و زندگی،پیچیدگی های بسیار دارند و به سادگی نمی توان آن ها را شناخت.زندگی روز به روز بغرنج تر می شود و ،همراه با آن،برای تحلیل و توضیح جنبه های مختلف زندگی (از اقتصاد و صنعت گرفته تا پزشکی و جامعه شناسی و روان شناسی)،به ریاضیاتی پیچیده تر ، پیش رفته تر و دقیق تر نیاز دارد.به همین ترتیب،هر چه در ژرفای قانون مندی های حاکم بر طبیعت بیشتر فرو می رویم،خود را نیازمند به ابزار های تازه ای در ریاضیات می بینیم.پیچ ها و مهره های طبیعت،با یک آچار باز نمی شوند و ،گاه،برای درک طبیعت،ناچاریم ابزار تازه و تازه تری بسازیم. ریاضیات هرگز کهنه نمی شود،کشف های تازه و ابزار های تازه در ریاضیات،به معنای دور ریختن کشف های قبلی و کنار گذاشتن ابزار های پیشین نیست.پیشرفت ریاضیات،به معنای نابودی ریاضیات کهن و جانشینی اندیشه های نو نیست،بلکه به این معناست که لباس تازه ای بر قامت ریاضیات بدوزیم،اندیشه های پشین را سوهان بزنیم،نیاز های تازه را (چه برای حل دشواری های زندگی و چه برای شناخت بهتر طبیعت)،با دقیق تر کردن ابزار کار خود،یعنی ریا ضیات،برطرف کنیم. ریاضیات مثل یک موجود زنده عمل می کند:در حرکت است،خود را تصحیح می کند،در هر جا ابزار ویژه ی آن را به کار می برد و هرگز قانون های اصلی خود را نقض نمی کند.تنها همیشه هشدار می دهد که، از هر دستوری یا فرمولی،در جای خودش استفاده کنید،وگر نه دچار اشتباه می شوید. ... متنی که خواندید از استاد پرویز شهریاری بود

تاریخچه مختصر ریاضیات»

قسمت دوم

پس از مرگ کوپرنیک مردی به نام تیکوبراهه در کشور دانمارک متولد شد. وی نشان داد که حرکت سیارات کاملاً با نمایش و تصویر دایره های هم مرکز وفق نمی دهد. تجزیه و تحلیل نتایج نظریه تیکوبراهه به یوهان کپلر که در سال آخر زندگی براهه دستیار وی بود محول گشت. پس از سالها کار وی به نخستین کشف مهم خود رسید و چنین یافت که سیارات در حرکت خود به گرد خورشید یک مدار کاملاً دایره شکل را نمی پیمایند بلکه همه آنها بر روی مدار بیضی شکل حرکت می کنند که خورشید نیز در یکی از دو کانون آنها قرار دارد. قرن هفدهم در تاریخ ریاضیات قرنی عجیب و معجزه آساست. از فعالترین دانشمندان این قرن کشیشی پاریسی به نام مارن مرسن که می توان وی را گرانبها ترین قاصد علمی جهان دانست. در سال 1609 گالیله ریاضیات و نجوم را در دانشگاه پادوا در ایتالیا تدریس می کرد. وی یکی از واضعین مکتب تجربی است. وی قانون سقوط اجسام را به دست آورد و مفهوم شتاب را تعریف کرد. در همان اوقات که گالیله نخستین دوربین نجومی خود را به سوی آسمان متوجه کرد در 31 مارس 1596 در تورن فرانسه رنه دکارت به دنیا آمد. نام ریاضیدان بزرگ سوئیسی «پوب گولدن» را نیز باید با نهایت افتخار ذکر کرد. شهرت وی بواسطه قضایای مربوط به اجسام دوار است که نام او را دارا می باشد و در کتابی به نام مرکزثقل ذکر شده. دیگر از دانشمندان برجسته قرن هفدهم پی یر دوفرما ریاضیدان بزرگ فرانسوی است که یکی از برجسته ترین آثار او تئوری اعداد است که وی کاملاً بوجود آورنده آن می باشد. ریاضیدان بزرگ دیگری که در این قرن به خوبی درخشید ژیرارد زارک فرانسوی است که بیشتر به واسطه کارهای درخشانش در هنر معماری شهرت یافت و بالاخره ریاضی دان دیگر فرانسوی یعنی روبروال که بواسطه ترازوی مشهوری که نام او را همراه دارد همه جا معروف است. در اواسط قرن هفدهم کم کم مقدمات اولیه آنالیز عناصر بی نهایت کوچک در تاریکی و ابهام به وجود آمد و رفته رفته سر و صدای آن به گوش مردم رسید. بدون شک پاسکال همراه با دکارت و فرما یکی از سه ریاضیدان بزرگ نیمه اول قرن هفدهم بود و نیز می توان ارزش او را در علم فیزیک برابر گالیله دانست. در نیمه دوم قرن هفدهم ریاضی بطور دقیق دنبال شد. سه نابغه فنا ناپذیر این دوره یعنی نیوتن انگلیسی، لایب نیتس آلمانی و هویگنس هلندی جهان علم را روشن کرده بودند. لایب نیتس در سال 1684 با انتشار مقاله ای درباره حساب عناصر بی نهایت کوچک انقلابی برپا کرد. هوگنس نیز در تکمیل دینامیک و مکانیک استدلالی با نیوتن همکاری کرد و عملیات مختلف آنها باعث شد که ارزش واقعی حساب انتگرال در توسعه علوم دقیقه روشن شود. در قرن هجدهم دیگر تمام طوفانهای قرن هفدهم فرو نشست و تحولات این قرن عجیب به یک دوره آرامش مبدل گردید. دالامبر فرانسوی آنالیز ریاضی را در مکانیک به کار برد و از روشهای آن استفاده کرد. کلرو رقیب او در 18 سالگی کتابی به نام تفحصات درباره منحنی های دو انحنایی انتشار داد و در مدت شانزده سال رساله ای تهیه و به آکادمی علوم تقدیم نمود که شامل مطالب قابل توجهی مخصوصاً در مورد مکانیک آسمانی و هندسه بی نهایت کوچکها بود. دیگر لئونارد اویلر ریاضیدان بزرگ سوئیسی است که در 15 آوریل 1707 م. در شهر بال متولد شد و در 17 سپتامبر 1783 م. در روسیه درگذشت. لاگرانژ از جمله بزرگترین ریاضیدانان تمام ادوار تاریخ بشر است. مکانیک تحلیلی او که در سال 1788 . عمومیت یافت بزرگترین شاهکار وی به شمار می رود. لاپلاس که در تدریس ریاضی دانشسرای عالی پاریس معاون لاگرانژ بود کتابی تحت عنوان مکانیک آسمانی در پنج جلد انتشار داد. گاسپار مونژ این نابغه دانشمند وقتی که هنوز بیست سال نداشت شاخه جدید علم هندسه به نام هندسه ترسیمی را بوجود آورد. ژان باتیست فوریه در مسأله انتشار حرارت روش بدیع و جالبی اختراع کرد که یکی از مهمترین مباحث آنالیز ریاضی گردید. از دیگر دانشمندان بزرگ این قرن سیمون دنی پوآسون (1840-1781) فرانسوی و شاگرد لاپلاس می باشد که اکتشافات مهمی در ریاضیات نمود گائوس ریاضیدان شهیر آلمانی تئوری کامل مغناطیس را بوجود آورد. مطالعات او درباره انحناء و ترسیم نقشه ها و نمایش سطوح بر صفحات اصلی و اساسی می باشد. کوشی فرانسوی که در سراسر نیمه اول قرن پانزدهم بر دیگر هموطنان برتری داشت با منطق دقیق خود تئوری های زیادی از حساب انتگرال را توسعه داد. آبل در سال 1824 ثابت نمود که صرفنظر از معادلات درجه اول تا درجه چهارم هیچ دستور جبری که بتواند معادله درجه پنجم را به نتیجه برساند وجود ندارد. گالوا که در 26 اکتبر 1811 م. در پاریس متولد شد تئوری گروهها را که قبلاً بوسیله کوشی و لاگرانژ مطالعه شده بود در معادلات جبری به کار برد و گروه جانشینی هر معادله را مشخص کرد. دیگر از دانشمندان بزرگ این قرن ژنرال پونسله فرانسوی می باشد که آثاری همچون «موارد استعمال آنالیز در ریاضی» و «خواص تصویری اشکال» دارد همچنین لازار کانو فرانسوی که اکتشافات هندسی او دارای اهمیت فوق العاده می باشد. میشل شال هندسه مطلق را با بالاترین درجه استادی به بالاترین حد ممکن ترقی داد. در نیمه اول قرن نوزدهم ریاضیدان روسی نیکلاس ایوانویچ لوباچوشکی نخستین کشف خود را درباره هندسه غیراقلیدسی به جامعه ریاضیات و فیزیک قازان تقدیم کرد. ادوارد کومرنیز در نتیجه اختراع نوعی از اعداد به نام اعداد ایده آل جایزه ریاضیات آکادمی علوم پاریس را از آن خود کرد. در اینجا ذکر نام دانشمندانی نظیر شارل وایرشتراس و شارل هرمیت که در مورد توابع بیضوی کشفیات مهمی نمودند ضروری است. ژرژ کانتور ریاضیدان آلمانی مکه در روسیه تولد یافته بود در ربع آخر قرن نوزدهم با وضع فرضیه مجموعه ها اساس هندسه اقلیدسی را در هم کوفت. کانتور مجموعه را به دو صورت زیر تعریف کرد:1- اجتماع اشیایی که دارای صفت ممیزه مشترک باشند هر یک از آن اشیاء را عنصر مجموعه می گویند.2- اجتماع اشیایی مشخص و متمایزولی ابتکاری و تصوری هنری پوانکاره یا غول فکر ریاضی آخرین دانشمند جهانی است که به همه علوم واقف بود. وی در بیست و هفت سالگی بزرگترین اکتشاف خود یعنی توابع فوشین را به دنیای دانش تقدیم نمود. بعد از پوانکاره ریاضیدان سوئدی متیاگ لفلر کارهای او را ادامه داد و سپس ریاضیدان نامی فرانسوی امیل پیکارد در این راه قدم نهاد. در اواخر قرن نوزدهم علم فیزیک ریاضی به منتها درجه تکامل خود رسید و دانش نجوم مکانیک آسمانی تکمیل گردید. امروزه ریاضیات بیش از پیش در حریم سایر علوم نفوذ کرده و نه فقط علوم نجوم و فیزیک و شیمی تحت انضباط آن درآمده اند بلکه اصولاً ریاضیات دانش مطلق و روح علم شده است

تالس

از ویکی‌پدیا، دانشنامهٔ آزاد.

پرش به: ناوبری, جستجو

تصویر:Thales2.jpg

تالس ملطی

تالس ملطی (به یونانی: Θαλης) در حدود سال ۶۴۰ (پیش از میلاد) در شهر «میلیتوس» بدنیا آمد. بسیاری از او به عنوان اولین فیلسوف یونانی و همچنین پدر علم یاد می‌‌کنند. تالس بیشتر وقت خود را صرف مطالعه ریاضیات و ستاره‌شناسی کرد و فقط به قصد تامین معاش روزانه، به سوداگری پرداخت. تالس از زمرهٔ «ماده‌گرایان» اولیه محسوب می‌شود.

فهرست مندرجات

[مخفی شود]

۱ زندگی

۱.۱ پیشینه

۱.۲ تجارت

۱.۳ سیاست

۱.۴ اخلاق

۲ فلسفه

۳ جستارهای وابسته

۴ پیوند به بیرون

[ویرایش] زندگی

[ویرایش] پیشینه

تالس در شهر میلتوس در ایونیا (غرب ترکیه امروزی) می‌‌زیست. سالیان حیات تالس به روشنی معلوم نیست. بنا بر یک روایت، وی نود سال زیست، و بنا بر روایتی دیگر هشتاد سال. در طول حیات بلند خود، تالس درگیر فعالیت‌های گوناگون بسیاری شد و نوآوری‌های زیادی انجام داد. عده‌ای معتقدند وی نوشته‌ای از خود به جای نگذاشت و عده‌ای بر این باورند که او نگارندهٔ "دربارهٔ انقلاب نجومی" و "دربارهٔ اعتدال شب و روز" است، هر چند هیچ کدام باقی نمانده است.

تالس در کهولت ملقب به خردمند شد و بعدها که یونانیان برای خود هفت خردمند شناختند، او را نخستین آنان دانستند. تالس سرانجام هنگامی که نظاره‌گر یک مسابقه ورزشی بود، از گرما و تشنگی و ناتوانی جان سپرد.

[ویرایش] تجارت

بعضی بر این باورند که تالس تنها یک متفکر صرف نبود، بلکه در تجارت و سیاست هم نقش داشت. هر چند با توجه به فلسفه وی، با انجام کارهای تجاری، هدف وی ثروتمند شدن صرف نبود.

[ویرایش] سیاست

زندگی سیاسی تالس بیشتر به درگیری ایونی‌ها در دفاع از آناتولی در برابر قدرت فزایندهٔ ایرانیان که تازه به آن منطقه وارد شده بودند بر می‌‌گردد.

[ویرایش] اخلاق

دیدگاه تالس دربارهٔ اخلاق را می‌‌توان از گفتارهای منسوب به وی در دیوجانس لائرتیوس فهمید. نخست او به یک خدای متعالی که نه آغاز است نه پایان قایل است. او معتقد است خداوند عادل است و از بشر هم انتظار اعمال عادلانه دارد. نه ناعادل بودن (آدیکوس)، و نه اندیشهٔ بی عدالتی از دیدگان خدا پنهان نمی‌ماند



خرید و دانلود  زندگینامه تالس


علم اخلاق 32 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 42

 

علم اخلاق

علوم متعددی که اخلاق انسانها را از جهات و حیثیات گوناگون مورد کنکاش و بررسی قرار داده‌اند به قرار ذیل می باشد :

1-علم اخلاق 2-فلسفه علم اخلاق 3-تعلیم و تربیت 4-اخلاق توصیفی 5-فرا‌اخلاق 6-اخلاق هنجاری 7-فلسفه اخلاق

معنای لغوی اخلاق :

با توجه به صفات و خصوصیات مختلف انسانها از قبیل شجاعت ، امانتداری ، سخاوت یا زذلی و بخل و خیانت می توان دریافت که در بعضی از انسانها این صفات بگونه ای پایدار و راسخ است که معمولاً کارهای متناسب و مطابق با آن صفات را بدون تامل و تفکر به سادگی انجام می دهند . آن صفات در آنها ملکه شده است و گاهی بعضی دیگر گاه گاهی به این صفات متصف می شوند و احیاناً با تامل در اطراف آن کار ، خود را به انجام آن وادار می کنند . در این صورت این صفتی زودگذر بوده و شخص در انجام کار متناسب با آن خود را به انجام آن وادار می کند و آن صفت را حال می‌نامند .

خلق در لغت به معنای صفت پایدار و راسخ یعنی ملکه است و اخلاق به مجموعه اینگونه صفات اطلاق می شود . معنای لغوی اخلاق تنها اختصاص به صفات نیکو و پسندیده نداشته است ، بلکه شامل صفات زشت و زیبا هم می‌شود . همانطور که بعضی از انسانها دارای خلق نیک و سخاوتمند و برخی دیگر گرفتار خلق ناپسند بخل می باشند .

فلسفه علم اخلاق به مباحثی نظیر تاریخچه علم اخلاق و تحولات آن و هدف از علم اخلاق و فایده آن و علمای بزرگ این علم و مسائلی از این دست می پردازد . در تعلیم و تربیت شیوه های علمی آراسته شدن به صفات نیکو و پسندیده و دفع رذایل و صفات ناپسند مورد بحث واقع می شود .

اخلاق توصیفی :

درصد توصیف و گزارش اخلاقیات افراد جوامع ادیان و مکاتبات خاص می باشد .

فرا اخلاق :

در علم اخلاق قضایایی مانند ظلم کار ناپسندی است . شجاعت و سخاوت از صفات خوب هستند . در امانت نباید خیانت کرد . در فرااخلاق به بررسی کل مفاهیم ظلم شجاعت سخاوت پرداخته می شود .

اخلاق هنجاری :

شامل 2 بخش است : بخش اول از معیارهای کلی اخلاقی صحبت می کند و اینکه خوبها و بدیهای کلی چیست ؟ معیار کار درست کدام است و خوبی و درستی چه رابطه ای با هم دارند . پاسخ این سوالات بررسی می شود .

در بخش دوم از خوبی و بدی و درستی و نادرستی و اخلاق بودن یا غیر اخلاقی بودن افعال خاص سخن می گوید مثل اینکه آیا خیانت بد است . پرسش نخست از معیار کلی خوبی و بدی و درستی و نادرستی افعال بحث می کند و بخش دوم مصادیق آن معیار کلی را تشخیص می دهد . در بخش نخست تقدم منطقی بر بخش دوم را دارد . زیرا مبادی تصدیقی آن را فراهم می کند .

فلسفه اخلاق :



خرید و دانلود  علم اخلاق 32 ص


علم اقتصاد، مکتب اقتصادی و سیستم اقتصاد اسلامی 55 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 49

 

علم اقتصاد، مکتب اقتصادی و سیستم اقتصاد اسلامی‌

چکیده‌

اقتصاد اسلامی‌ مقوله‌ای‌ است‌ که‌ از دیرباز مورد بحث‌ و بررسی‌ علماء اسلامی‌ قرار گرفته‌ است‌. دانشمندان‌ اسلامی‌ درباره‌ ماهیت‌ اقتصاد اسلامی‌ بحثهای‌ زیادی‌ داشته‌اند و کتب‌ و مقالات‌ زیادی‌ دراین‌ زمینه‌ به‌ رشته‌ تحریر درآمده است. به‌ رغم‌ مباحث‌ زیاد هنوز بحثهایی حل نشده‌ در این‌ خصوص‌ وجود دارد. بعضی اقتصاددانان اقتصاد اسلامی را علم اقتصاد از نوع« اقتصاد اثباتی» می دانند، در حالی که عده ای آ ن را مکتب اقتصادی « اقتصاد هنجاری » می پندارند و گروهی نیز براین عقیده اند که تفکیک علم اقتصادو مکتب اقتصادی از یکدیگر امری بی حاصل است.

در این‌ مقاله‌ ابتدا تعاریفی‌ از «علم‌»، «مکتب‌» و «سیستم‌ اقتصادی‌» ارائه‌ شده‌ است‌. سپس‌ بحثهای‌ موجود به‌ تناسب‌ در هر یک‌ از این‌ مقولات‌ انجام ‌شده ‌ است‌. و در نهایت‌ با توجه‌ به‌ جامعیت‌ دین‌ اسلام‌ دیدگاهی‌ که‌ به‌ نظر می‌رسد با مجموعه‌ اهداف‌ وآرمانهای‌ اسلامی‌ نزدیکتر باشد تحت‌ عنوان‌ سیستم‌ اقتصادی‌ اسلام‌ معرفی‌ شده‌ است‌. ویژگیهای ‌نگرش‌ سیستمی‌ به‌ اقتصاد اسلامی‌ و نتایج‌ مترتب‌ بر آن‌ بحثهای‌ دیگری‌ است‌ که‌ در این‌ مقاله‌ به آنها پرداخته‌ شده‌ است‌.

واژه‌های کلیدی: اقتصاد، علم، مکتب، اسلام، سیستم اقتصاد.

Economics, Economic School, and

Islamic Economic System

M. Lotfalipour, Ph.D.

Abstract

The subject of Islamic economy has been discussed by Islamic scientists for a long time. Islamic authorities have made various arguments on the nature of the Islamic economy and have written a lot of books and articles. In spite of numerous arguments in the past, still remain unresolved questions in this area. Some scientists think of Islamic economic system as positive economics, while others think of it as normative economics. Still another group believe that division



خرید و دانلود  علم اقتصاد، مکتب اقتصادی و سیستم اقتصاد اسلامی 55 ص