لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 7
معرفی رشته مهندسی نفت و گرایش ها
ماهیت کار
مهندسان نفت به دنبال کشف منابع نفت یا گاز طبیعی در جهان می باشند. پس از کشف چنین منابعی مهندسین نفت با همکاری زمین شناسان و دیگر متخصصان ، ساختار زمین و خصوصیات صخره های حاوی ذخایر و روشهای حفاری را تعیین کرده و عملیات حفاری راکنترل میکنند. آنها به منظوردستیابی به حداکثر میزان نفت و گاز , تجهیزات و مراحل کار را طراحی می کنند. مهندسان نفت جهت شبیه سازی رفتار منابع نفت در رابطه با بکارگیری روشهای متفاوت باز یافت ، شدیدا” به مدلهای رایانه ای وابسته اند. آنها به منظور شبیه سازی اثرات روشهای گو ناگون حفاری نیز غالبا” از مدلهای رایانه ای استفاده می کنند.
از آنجایی که تنها درصد کمی از نفت و گازموجود در منبع تحت فشار طبیعی از چاه فوران می کند, لذا مهندسان نفت از انواع روشهای تقویت شده بازیافت استفاده می کنند. این روشها شامل تزریق آب , مواد شمیایی , گاز یا بخار به درون یک منبع نفت جهت با فشار بیرون راندن نفت بیشتر, و حفاری کنترل شده توسط رایانه و یا شکافتن جهت اتصال یک منبع بزرگتر به یک چاه منفرد می باشد . از آنجایی که حتی با بکارگیری کاملترین روشهای امروزی تنها قسمتی از نفت یا گاز یک منبع کشف می شود , لذا مهندسان نفت به امور تحقیقاتی و گسترش فن آوری و روشهای کار آمد تری می پردازند تا میزان کشف را افزایش داده و از هزینه حفاری و مراحل تولید بکاهند.
فرصتهای شغلی
اکثر مهندسان نفت در بخش های استخراج نفت و گاز , پالایش نفت , و خدمات مهندسی و معماری استخدام می شوند. به خدمت گیرندگان شامل شرکتهای نفتی بزرگ و صدها شرکت کوچکترو مستقل فعال در زمینه های استخراج ، تولید و خدمات می باشند. بسیاری از آنها نیزتوسط شرکتهای مشاوره مهندسی وبخشهای دولتی استخدام می شوند.
اکثر مهندسان نفت در مناطقی که درآنجا نفت و گاز کشف می شود کار میکنند. بسیاری از مهندسان نفت در کشورهای تولید کننده نفت مشغول بکارند.
چشم انداز آینده
انتظار می رود که استخدام مهندسان نفت با سیر نزولی همراه باشد . با این وجود فرصتهای شغلی مطلوبی در انتظار مهندسان نفت است چرا که شمار مشاغل فعلی بیشتر از شمارکم فارغ التحصیلان این رشته می باشد. چنین فرصتهای شغلی به علت نیاز به جانشینی مهندسانی به وجود می آید که تغییر شغل میدهند و یا شرایط سخت کاری را تحمل نمیکنند.
میزان در آمد
در سال ۲۰۰۰ میانگین درآمد سالانه مهندسان نفت در ایالات متحده ۷۸۹۱۰ دلار بوده است.
گرایشهای مختلف این رشته:
:: رشته مهندسی نفت (مخازن)
این دوره کارشناسی یکی از گریش هی رشته مهندسی نفت و از دوره هی عالی فنی، مهندسی می باشد که هدف آن تربیت متخصصانی است که داری توانیی و مهارت هی لازم بری انجام طرحها و اجری روشهی بهینه تولید و مطالعات و مدلسازی مخازن نفت و گاز می باشند. ین دوره مبتنی بر دروس مکانیک سیالات، دینامیک گازها، ترمودینامیک سیالات، انتقال جرم، خواص سیالات مخزن، مهندسی حفاری، زمین شناسی نفت، مهندسی مخازن و روشهی ازدیاد برداشت و… می باشد.
نقش و توانائیهائی که دانشجویان پس از فارغ التحصیلی در ین رشته کسب می کنند عبارتند از:
* بررسی قابلیت تولید در مخزن با بکارگیری و بهره مندی از شیوه هی جدید مطالعاتی و مدلسازی.
* ارزیابی توزیع فشار و توجیه افت آن در مخزن و چگونگی کنترل آن.
* ارائه شریط عملیاتی بری بهره برداری از مخزن با بکارگیری خصوصیات و رفتار مخزن.
* انتخاب و ارائه روش عملی افزیش برداشت از مخازن با احتساب ملاحظات فنی واقتصادی.
* ارزیابی عملیات بهره برداری و ارائه روش بهینه.
* مدیریت و صیانت از مخازن نفت و گاز.
* توانائی ارزیابی فنی – اقتصادی طرح ها و عملیات ازدیاد برداشت از مخازن و بهینه سازی آن.
* ارزیابی تأثیر روشهی ازدیاد برداشت از مخازن بر محیط زیست.
فارغ التحصیلان ین دوره می توانند نقشی مؤثر در مطالعات و مدلسازی مخازن و استفاده از روشهی بهینه ازدیاد برداشت و بطور کلی مدیریت بهینه مخزن داشته باشند.
این دانشگاه در ین رشته تحصیلی تا مقطع دکتری (با همکاری دانشگاه صنعتی شریف و پژوهشگاه صنعت نفت) فعالیت آموزشی و پژوهشی دارد. در ضمن در مقطع کارشناسی ارشد بصورت مستقل و همچنین بصورت مشترک (Dual Degree) با دانشگاههی معتبر بین المللی فعالیت دارد.
:: رشته مهندسی نفت (اکتشاف)
این دوره کارشناسی یکی از گریش هی رشته مهندسی نفت و یکی از دوره هی عالی فنی – مهندسی است که هدف آن تربیت متخصصانی در زمینه اکتشاف نفت و مطالعات زمین شناسی ، ژئوفیزیکی، ژئوشیمیائی و امکان سنجی ازدیاد برداشت از مخازن می باشد.
این دوره عمدتاً بر دروس مهندسی زمین شناسی نفت، ژئوفیزیک، ژئوشیمی نفت، پتروفیزیک، مکانیک سیالات، ترمودینامیک مواد کانی و مکانیک سنگ و خاک و اصول مهندسی حفاری و بهره برداری از مخازن نفت مبتنی است.
نقش و توانائیهائی که دانشجویان پس از فارغ التحصیلی در ین رشته کسب می کنند عبارتند از:
* آشنائی با دانش امروز زمین شناسی نفت و انجام مطالعات مربوطه و بهره گیری از نتیجه حاصله.
* انجام آزمیشات و جمع آوری اطلاعات علمی و فنی مربوطه به ناحیه مورد اکتشاف و عملیات اکتشافی.
* انتخاب و یا تعیین مناسب و روش اکتشاف و اجری آن با توجه به وضعیت زمین شناسی و شریط محیطی و اقلیمی ناحیه موردنظر.
* طرح عملیات و تأمین تدارکات و تلفیق برنامه هی مربوطه بری اجری بهینه عملیات اکتشافی موردنظر.
* برآورد فنی و اقتصادی طرح ها و عملیات اکتشاف.
* مدیریت موثر و صیانت تجهیزات بری مطالعات زمین شناسی، نقشه برداری و عملیات اکتشاف.
* مدیریت و صیانت از مخازن نفت اکتشافی و اعمال روشهی ازدیاد برداشت از جلوگیری از آلودگی و تخریب محیط زیستی با استفاده از مطالعات زمین شناسی و عملیات اکتشافی.
فارغ التحصیلان ین دوره می توانند مطالعات و عملیات مهندسی زمین شناسی نفت، محاسبات و طراحی و تلفیق عملیات و اجزاء جانبی برنامه هی اکتشافی وزارت نفت را به عهده بگیرند. و نقش مؤثر خود را در عملی نمودن و اجری بهینه برنامه هی مطالعاتی و اکتشافی در تلفیق تدارکات و طرح و چگونگی پیاده کردن برنامه هی اکتشافی آتی و استراتژیک صنعت نفت کشور یفا کنند.
:: رشته مهندسی نفت (بهره برداری از منابع نفت)
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 19 صفحه
قسمتی از متن .doc :
1- تاریخچه مهندسی صنایع
1-1- سیر شکلگیری مهندسی صنایع تا جنگ جهانی دوم
اولین فعالیتهای مهندسی صنایع مربوط به اقتصاددانهای کاربردی و صنعتگرها است که در حدود سالهای 1800 در انگلستان شکل گرفت. آدام اسمیت1 ، اقتصاددان معرف اسکاتلندی، در سال 1776 در کتاب ثروت ملل ایده تقسیم کار را برای بهبود بهرهوری مطرح کرد. پیادهسازی این ایده روی فعالیت سوزن سازی در یک کارگاه نشان داد که با تقسیم فعالیت به چهار عملیات جداگانه، خروجی 5 برابر افزایش یافت. وقتی که یک کارگر تمام فعالیت را انجام میداد در هر روز 1000 سوزن تولید میکرد ولی وقتی 10 کارگر به چهار فعالیت تخصصی و جداگانه گمارده شدند میتوانستند 48000 سوزن تولید کنند. علاوه بر اینکه ظرفیت تولید افزایش یافت، اسمیت نشان داد که با این ایده هزینه ساخت نیز کاهش مییابد. اسمیت علت کاهش هزینه ساخت را چنین بیان کرد:
انجام یک کار توسط یک نفر به صورت مکرر باعث به وجود آمدن مهارت خاص در آن فرد برای انجام آن کار میگردد بنابراین میتواند در زمان کمتری آن را به پایان رساند.
صرفهجویی در زمان از دست رفته کارگر برای تغییر از یک کار به کار بعدی
اختراع ابزار جدید و مخصوص برای انجام هر یک از کارها
چارلز ببج2 در تکمیل ایده اسمیت بیان کرد که با گماردن هر کارگر به یک کار خاص، دیگر به مهارت و تجربه زیاد در کار ساخت و تولید نیاز نبوده و نرخ پرداخت به کارگران نیز میتواند کمتر باشد و بدین شکل هزینه تولید کاهش مییابد. وی نتیجه یافتههای خود را در سال 1835 با عنوان «اقتصاد ماشینآلات و سازندگان3 » ارائه نمود.
در تولید ماشین بخار توسط ماتئو بولتون4 و جیمز وات5 ، استفاده از سیستمهای مدیریت شامل استانداردها، روشهای پیشبینی، استقرار کارخانه، طراحی کارخانه و سیاستهای حقوق و پاداش در شکل ابتدایی خود برای کمک در هدایت، مدیریت و کنترل کارخانه آغاز شد.
توسعه مهندسی صنایع در آمریکا در سالهای اول 1900 توسط فردریک تیلور6 ، پدر مهندسی صنایع، آغاز شد. بر خلاف آدام اسمیت و چارلز ببج که نظریهپرداز و نویسنده بودند، تیلور کسی بود که از طریق انجام فعالیتهای صنعتی و بر اساس آزمایش به توسعه اصول و مفاهیم پرداخت و توجه خود را روی روشهای علمی انجام کار و مدیریت یک واحد تولیدی متمرکز ساخت. تا قبل از تیلور کارها بر اساس حسابهای سرانگشتی انجام میشد و از استانداردهای علمی، برنامهریزی مدیریتی و رویههای تحلیل خبری نبود. هدف تیلور تغییر این وضعیت به شرایطی بود که نشان دهد مدیریت یک فعالیت علمی است و نه یک فعالیت اتفاقی و باری به هر جهت. وی چهار خطمشی زیر را مورد توجه قرار داد:
برای هر عنصر کاری یک پایه علمی توسعه دهید و آن را جایگزین روشهای سرانگشتی کنید.
برای هر کار، بهترین کارگر را انتخاب کنید به جای اینکه کارگر خود، کار خود را انتخاب کند.
کار را به طور مساوی بین مدیریت و نیروی کار تقسیم کنید به طوری که هر یک وظایف و مسئولیت متناسب با خود را دارا باشد.
روح همکاری بین مدیریت و نیروی کار را توسعه دهید به طوری که کار بر اساس خطمشی اول و دوم انجام پذیرد.
در راستای هدف تیلور (یعنی مدیریت علمی) افراد دیگری از جمله گیلبرت7 و گانت8 به توسعه روشهای علمی و سیستماتیک برای مطالعه و اندازهگیری کار، برنامه ریزی و زمانبندی تولید پرداختند. تا پیش از سال 1930 رشد چشمگیری در توسعه مهندسی صنایع ایجاد شد و حوزههایی تحت عناوین زیر شکل گرفت:
روشهای کار
اندازهگیری کار
طراحی کارخانه
سیستمهای پاداش و حقوق
ارزیابی کار
تئوری سازمان
فاکتورهای انسانی
برنامهریزی و کنترل تولید
تا اواخر سالهای 1940، توسعه مهندسی صنایع بر اساس روشهای سنتی که توسط تیلور، گانت و گیلبرت پایهگذاری شده بود ادامه یافت. فلسفه وجودی مهندسی صنایع با توجه به نگرش و هدف به وجودآورندگان آن، ارائه راهحلهای مؤثر و کارا برای مسائل مربوط به طراحی، تحلیل و ارزیابی بود.
1-2- تکامل مهندسی صنایع بعد از جنگ جهانی دوم
شکلگیری مهندسی صنایع به همراه تدوین فلسفه وجودی، مفاهیم، اهداف و مشخص شدن حوزههای کاربرد از یک طرف و از طرف دیگر ظهور حوزههای جدید قابل کاربرد در مهندسی صنایع طی سالهای جنگ جهانی دوم و بعد از آن، مهندسی صنایع را به حوزهای تبدیل نمود که دارای معانی متفاوت نزد افراد مختلف بود. بهترین روش درک مهندسی صنایع جدید، درک چگونگی ارتباط آن با دیگر حوزههاست. معمولترین حوزههای مرتبط با مهندسی صنایع عبارتند از: مدیریت، علوم کامپیوتر، علم آمار، تحقیق در عملیات، علوم مدیریت9 ، مهندسی فاکتورهای انسانی و مهندسی سیستمها. در ادامه هر یک از حوزههای اشاره شده، شرح داده شده و با مهندسی صنایع مقایسه میشوند.
1-2-1- مدیریت
بین همه حوزههای اشاره شده، مدیریت قدیمیترین در تاریخ بشری است. بیشتر کتابهای مدیریت، توسعه مدیریت را با بحث روی مفاهیم علمی تیلور آغاز میکنند و خیلی از نویسندگان آن کتابها، تیلور را «پدر مدیریت علمی» مینامند همانگونه که مهندسین صنایع وی را «پدر مهندسی صنایع» مینامند. در اینجا این پرسش مطرح میشود که آیا مفاهیم مدیریت علمی تیلور تعمیمی دانشگاهی از مهندسی است یا مدیریت. بخشی از مدیریت با نام مدیریت تولید دارای وجه مشترکی با مهندسی صنایع است. در اینجا نیز از دید مدیریت، مدیریت تولید به جنبه هدایت منابع انسانی تولید توجه دارد در صورتی که مهندسی صنایع به تحلیل، طراحی و کنترل سیستمهای بهرهور میپردازد. منظور از سیستم بهرهور سیستمی است که محصول یا خدمت تولید میکند. به عبارتی میتوان گفت متخصصان مدیریت مجری سیستمهایی هستند که توسط مهندسین صنایع تحلیل، طراحی و ارزیابی شدهاند.
1-2-2- تحقیق در عملیات
در جنگ جهانی دوم، نیروی نظامی انگلیس و آمریکا تیمهایی مرکب از ریاضیدانان، آماردانها، دانشمندان فیزیک، مهندسین، بیولوژیستها و روانشناسها تشکیل دادند تا مسائل مختلف عملیاتی نظامی را مورد تحلیل قرار دهند. به عنوان مثال نیروی دریایی آمریکا 70 تحلیلگر از علوم مختلف را به کار گرفت. از آنجایی که این تیمها برای تحقیق روی فعالیت ها و عملیات نظامی تشکیل شده بودند، چنین تحقیق، تحلیل و بررسی را «تحقیق در عملیات10 » نامیدند. تیمهای تحقیق در عملیات به مسائلی از جمله مسائل زیر پاسخ دادند:
تعیین محل استقرار تجهیزات رادار
چگونگی جستجوی زیردریاییهای دشمن
چگونگی تخریب مینهای دریایی در دریاهای اطراف ژاپن
تعیین اندازه بهینه ناوگانهای حمل مواد
توسعه استراتژیهای مانور ناوهای جنگی هنگام حمله دشمن
همانطور که گفنه شد تا اواخر سالهای 1940 توسعه مهندسی صنایع مبتنی بر روشهای سنتی تیلور، گانت و گیلبرت بود. بعد از جنگ جهانی دوم و در اواخر سالهای 1940 و اوایل 1950، تحقیق در عملیات به واسطه موفقیتهای به دست آمده در جنگ، جای خود را در فعالیتهای صنعتی، بخشهای خدماتی و سازمانهای دولتی و خصوصی باز کرد. مفاهیمی که توسط تیلور، گانت، گیلبرت و دیگران توسعه داده شده بودند نیازمند تحلیل کمی دقیقتر و روشهای سیستمگرا بودند که تا آن زمان به صورت سنتی به کار گرفته میشدند. ظهور تحقیق در عملیات، نقطه عطفی در تحول روشهای مهندسی صنایع بود که نتیجه آن توسعه روشهای کمی، الگوریتمهای ریاضی و . . . بود که در بکارگیری مؤثر مفاهیم توسعه یافته توسط تیلور و دیگران استفاده شدند. ممکن است این پرسش مطرح شود که آیا مهندسی
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 14
آشنایی با رشته مهندسی برق
هدف یکی از بهترین تعریف هایی که از مهندسی برق شده است، این است که محور اصلی فعالیت های مهندسی برق، تبدیل یک سیگنال به سیگنال دیگر است. که البته این سیگنال ممکن است شکل موج ولتاژ یا شکل موج جریان و یا ترکیب دیجیتالی یک بخش از اطلاعات باشد. مهندسی برق دارای چهار گرایش است که در زیر بطور اجمالی به بررسی آنها می پردازیم و در قسمت معرفی گرایشها به تفصیل در مورد هر کدام صحبت خواهم کرد. مهندسی برق- الکترونیک: الکترونیک علمی است که به بررسی حرکت الکترون در دوره گاز، خلاء و یا نیمه رسانا و اثرات و کاربردهای آن می پردازد. با توجه به این تعریف، مهندس الکترونیک در زمینه ساخت قطعات الکترونیک و کاربرد آن در مدارها، فعالیت می کند. به عبارت دیگر، زمینه فعالیت مهندسی الکترونیک را می توان به دو شاخه اصلی "ساخت قطعه و کاربرد مداری قطعه" و "طراحی مدار" تقسیم کرد. مهندسی برق- مخابرات: مخابرات، گرایشی از مهندسی برق است که در حوزه ارسال و دریافت اطلاعات فعالیت می کند. مهندسی مخابرات با ارائه نظریه ها و مبانی لازم جهت ایجاد ارتباط بین دو یا چند کاربر، انجام عملی فرایندها را به طور بهینه ممکن می سازد. پس هدف از مهندسی مخابرات، پرورش متخصصان در چهار زمینه اصلی این گرایش است شامل فرستنده، مرحله میانی، گیرنده و گسترش شبکه که گستره هر کدام عبارتند از: فرستنده: شامل آنتن، نحوه ارسال و ... مرحله میانی: شامل خط انتقال و محاسبات مربوط و ... گیرنده: شامل آنتن، نحوه دریافت، تشخیص و ... گسترش شبکه: مشتمل بر تعمیم خط ارتباطی ساده، ادوات سویچینگ ، ارتباط بین مجموعه کاربرها و ... مهندسی برق- کنترل: کنترل، در پیشرفت علم نقش ارزنده ای را ایفا می کند و علاوه بر نقش کلیدی در فضاپیماها و هدایت موشکها و هواپیما، به صورت بخش اصلی و مهمی از فرایندهای صنعتی و تولیدی نیز درآمده است. به کمک این علم می توان به عملکرد بهینه سیستمهای پویا، بهبود کیفیت و ارزانتر شدن فرآورده ها، گسترش میزان تولید، ماشینی کردن بسیاری از عملیات تکراری و خسته کننده دستی و نظایر آن دست یافت. هدف سیستم کنترل عبارت است از کنترل خروجیها به روش معین به کمک ورودیها از طریق اجزای سیستم کنترل که می تواند شامل اجزای الکتریکی، مکانیک و شیمیایی به تناسب نوع سیستم کنترل باشد. ماهیت انرژی اگر بنیادی ترین رکن اقتصاد نباشد، یکی از ارکان اصلی آن به شمار می آید و در این میان برق به عنوان عالی ترین نوع انرژی جایگاه ویژه ای دارد. تا جایی که در دنیای امروز میزان تولید و مصرف این انرژی در شاخه تولید، شاخص رشد اقتصادی جوامع و در شاخه خانگی و عمومی یکی از معیارهای سنجش رفاه محسوب می شود. دانش آموختگان این رشته می توانند در زمینه های طراحی، ساخت، بهره برداری، نظارت، نگهداری، مدیریت و هدایت عملیات سیستم ها عمل نمایند. گرایش های مقطع لیسانس رشته مهندسی برق در مقطع کارشناسی دارای 4 گرایش الکترونیک، مخابرات، کنترل و قدرت(1) است. البته گرایش های فوق در مقطع لیسانس تفاوت چندانی با یکدیگر ندارند و هر گرایش با گرایش دیگر تنها در 30 واحد یا کمتر متفاوت است. و حتی تعدادی از فارغ التحصیلان مهندسی برق در بازار کار جذب گرایشهای دیگر این رشته می شوند. با این وجود ما برای آشنایی هر چه بیشتر شما گرایشهای فوق را به اجمال معرفی می کنیم. گرایش الکترونیک
دکتر کمره ای استاد مهندسی برق دانشگاه تهران در معرفی این گرایش می گوید: "گرایش الکترونیک به دو زیر بخش عمده تقسیم می شود. بخش اول میکروالکترونیک است که شامل علم مواد، فیزیک الکترونیک، طراحی و ساخت قطعات از ساده ترین آنها تا پیچیده ترین آنها است و بخش دوم نیز مدار و سیستم نامیده می شود و هدف آن طراحی و ساخت سیستم ها و تجهیزات الکترونیکی با استفاده از قطعات ساخته شده توسط متخصصان میکروالکترونیک است. دکتر جبه دار نیز در معرفی این گرایش می گوید: گرایش الکترونیک یکی از گرایشهای جالب مهندسی برق است که محور اصلی آن آشنایی با قطعات نیمه هادی، توصیف فیزیکی این قطعات، عملکرد آنها و در نهایت استفاده از این قطعات، برای طراحی و ساخت مدارها و دستگاههای است که کاربردهای فنی و روزمره زیادی دارند." گرایش مخابرات هدف از مخابرات ارسال و انتقال اطلاعات از نقطه ای به نقطه دیگر است که این اطلاعات می تواند صوت، تصویر یا داده های کامپیوتری باشد. دکتر جبه دار در مورد شاخه های مختلف این گرایش می گوید: "مخابرات از دو گرایش میدان و سیستم تشکیل می شود. که در گرایش میدان، دانشجویان با مفاهیم میدان های مغناطیسی، امواج، ماکروویو، آنتن و ... آشنا می شوند تا بتوانند مناسبترین وسیله را برای انتقال موجی از نقطه ای به نقطه دیگر پیدا کنند. همچنین یکی از فعالیت های عمده مهندسی مخابرات گرایش سیستم، طراحی فلیترهای مختلفی است که می توانند امواج مزاحم شامل صوت یا پارازیت را از امواج اصلی تشخیص و آنها را حذف کرده و تنها امواج اصلی را از آنتن دریافت کنند. گفتنی است که امروزه با توسعه مخابرات بی سیم، ارتباط نزدیکتری بین دو گرایش میدان و سیستم ایجاد شده است. برای نمونه در گوشی تلفن همراه ما هم تجهیزات مربوط به مدارهای مخابراتی و هم تجهیزات مربوط به فرستنده و هم آنتن گیرنده را داریم. از همین رو یک مهندس مخابرات امروزه باید از هر دو گرایش بخوبی اطلاع داشته باشد تا بتواند یک دستگاه بی سیم را طراحی کند." گرایش کنترل "اگر بخواهیم یک تعریف کلی از کنترل ارائه دهیم، می توانیم بگوییم که هدف این علم، کنترل خروجی های یک سیستم بر مبنای ورودی های آن و با توجه به شرایط ویژه و نکات مورد نظر طراحی آن سیستم می باشد." دکتر کمره ای در ادامه معرفی علم کنترل می گوید: "علم کنترل فقط در مهندسی برق مورد استفاده قرار نمی گیرد. بلکه در شاخه های دیگری از علوم مهندسی و حتی علوم انسانی کاربرد دارد. به عنوان نمونه کنترل فرآیند تصفیه نفت در یک پالایشگاه، کنترل عملکرد یک نیروگاه برق، سیستم کنترل ناوبری یک کشتی و یا کنترل تحولات و تغییرات جمعیتی نمونه های متنوعی از کاربرد علم کنترل می
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 128
آنالیز فوریه
تابع f(x) را تابع متناوب یا دوره ای می گوئیم (Periodic foretion) هرگاه عددی مثل 2L پیدا شود به قسمی که داشته باشیم f(x) = f(x + 2L)
2L f(x) = f(x + 2L)
2L = 2x Exampel : Sin x , Cos x
2L = x Exampel : tog x , Cot x
اگر توابعی متناوب باشند ولی Sin x و Cos x نیستند با استفاده از سری فوریه این توابع متناوب غیر سینوسی و غیر کسینوسی را بر حسب توابع سینوسی و کسینوسی به دست می آوریم . به عنوان مثال :
Sin x dx = Sin x dx = 0
Cos x dx = 2 Cos x dx =0
Sin mx . Cos nx dx = m, n به ازای هر
Sin mx . Sin nx dx =
Cos mx . Cos nx dx =
نکته : حاصلضرب هر عدد طبیعی 2L می شود دوره تناوب آن تابع
2L n(2L)
f(x) = Sinx Sinx = Sin(x + 2) = Sin(x + 2n)
به ازای n = 1 دوره به دست آمده را دوره تناوب اصلی یا اساسی می گویند .
Sin mx دوره تناوب :
Sin 2Lx دوره تناوب :
X(- , ) t = ( - L , L)
Sin x Sin x dx
Sin x . Sin x dx =
c هر عدد حقیقی می تواند باشد ولی برای سادگی c را برابر صفر یا -L در نظر می گیریم .
جای تذکر این است که جواب مسئله نصف دوره تناوب است در این جا 2L است, نصف آن L است و در مواردی نیز یعنی در سینوس و کسینوس 2 بوده که نصف آن می باشد .
Cos x . Cos x dx =
Sin x . Cos x dx = 0
= v1 I + v2 j + v3 k = u1 I + u2 j + u3 k
. = Cos . = u1v1 + u2 v2 + u3 v3
. =
اگر بردار v بر بردار u عمود باشد مقدار صفر است یا تعبیر هندسی این که v بر u عمود است یا تصویر v بر بردار u یک نقطه است .
uv . = 0
u . u = 2 =
Sin nx , Cos mx Sin ix . Cos jx (x) = n
1 =
2 =
(x) . (x) dx = 0
این مجموعه توابع متعامد هستند
(x) dx = N نرم تابع
برای به دست آوردن بردار یکه توابع 1 , 2 داریم :
orthonomal مجموعه توابع یکه
به عنوان مثال مجموعه توابع یکه Sin x عبارتند از :
I و j و k را می توان پایه های یک مختصات سه بعدی هستند بردارهای یکه I و j و k مستقل از هم هستند یعنی نمی توان بر حسب همدیگر به دست آورد, به عبارتی یکی را نمی توان بر حسب دیگری محاسبه نمود و به دست آورد .
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 16
طراحی مهندسی مدرن
مقدمه:
امروزه در تحلیل طراحی مهندسی مدرن، روش های عددی اغلب در به دست آوردن اطلاعاتی درباره پتانسیل تغییرات طراحی مورد نیاز هستند. درجه حرارت ها، سرعت های سیال و یا تنش ها برای یک مسئله مشخص مهندسی که اغلب از نظر مهندسی، متغیرهای خواص و دیگر موارد پیچیده هستند محاسبه میشوند. یکی از این روش ها عددی که ظرفیت زیاد برای یک گستره وسیعی از مسائل مهندسی به کار می رود روش اجزاء محدود است. با استفاده مناسب از این روش می توان تحلیل سیستم های مهندسی با مقیاس بزرگ را ممکن ساخت.
بسیاری از تعالی مهندسی با توسعه ای از مسائل مقدار مرزی که پدیده های فیزیکی متیغر را شرح میدهند در ارتباط هستند. در بعضی از حالت نتیجه معادلات دیفرانسیل ساده با شرایط مرزی ساده هستند که ممکن است به طور تحلیلی حل شوند و تغییراتی از مشخصات فیزیکی معین به صورت تابعث از فضا یا زمان یا هر دو به دست آید. اما معمولاً این وضعیت رخ نمی دهد چون سیستم های فیزیکی پیچیده هستند و معادلات دیفرانسیل حاصل نیز پیجیده است و حل ساده ای برای این معادلات وجود ندارد.
مزیت اصلی روش اجزاء محدود این هست که می توان برای حل مسئله واقعی مهندسی که می توان برایش یک معادله دیفرانسیل نوشت استفاده کرد. وقتی با روش های تحلیلی نتوان معادلات دیفرانسیل را حل کرد باید از روش اجزاء محدود یا بعضی دیگر از روش های عددی برای به دست آوردن جواب استفاده کرد. شاید اصلیترین اشکال روش اجزاء محدود این هست که بعضی مواقع پیچیده می شود. حتی حل معادله دیفرانسیل ای که یک سیستم ساده فیزیکی را شرح می دهد ممکن است با مشکل باشد.
عموماً پیچیدگی روش اجزاء محدود برای مسئله مشخص متناسب با پیچیدگی از معادلات دیفرانسیل است. مسئله هدایت گرمایی ساده نتیجه اش یک معادله دیفرانسیل مرتبه دوم است که نتیجهاش یک تحلیل ساده اجزا محدود است. در مقابل وقتی تغییراتی از یک ساده با درجه آزادی زیاد مثل بدنه یک اتومبیل، سیستم با معادلات دیفرانسیل زیادی شرح داده می شود که نتیجه یک تحلیل کاملاً پیچیده از اجزاء محدود خواهد بود. خوبشختانه مقدمات یاد گرفه شده در فهم تحلیل های ساده می تواند برای مسئله های بسیار پیچیده بدون مشکل زیادی بسط داده شود.
تاریخچه
حل معادلات دیفرانسیل به وسیله روش های عددی اساساً تخمین تابع های مشکل به وسیله تابعهای ساده روی گستره محدودی است. یقیناً قدیمی ترین نوشته های ثبت شده از این روش در روی لوحه های گلی در بابل پیدا شده اند. آنها درون یاب های خطی را می شناختند و برای محاسبه اعداد بین جداول استفاده می کردند. قرن ها پیش ریاضی دان های شرقی تخمین هندسی را برای محاسبه محیط دایره به کار بردند. آنها خطوط مستقیمی با طول مشخص را به صورت محیطی یا محاملی به صورت زیر برای محاسبه محیط دایره به کار بردند. برحسب نامگذاری امروزه هر یک از این خطوط را یک «المان محدود» و محل رسیدن این خطوط به یکدیگر را یک «گره» می توان نامید. اما تحول اساسی در سال 1970 شخصی به نام گلرکین تکنیکی ارائه داده که معادلات دیفرانسیل جزئی را به معادلات خطی تبدیل می کرد و در سال 1936 معادله دیفرانسیل تئوری الاستیسیته دو بعدی با روش ریتز حل شد.
با اختراع کامپیوتر عرصه جدیدی برای اجزاء محدود ایجاد شد. و حل معادلات که با دست کار طولانی در اکثر موارد غیر ممکن بود تسهیل شد. در دهه 1950 روش اجزاء محدود برای تحلیل قابها در هواپیما و در ادامه برای صنعت فضانوردی توسعه داده شد. در سالهای بعد کاربردهای سازه ای از روش اجزاء محدود شامل تحلیل از هواپیماهای بوینگ 747 تحلیل زلزله از ساختمانها و در بسیاری دیگر از مسائل سازه ای به کار گرفته شد. در این راستا برنامه های کامپیوتری مثل NASTRAN که در تحلیل شاتل فضایی ایالات متحده به کار برده شد ایجاد و توسعه یافتند. و بالاخره در سال 1979 با روش گلرکین توانستند معادلات ناویه استرکس را حل کنند. و در دو دهه قبل روش اجزاء محدود در محدوده بسیار وسیعی از مسائل مهندسی از قبیل مکانیک خاک، بیومکانیک مهندسی هسته ای، میدان های الکتریکی و … به کار گرفته شده و توسعه یافته است.
کاربردهای مهندسی روش اجزاء محدود
همان طور که قبلاً نیز بیان گردید، روش اجزاء محدود در ابتدا برای تحلیل سازه هواپیما توسعه یافت. اما طبیعت عمومی تئوری اجزاء محدود، آنرا برای طیف وسیعی از مسائل مقدار مرزی در مهندسی قابل استفاده می سازد. یک مسئله مقدار مرزی آن است که درآن یک حل در گستره یک جسم به شرط ارضای شرکت مرزی مجاز بر روی متغیرهای وابسته یا مشتقات آنها جستجو می شود. جدول زیر کاربرد های ویژه روش اجزا محدود را در سه گروه اصلی مسائل مقدار مرزی یعنی
مسائل تعداد یا حالت پایدار یا مستقل از زمان
مسائل مقدار ویژه
مسائل انتشار یا گذرا
ارائه می دهد. در یک مسئله تعادلی، برای مسائل مربوط به مکانیک یا جامدات لازم است تغییر مکان یا توزیع تنش را برای حالت پایدار بیابیم. در صورتی که موضوع یک مسئله انتقال حرارت باشد باید توزیع دما یا انرژی گرمایی را بیابیم. و اگر مسأله مکانیک سیالات باشد، توزیع سرعت یا فشار را به دست آوریم.
در مسائل مقدار ویژه هم، زمان به طور صریح ظاهر نمی شود. این مسائل ممکن است به عنوان بسط مسائل تعادلی در نظر گرفته شدند، که در آنها علاوه بر وضعیت حالت پایدار، مقادیر بحرانی پارامترهای معینی نیز باید تعیین شوند. در این گونه مسائل اگر مسأله مکانیک جامدات یا سازه ها باشد لازم است فرکانس های طبیعی یا بارهای کمانشی و شکل مود را تعیین کنیم و چنانچه مسأله مکانیک سیالات باشد باید پایداری جریان های لایه ای را بررسی کنیم و در صورتیکه مسأله مدارهای الکتریکی باشد باید مشخصه های تشدید سیستم را بیابیم.
مسائل انتشاری یا گذرا مسائل وابسته به زمان می باشند. برای مثال، این نوع از مسائل در زمینه مکانیک جامدات هنگامی پیش می آیند که ما در صدد تعیین عکس العمل یک جسم تحت اثر نیرویی باشیم که با زمان تغییر میکند و در رشته انتقال حررات زمانی رخ می دهند که جسم تحت اثر گرمایش یا سرمایش ناگهانی واقع شود.